2024 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

MISSISSIPPI POWER COMPANY PLANT VICTOR DANIEL ASH POND B

January 31, 2025

Prepared for

Mississippi Power Company Gulfport, Mississippi

By

Southern Company Services Earth Science and Environmental Engineering

CERTIFICATION STATEMENT

This 2024 Annual Groundwater Monitoring and Corrective Action Report, Mississippi Power Company – Plant Daniel Ash Pond B has been prepared in accordance with the United States Environmental Protection Agency's coal combustion residual rule (40 CFR Part 257, Subpart D), under the supervision of a licensed Professional Geologist in the State of Mississippi. As such, I certify that the information contained herein is true and accurate to the best of my knowledge.

Azinelyse W. Helms, PG Mississippi PG No. 1048 Geologist

Gregory F. Budd, PG Mississippi PG No. 0990 Senior Geologist

EXECUTIVE SUMMARY

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 CFR Part 257, Subpart D), this 2024 Annual Groundwater Monitoring and Corrective Action Report has been prepared to document 2024 semi-annual assessment groundwater monitoring activities at the Mississippi Power Company (MPC) Plant Daniel Ash Pond B (AP-B) and to satisfy the requirements of 40 CFR § 257.90(e). Semi-annual assessment monitoring and associated reporting for Plant Daniel AP-B is performed in accordance with the monitoring requirements 40 CFR § 257.90 through § 257.98.

Statistically significant increases (SSIs) of Appendix III constituents over background were identified in the results of the first detection monitoring event and assessment monitoring was initiated in January 2018. Statistically significant levels (SSLs) of the Appendix IV constituent lithium was identified in downgradient compliance well BAW-5 during the 2018 monitoring period. An alternate source demonstration (ASD) was prepared to address the SSLs for lithium and was completed July 12, 2019. The ASD was submitted in the 2019 Annual Groundwater Monitoring and Corrective Action Report. Therefore, pursuant to §257.95(g)(3)(ii), an assessment of corrective measures is not required, and AP-B remained in assessment monitoring. The following future actions will be taken or are recommended for the Site:

- Continue semi-annual assessment monitoring in 2025.
- Submit 2025 Annual Groundwater Monitoring and Corrective Action Report by January 31, 2026.

Pursuant to 40 CFR § 257.90(e)(6), an Executive Summary Table highlighting program status and significant findings from the most recent semi-annual monitoring period has been included on the next page.

Executive Summary Table Monitoring Period Summary Plant Daniel - Ash Pond B

Monitoring Period:	January 1 - December 31, 2024
Beginning Status:	Assessmet
Ending Status:	Assessment
	Statistical Analysis Results *
	Appendix III SSIs
Constituent	Wells
Boron	BAW-5
Calcium	BAW-4 and BAW-5
Chloride	None.
Fluoride	None.
pН	BAW-3 and BAW-5
Sulfate	BAW-5
TDS	BAW-5
	Appendix IV SSLs
Lithium	BAW-5
* See the attache	ed report for further details regarding statistical exceedances and alternate source demonstrations.
	Assessment of Corrective Measures & Groundwater Remedy
	Assessment of Corrective Measures
	Site Remains in Assessment Monitoring § 257.95 (d)
	Groundwater Remedy
	Site Remains in Detection Monitoring § 257.95 (d)

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i
Table of Contents	iii
1.0 INTRODUCTION	.5
2.0 MONITORING PROGRAM STATUS	.5
3.0 SITE LOCATION AND DESCRIPTION	.5
3.1 Regional Geology & Hydrogeologic Setting	.6
3.2 Uppermost Aquifer	.6
4.0 GROUNDWATER MONITORING SYSTEM	.7
4.1 Compliance Monitoring Network	.7
4.2 Monitoring Well Installation, Abandonment, and Maintenance	.7
5.0 GROUNDWATER SAMPLING AND ANALYSIS	.8
5.1 Groundwater Sample Collection	.8
5.2 Sampling Preservation and Handling	.9
5.3 Chain of Custody	.9
5.3 Chain of Custody5.4 Laboratory Analysis	
	.9
5.4 Laboratory Analysis	.9 .9
5.4 Laboratory Analysis6.0 GROUNDWATER ELEVATION AND FLOW	.9 .9 10
 5.4 Laboratory Analysis 6.0 GROUNDWATER ELEVATION AND FLOW 6.1 Groundwater Velocity Calculations	.9 .9 10 11
 5.4 Laboratory Analysis 6.0 GROUNDWATER ELEVATION AND FLOW 6.1 Groundwater Velocity Calculations	.9 .9 10 11 11
 5.4 Laboratory Analysis	.9 .9 10 11 11
 5.4 Laboratory Analysis	.9 .9 10 11 11 12 12
 5.4 Laboratory Analysis	.9 .9 10 11 11 12 12 13
 5.4 Laboratory Analysis	.9 .9 10 11 11 12 12 13 14
 5.4 Laboratory Analysis	.9 .9 10 11 11 12 12 13 14 15

Tables

Table 1	Monitoring Well Network Details
Table 2	Constituents and Reporting Limits
Table 3	Groundwater Elevations Summary
Table 4	Groundwater Velocity Calculations
Table 5	Relative Percent Difference (RPD) Calculations

Figures

Figure 1	Site Location Map
Figure 2	Monitoring Well Location Map
Figure 3	Potentiometric Surface Contour Map – March 18, 2024
Figure 4	Potentiometric Surface Contour Map – September 30, 2024

Appendices

Appendix A	Laboratory Analytical Data and Field Sampling Records
A mm an dire D	Statistical Analyses

Appendix B Statistical Analyses

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations (CFR) § 257 Subpart D), Southern Company Services (SCS) has prepared this *2024 Annual Groundwater Monitoring and Corrective Action Report* to document groundwater monitoring activities at Mississippi Power Company (MPC) Plant Daniel Ash Pond B (AP-B). Groundwater monitoring and reporting for the CCR unit is performed in accordance with the monitoring requirements § 257.90 through § 257.95 of the Federal CCR rule.

2.0 MONITORING PROGRAM STATUS

Statistically significant increases (SSIs) of Appendix III constituents over background were identified in the results of the 2017 detection monitoring event. Statistically significant levels (SSLs) of the Appendix IV constituent lithium was identified in downgradient compliance well BAW-5 during the 2018 monitoring period. . Pursuant to § 257.94(e)(1), an alternate source demonstration (ASD) was prepared to address the SSLs for lithium and was completed July 12, 2019. The ASD was submitted in the 2019 Annual Groundwater Monitoring and Corrective Action Report. Therefore, pursuant to §257.95(g)(3)(ii), an assessment of corrective measures is not required, and AP-B remained in assessment monitoring.

Removal of CCR material at AP-B was completed in September 2021 and the site was certified clean closed in early 2022. Construction activities continued as AP-B was repurposed into three lined settlement ponds for plant process water. Construction was completed in early 2023. MPC will continue groundwater monitoring in accordance with CCR rule 257.102(c). In accordance with §257.95(g)(3)(ii), MPC will continue assessment monitoring and will not implement assessment of corrective measures under § 257.96. Analytical data from the semi-annual monitoring events are included as **Appendix A, Laboratory Analytical Data and Field Sampling Reecords**, in accordance with the requirements of § 257.90(e)(3).

3.0 SITE LOCATION AND DESCRIPTION

Plant Daniel is an electric generating facility consisting of two coal-fired units and two natural gas combined cycle units. The plant is located near the town of Escatawpa, Jackson County, Mississippi immediately northwest of the intersection of Mississippi State Highways 63 and 613. The Site is located north of the main plant and northwest of the intersection of Mississippi State Highways 63 and 613, between the Pascagoula River to the west and Highway 63 to the east. The site address is 13201 Highway 63 N, Escatawpa, Mississippi 39562.

The Site is located within Section 35, Township 5 South, Range 6 West, Sections 37, 10, 15, East half of

Section 9, Southwest ¹/₄ of Section 2, Northwest ¹/₄ and south half of Section 11, and the north half and northwest ¹/₄ of the southwest ¹/₄ of Section 14, all of Township 6 South, Range 6 West. **Figure 1, Site Location Map**, depicts the location of Plant Daniel relative to site features and the surrounding area.

3.1 Regional Geology & Hydrogeologic Setting

Jackson County lies in the Pascagoula River Drainage Basin in the Gulf Coastal Plain physiographic province. Topographically, the province is gently rolling to flat with local salt marshes. Rock outcrops are sedimentary in origin and range in age from late Miocene to Recent (Gandl, 1982). A dominant regional structural feature which affects the sediments of Miocene and younger age is the Gulf Coast geosyncline. The sediments dip toward the Gulf of Mexico. Where formations are near the surface, dips are from 15 to 35 feet/mile. Further from the outcrop, dips increase dramatically with depth. Fresh-water aquifers in the Pascagoula area are sand or a mix of sand and gravel beds of Miocene age or younger. These freshwater aquifers and occur less than 1,000 feet below the surface.

The surficial soils underlying Plant Daniel are related to the southern Mississippi's semi-tropical climate and the weathering of parent geologic materials. The resulting soil profile consists of a variety of sediments including sand, silt, clay, gravel, and organics and ranges in age from the Cenozoic to Pleistocene period. Previous site investigations indicate that there are five distinctive geologic units that immediately underlie the site and surrounding area.

- Unit 1 consists of a sandy clay aquitard that is considered to be discontinuous across the site. Unit 1 outcrops at the surface and extends to a maximum depth of 32 feet beneath the site.
- Unit 2 consists of a sand aquifer that extends to approximately 70 feet below land surface (BLS) and is the uppermost aquifer underlying the site.
- Unit 3 is a clay aquitard that immediately underlies Unit 2 and has a thickness ranging from 2.5 to 9.5 feet across the site.
- Unit 4 is a sand and gravel aquifer with a thickness of 34 feet or greater.
- Unit 5 is a clay aquitard.

3.2 Uppermost Aquifer

Two aquifers supply water to the Pascagoula area. These are the Pliocene-age Citronelle and the Miocene Aquifer System, which includes the Graham Ferry Aquifer. Plant Daniel is in the Citronelle aquifer outcrop area. The Citronelle Aquifers are the shallowest aquifers in the Pascagoula area. Although principally a sand and gravel formation, the Citronelle is characterized by occasional lenses and layers of clay which

may cause semi-artesian conditions. Sediments become coarse near the irregular contact with the underlying Pascagoula or Graham Ferry Formation. Also, the Citronelle and overlying coastal deposits are considered one hydrogeologic unit. The Citronelle is primarily a water table aquifer with a saturated thickness of about 45 feet. Recharge is primarily by rainfall which moves vertically and down dip to recharge underlying aquifers and to sustain local streams (Wasson, 1978). For groundwater monitoring purposes, all on-site compliance wells are screened within the uppermost Unit 2 sand aquifer.

4.0 GROUNDWATER MONITORING SYSTEM

Pursuant 40 CFR § 257.91, Plant Daniel designed and installed a certified groundwater monitoring system within the uppermost aquifer (Unit 2) to monitor groundwater quality in the immediate vicinity of the regulated unit. The on-site groundwater compliance wells were positioned to serve as upgradient or downgradient monitoring locations based on the underlying groundwater flow direction. The groundwater monitoring wells were designed and constructed in accordance with the "Design and Installation of Groundwater Monitoring Wells in Aquifers," ASTM Subcommittee D18.21. As required by § 257.90(e), the following also describes monitoring-related activities performed during the 2024 monitoring period.

4.1 Compliance Monitoring Network

Groundwater monitoring wells at the Site are designated as upgradient compliance wells and downgradient compliance wells. Monitoring wells BAW-1 and BAW-2A serve as upgradient locations for AP-B. Upgradient wells are screened within the same hydrostratigraphic interval(s) as the downgradient locations and represent background groundwater quality at the Site. Upgradient wells are positioned along the northeastern portion of the unit as determined by water level monitoring and potentiometric surface maps constructed for the Site. Monitoring well locations BAW-3 through BAW-5, BAW-7, PZ-8, and PZ-9 serve as downgradient locations for AP-B. The location and designation of Site wells are presented on **Figure 2**, **Monitoring Well Location Map. Table 1, Monitoring Well Network Details**, summarize the monitoring well construction details, surveyed elevations, and design purpose for the Plant Daniel AP-B.

4.2 Monitoring Well Installation, Abandonment, and Maintenance

Monitoring well replacement and/or abandonment activities were not performed during the 2024 annual monitoring period. Each on-site well was visually inspected prior to sample collection for potential issues such as structural damage, contamination, or maintenance concerns that could compromise sample integrity. No issues were observed during the pre-sampling well inspection, and each well was determined to be in proper working order.

5.0 GROUNDWATER SAMPLING AND ANALYSIS

Site compliance wells are sampled semi-annually, generally in late winter to mid-spring and early to late fall. The temporal spacing ensures sampling events yield independent groundwater samples that generally represent natural variabilities in groundwater quality associated with different climatic and/or meteorological seasons.

During routine semi-annual monitoring events, compliance network wells are sampled and analyzed for Appendix III and Appendix IV constituents. The following subsections summarize the sequential steps and processes for sampling, handling, and transport, and analyzing compliance-related groundwater samples at the Site.

5.1 Groundwater Sample Collection

Prior to recording water levels and collecting samples, each well was opened and allowed to equilibrate to atmospheric pressure. Within a 24-hour period, groundwater depths were measured to the nearest 0.01 foot with an electronic water level indicator referenced from the top of the inner PVC well casing. Groundwater elevations were calculated by subtracting the depth to groundwater from surveyed top-of-casing (TOC) elevations.

Groundwater samples were collected in accordance with 40 CFR § 257.93(a). The monitoring wells at Plant Daniel were purged and sampled from dedicated pumps using low-flow sampling procedures. Field water quality indicator parameters were monitored and recorded prior to sampling with a downhole Aqua TROLL[®] instrument calibrated per the manufacturer's specifications. Groundwater samples were collected when the following stabilization criteria were met:

- 0.2 standard units for pH
- 5% for specific conductance
- 0.2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater)
- Turbidity measurements less than 10 NTU
- Temperature and ORP record only, no stabilization criteria

Once stabilization was achieved, samples were submitted to the laboratory following standard chain-ofcustody (COC) protocols. Field data recorded in support of groundwater sampling activities for the monitoring period are included in **Appendix A**.

5.2 Sampling Preservation and Handling

Groundwater samples were collected in the designated size and type of laboratory-supplied containers required for specific parameters. Sample bottles were pre-preserved by the laboratory. Where temperature control was required, samples were placed in an ice-packed cooler and cooled to less than 6 °C immediately after collection. Blue ice or other cooling packs were not used for cooling samples. An ice-packed cooler was present during sample collection.

5.3 Chain of Custody

A COC record was used to track sample possession from the time of collection to the time of receipt at the laboratory. All samples were handled under strict COC procedures beginning in the field. COC records are included with the laboratory analytical data reports in **Appendix A**.

5.4 Laboratory Analysis

Laboratory analyses was performed by Eurofins Environment Testing (Eurofins) of Pittsburgh, Pennsylvania and St. Louis, Missouri. Eurofins is accredited by the National Environmental Laboratory Accreditation Program (NELAP). Eurofins maintains a NELAP certification for all parameters analyzed for this project. Groundwater analytical data and chain-of-custody records for the monitoring events are presented in **Appendix A**. **Table 2, Constituents and Reporting Limits**, lists the monitoring constituents analyzed from Site groundwater samples.

6.0 GROUNDWATER ELEVATION AND FLOW

Groundwater elevations ranged from 6.62 to 9.02 feet referenced to the North American Datum of 1988 (NAVD88) and 5.52 to 7.77 feet NAVD88 during the first and second 2024 semi-annual monitoring events, respectively. Figure 3, Potentiometric Surface Contour Map (March 18, 2024), and Figure 4, Potentiometric Surface Contour Map (September 30, 2024), depict the groundwater elevations and inferred flow directions.

As shown on Figures 3 and 4, groundwater flow is generally to the southwest, consistent with historic observations. Groundwater elevations from the 2024 semi-annual monitoring events are tabulated and included in **Table 3, Groundwater Elevations Summary** for reference.

6.1 Groundwater Velocity Calculations

As part of AP-B closure, a dewatering system was installed and began operation during the 2021 and 2022 monitoring periods. The dewatering system significantly lowered the groundwater level at AP-B to facilitate the excavation of CCR material and pond liner. In all, 22 extraction wells were installed around the perimeter of AP-B. While the dewatering system was active, groundwater elevations were lowered and were not consistent with historical levels. The dewatering system was active from April 2021 through March 2023. After CCR material was removed, a lined storage water pond was constructed at the former CCR storage area and filled with groundwater elevations have since returned to equilibrium.

A general estimate of groundwater flow velocities at the site were calculated based on hydraulic gradients, hydraulic conductivities derived from previous slug test results, and an estimated effective porosity of the screened horizon(s). Based on slug testing performed in the uppermost aquifer, the average horizontal hydraulic conductivity was calculated to be approximately 25 feet/day. Hydraulic gradients were calculated from groundwater elevation data during the 2024 monitoring events between the select well pairs presented in **Table 4, Groundwater Flow Velocity Calculations**. An estimated effective porosity of 0.2 was used based on the default values for effective porosity recommended by USEPA for a silty sand-type soil (USEPA, 1989). Horizontal flow velocity was calculated using the commonly used derivative of Darcy's Law:

$$V = \frac{K * i}{n_e}$$

Where:

 $V = \text{Groundwater flow velocity}\left(\frac{feet}{day}\right)$ $K = \text{Average permeability of the aquifer}\left(\frac{feet}{day}\right)$ i = Horizontal hydraulic gradient $n_e = \text{Effective porosity}$

Groundwater monitoring wells BAW-1 and BAW-5 were used to calculate Flow Path A and BAW-3 and BAW-5 were used to calculate Flow Path B. The horizontal hydraulic gradients ranged from 0.0013 feet per foot (ft/ft) to 0.0019 ft/ft. As presented on **Table 4**, groundwater flow velocity at the site ranges from approximately 0.17 feet per day (ft/day) (or approximately 62.30 feet per year) to 0.24 feet/day (or

approximately 87.29 feet per year). These calculated groundwater flow velocities across the site are consistent with historical calculations and with expected velocities.

7.0 EVALUATION OF GROUNDWATER QUALITY DATA

During each sampling event, quality assurance/quality control samples (QA/QC) were collected at a rate of one sample per every 10 samples and included well duplicates, equipment blanks, and field blanks. Routine analyses of field QA/QC samples are a method for evaluating whether artificial bias could have been introduced into lab results by means of sampling activities or equipment.

7.1 Quality Assurance and Quality Control

Laboratory analytical precision is measured through the calculation of the relative percent difference (RPD) between two data sets generated from a similar source. specifically, between the original compliance and field duplicate samples. For groundwater analytical data, quality control procedures include calculating the RPD (where field duplicates are collected) between the sample and duplicate sample duplicate concentrations as is calculated as:

$$RPD = \frac{Concl - Conc2}{(Concl + Conc2)/2}$$

Where:

RPD = Relative Percent Difference (%)

Conc1 = Higher concentration of the original or field duplicate sample

Conc2 = Lower concentration of the original or field duplicate sample

A RPD is calculated for each constituent detected above the RL. Where the RPD is below 20%, the difference is considered acceptable, and no further action is needed. Where an RPD is greater than 20%, further evaluation is required to attempt to determine the cause of the difference and potentially result in qualified data. **Table 5, Relative Percent Difference Calculations**, provides the relative percent differences for sample and sample duplicates during 2024 sampling events.

During the first 20214 semi-annual event, RPD exceeded 20% for sulfate for the sample and field duplicate collected from BAW-1. In addition, RPD exceeded 20% for TDS for the sample and field duplicate collected from BAW-3 during the second semi-annual event. The sulfate concentrations observed in MW-BAW-1 for the parent and duplicate samples were 1.41 mg/L and 1.83 mg/L, respectively, resulting in an RPD of 25.93%. The TDS concentration observed in BAW-3, collection during the second semi-annual

event, for the parent and duplicate samples were 30.0 mg/L and 42.0 mg/L, respectively, resulting in an RPD of 33.33%.

If RPD exceeds 20% for samples with concentrations greater than five times the RL, the parent sample and duplicate sampling are qualified with "(+) J." When the concentrations in the parent sample or duplicate sample are less than five times the RL and the difference between the parent sample concentration and duplicate concentration are greater than the RL, the parent and duplicate samples are qualified with "(+) J, (ND) UJ." A summary of qualified data from 2024 monitoring period is provided below.

Well ID	Sample Date	Constituent	Original Concentration (mg/L)	Field Duplicate Concentration (mg/L)	RPD (%)	Reporting Limit (mg/L)	Data Qualifier
BAW-1	03/20/24	Sulfate	1.41	1.83	25.9%	1.0 mg/L	(+) J, (ND) UJ
BAW-3	10/02/24	TDS	30.0	42.0	33.3%	10.0 mg/L	(+) J, (ND) UJ

No additional data qualification is required for the 2024 monitoring period.

8.0 STATISTICAL METHODOLOGY AND TESTS

Statistical analysis of Appendix III and Appendix IV groundwater monitoring data was performed on samples collected from the certified groundwater monitoring network pursuant to 40 CFR § 257.93 and following the appropriate PE-certified method. SanitasTM groundwater statistical software was used to perform the statistical analyses. SanitasTM is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by EPA regulations. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the USEPA Unified Guidance (2009).

8.1 Appendix III Evaluation

Intrawell and interwell prediction limits, combined with a 1-of-2 verification (resample) plan, were constructed for the analyzed Appendix III constituents. Intrawell prediction limits compare the most recent compliance sample from a given well to historical data from the same well and provide statistical limits representative of the background data population. Interwell prediction limits pool upgradient well data to

establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to determine whether initial exceedances are present and to identify potential SSIs. When an initial (or apparent) statistically significant increase or questionable result occurs, a second sample may be collected to verify the initial result or determine if the result was an outlier. If the second sample exceeds its respective background statistical limit, a statistically significant increase (SSI) is identified. If the second sample is below its respective background limit, there is no SSI. In accordance with the Unified Guidance, the following adjustments were made to the statistical analysis program:

- No statistical analyses are required on wells and constituents containing 100% non-detects (EPA Unified Guidance, 2009, Chapter 6).
- When background data contain <15% non-detects, a simple substitution of one-half the reporting limit is used in the statistical analysis. The reporting limit used for non-detects is the practical quantitation limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data.
- Non-parametric prediction limits are used on data containing greater than 50% non-detects.

8.2 Appendix IV Evaluation

When in assessment monitoring, Appendix IV constituents are sampled semi-annually, and concentrations are compared to GWPS. Unlike the statistical evaluation of Appendix III constituents (where single-sample results are compared to the statistical limit), Appendix IV analysis uses the pooled results from each downgradient well to develop a well-specific Confidence Interval that is compared to the statistical limit. The statistical limit is either the tolerance limit (i.e., background) calculated using the pool of all available upgradient well data (see Chapter 7 of the Unified Guidance), or an applicable groundwater protection standard such as the Maximum Contaminant Level (MCL). Appendix IV background data are screened for outliers and extreme trending patterns that would lead to artificially elevated statistical limits.

Parametric tolerance limits (i.e., Upper Tolerance Limits (UTLs)) were calculated using pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent on the number of background samples. The UTLs were then used as the Groundwater Protection Standards (GWPS).

As described in § 257.95(h)(1)-(3), the GWPS is:

- (1) The MCL established under § 141.62 and 141.66 of this title.
- (2) Where an MCL has not been established:
 - (i) Cobalt 0.006 milligrams per liter (mg/L);
 - (ii) Lead 0.015 mg/L;
 - (iii) Lithium 0.040 mg/L; and
 - (iv) Molybdenum 0.100 mg/L.
- (3) Background levels for constituents where the background level is higher than the MCL or ruleidentified GWPS.

Following the above requirements, GWPS have been established for statistical comparison of Appendix IV constituents.

8.3 Statistical Exceedances

Laboratory analytical data from the first and second 2024 semi-annual monitoring events were statistically analyzed in accordance with the Professional Engineer (PE)-certified Statistical Analysis Plan (October 2017) by Groundwater Stats Consulting, LLC. Statistical analyses were performed to determine if Appendix III constituent concentrations have returned to background levels. Appendix IV assessment monitoring constituents were evaluated to determine if concentrations statistically exceeded the established groundwater protection standard.

8.3.1 Appendix III Evaluation

A review of the SanitasTM results presented in **Appendix B** identified the following Appendix III SSIs during the first semi-annual monitoring event:

- BAW-3: pH
- BAW-4: Boron, Calcium, Sulfate, and TDS
- BAW-5: Boron, Calcium, pH, Sulfate, and TDS

During the second semi-annual monitoring event, the following SSIs were identified:

- BAW-3: pH
- BAW-4: Calcium
- BAW-5: Boron, Calcium, pH, Sulfate and TDS

Since the site is performing assessment monitoring, no further action is required regarding these SSIs.

8.3.2 Appendix IV Evaluation

To complete the statistical comparison to GWPS, confidence intervals were constructed for each Appendix IV constituent detected in each of the downgradient monitoring wells. Those confidence intervals were compared to the GWPS. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard.

Using GWPS established according to 40 CFR §257.95(h), statistical analysis of Appendix IV data identified the following Statistically Significant Level (SSL) of a GWPS during the first and second semiannual monitoring events at the listed well:

• BAW-5: Lithium

In accordance with §257.95(g), a notification identifying the SSLs for lithium was placed in the facility's Operating Record on November 14, 2018. As discussed in Section 9.0, an alternate source demonstration (ASD) was previously prepared for this SSL and no further action is required.

9.0 ALTERNATE SOURCE DEMONSTRATION

In accordance with 40 CFR § 257.95(g)(3)(ii), the owner or operator may demonstrate that a source other than the CCR Unit has caused an SSI or that the SSI resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. An ASD report for the elevated lithium concentrations was submitted on July 12, 2019. As discussed in the ASD report, the elevated lithium concentrations are not attributable to the regulated unit, but rather stem from a natural variability in groundwater quality. Therefore, pursuant to §257.95(g)(3)(ii), an assessment of corrective measures is not required, and AP-B will remain in assessment monitoring.

10.0 SUMMARY AND CONCLUSIONS

Based on results reported in the 2024 Annual Groundwater and Corrective Action Monitoring Report, MPC remains in assessment monitoring. Groundwater samples were collected semi-annually from the certified well network and analyzed for constituents listed in Appendix III and Appendix IV. Statistical evaluations of the 2024 assessment monitoring data identified SSLs of Appendix IV constituents (lithium) above the GWPS in monitoring well BAW-5. However, as discussed in the ASD report, the elevated lithium concentrations are not attributable to the regulated unit, but rather stem from a natural variability in groundwater quality. In accordance with § 257.95(d), MPC will continue assessment monitoring. The following future actions will be taken or are recommended for the Site:

- Continue semi-annual assessment monitoring in 2025.
- Submit 2025 Annual Groundwater Monitoring and Corrective Action Report by January 31, 2026.

11.0 REFERENCES

- ASTM Standard D5092, 2004(2010)e1, Standard Practice for Design and Installation of Groundwater Monitoring Wells, ASTM International, West Conshohocken, PA, DOI 10.1520/D5092-04R10E01, www.astm.org.
- Gandl, L.A. "Characterization of Aquifers Designated as Potential Drinking Water Sources in Mississippi," Water Resources Investigation Open-File Report 81-550, Mississippi Department of Natural Resources, Bureau of Pollution Control. 1982. 90 pp.
- Southern Company Services, Inc., Alternate Source Demonstration, Mississippi Power Company, Plant Victor Daniel, Ash Pond B, July 12, 2019.
- USEPA Waste Management Division Office of Solid Waste. 1989. EPA 530/SW-89-031 Interim Final RCRA Investigation (RFI) Guidance, Volume II and IV.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March.
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA–2009–0640; FRL–9919–44– OSWER]. RIN–2050–AE81. April.
- USEPA. 2011. *Data Validation Standard Operating Procedures*. Science and Ecosystem Support Division. Region IV. Athens, GA. September.
- USEPA. 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January.
- Wasson, B.E., 1978, Availability of additional ground-water supplies in the Pascagoula area, Mississippi: Mississippi Research and Development Center Bulletin, 32 p.

TABLES

Table 1. Monitoring Well Network Details

Plant Daniel Ash Pond B

Well ID	Hydraulic Location	Latitude	Longitude	Top of Casing Elevation (ft. MSL)	Ground Elevation (ft. MSL)	Well Depth (ft. BTOC)	Top of Screen Elevation (ft. MSL)	Bottom of Screen Elevation (ft. MSL)	Date of Installation
BAW-1	Upgradient	30.54178	-88.55594	32.24	29.22	60.72	-23.18	-28.18	7/23/2015
BAW-2	Upgradient (Abandoned)	30.53975	-88.55590	42.43	39.70	64.53	-11.80	-21.80	7/23/2015
BAW-2A	Upgradient	30.53969	-88.55590	41.15	38.22	66.93	-15.48	-25.48	3/19/2018
BAW-3	Downgradient	30.53747	-88.55603	40.62	37.60	67.62	-16.70	-26.70	7/23/2015
BAW-4	Downgradient	30.53740	-88.55766	37.05	34.12	69.13	-21.78	-31.78	7/23/2015
BAW-5	Downgradient	30.53773	-88.55904	39.93	37.41	69.12	-18.89	-28.89	7/23/2015
BAW-7	Downgradient	30.54105	-88.55693	35.60	35.92	63.80	-17.90	-27.90	7/23/2015
PZ-8	Piezometer	30.53753	-88.55888	40.05	37.26	68.29	-17.94	-27.94	3/14/2018
PZ-9	Piezometer	30.53742	-88.55897	39.32	36.50	62.82	-13.20	-23.20	3/15/2018

Notes:

1. Elevations shown are referenced Mean Sea Level (MSL) to NAVD 88 (G12) U.S. Survey Feet.

2. MSL - Mean Sea Level.

3. BAW-2 was replaced by BAW-2A due to well damage.

4. BAW-7 was modified during closure to match new grade. Thompson Engineering certified the survey on January 23, 2023.

Table 2. Constituents And Reporting Limits

Plant Daniel Ash Pond B

03/20/2024 - 10/02/2024

Appendix III Constituents							
Constituent	Analytical Method	Reporting Limit	Units of Measure				
Boron	EPA 6020B	0.08	mg/L				
Calcium	EPA 6020B	0.5	mg/L				
Chloride	EPA 9056A	1	mg/L				
Fluoride	EPA 9056A	0.1	mg/L				
pH_Field	Field Sampling	NA	SU				
Sulfate	EPA 9056A	1	mg/L				
TDS	SM 2540C-2016	10	mg/L				
	Appendix IV Cons	tituents					
Constituent	Analytical Method	Reporting Limit	Units of Measure				
Antimony	EPA 6020B	0.002	mg/L				
Arsenic	EPA 6020B	0.001	mg/L				
Barium	EPA 6020B	0.01	mg/L				
Beryllium	EPA 6020B	0.001	mg/L				
Cadmium	EPA 6020B	0.001	SU				
Chromium	EPA 6020B	0.002	mg/L				
Cobalt	EPA 6020B	0.0005	mg/L				
Fluoride	EPA 9056A	0.1	mg/L				
Lead	EPA 6020B	0.001	mg/L				
Lithium	EPA 6020B	0.005	mg/L				
Mercury	EPA 7470A	0.0002	mg/L				
Molybdenum	EPA 6020B	0.005	mg/L				
Selenium	EPA 6020B	0.005	mg/L				
Thallium	EPA 6020B	0.001	mg/L				
Combined Radium 226+228	Total Radium Calculation	5	pCi/L				

Notes:

1. mg/L - milligrams per liter, SU - standard unit, pCi/L - picocuries per liter, TDS - Total Dissolved Solids, NA - not applicable (varies)

2. Reporting limit values can display range depending upon matrix interferences and dilution factors

3. pH is a field acquired parameter and does not have a laboratory method or reporting limit

4. EPA 6020B – EPA methodology for the "Inductively Coupled Plasma - Mass Spectrometry, part of Test Methods for Evaluating Soild Waste, Physical/Chemical Methods"

5. EPA 9056A – EPA methodology for the "Determination of Inorganic Anions by Ion Chromatography, part of Test methods for Evaluating Solid Waste, Physical/Chemical Methods"

6. SM 2540, 4500 - Standard Method(s) for Examination of Water and Wastewater

7. EPA 7470A - EPA methodology for the "Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry (CVAA)"

8. SM 2540, 4500 - Standard Method(s) for Examination of Water and Wastewater

9. Total Radium Calculation – Term used herein for EPA 9315 + EPA 9320

10. EPA 9315 - Used for Radium-226; SW-846: Alpha-Emitting Radium Isotopes, part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods

11. EPA 9320 - Used for Radium-228; SW-846: Alpha-Emitting Radium Isotopes, part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods

Table 3. Groundwater Elevation Summary

Plant Daniel Ash Pond B

Measure	ement Date	March	18, 2024	September 30, 2024		
Well ID	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Depth to Water	Groundwater Elevation	
	(ft. MSL)	(ft. BTOC)	(ft. MSL)	(ft. BTOC)	(ft. MSL)	
BAW-1	32.24	23.22	9.02	24.47	7.77	
BAW-2A	41.15	32.55	8.60	33.75	7.40	
BAW-3	40.62	32.09	8.53	33.27	7.35	
BAW-4	37.05	29.69	7.36	30.76	6.29	
BAW-5	39.93	33.31	6.62	34.41	5.52	
BAW-7	35.60	27.30	8.30	28.54	7.06	
PZ-8	40.05	33.27	6.78	34.35	5.70	
PZ-9	39.32	32.58	6.74	33.67	5.65	

Notes:

1. MSL - Mean Sea Level

2. BTOC - Below Top of Casing

Table 4. Groundwater Velocity Calculations

Plant Daniel Ash Pond B

03/18/2024 - 09/30/2024

	Flow Path A										
Sample Date	BAW-1	BAW-5 Distance		Hydraulic Gradient	Hydraulic Conductivity	Assumed Effective Porosity	Calculated Groundwater Flow Velocity	Calculated Groundwater Flow Velocity			
	h1 (ft)	h2 (ft)	Δl (ft)	$\Delta h/\Delta l$ (ft/ft)	К	ne	Feet/day	Feet/year			
03/18/24	9.02	6.62	1764	0.0014	25.09	0.2	0.17	62.30			
09/30/24	7.77	5.52	1764	0.0013	25.09	0.2	0.16	58.40			

	Flow Path B										
Sample Date	BAW-3 h1 (ft)	BAW-5 h ₂ (ft)	Distance Al (ft)	Hydraulic Gradient Ah/Al (ft/ft)	Hydraulic Conductivity K	Assumed Effective Porosity ne	Calculated Groundwater Flow Velocity Feet/day	Calculated Groundwater Flow Velocity Feet/year			
03/18/24	8.53	6.74	960	0.0019	25.09	0.2	0.23	85.38			
09/30/24	7.35	5.52	960	0.0019	25.09	0.2	0.23	87.29			

Notes:

ft=feet ft/d = feet/day ft/ft = feet per foot ft/yr = feet per year

Table 5. Relatative Percent Defference (RPD) Calculations

Plant Daniel Ash Pond B

03/20/2024 -10/02/2024

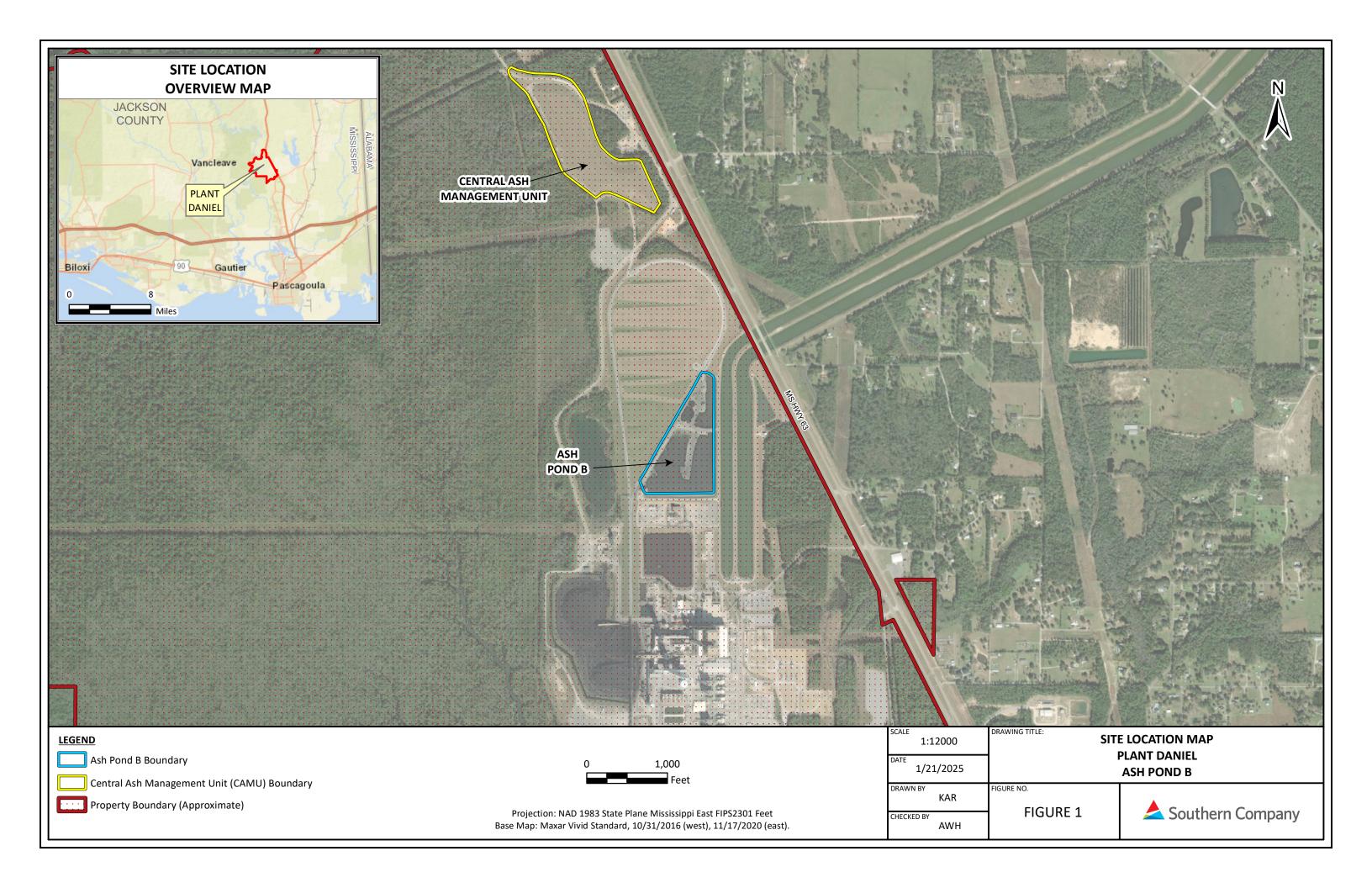
First Semi-Annual Monitoring Event									
Well ID	Constituent	Units	Original Result	Duplicate Result	RPD %				
	Barium	mg/L	0.0347	0.0359	3.40				
	Calcium	mg/L	1.05	1.10	4.65				
BAW-1	Cobalt	mg/L	0.00128	0.00129	0.78				
DAW-1	Chloride	mg/L	6.17	6.84	10.30				
	Sulfate	mg/L	1.41	1.83	25.93				
	TDS	mg/L	29	29	0.00				
	Barium	mg/L	0.0307	0.03	2.57				
	Calcium	mg/L	1.38	1.39	0.72				
BAW-7	Cobalt	mg/L	0.00186	0.0019	2.13				
DAW-7	Chloride	mg/L	8.37	8.70	3.87				
	Sulfate	mg/L	1.66	1.82	9.20				
	TDS	mg/L	40	40	0.00				

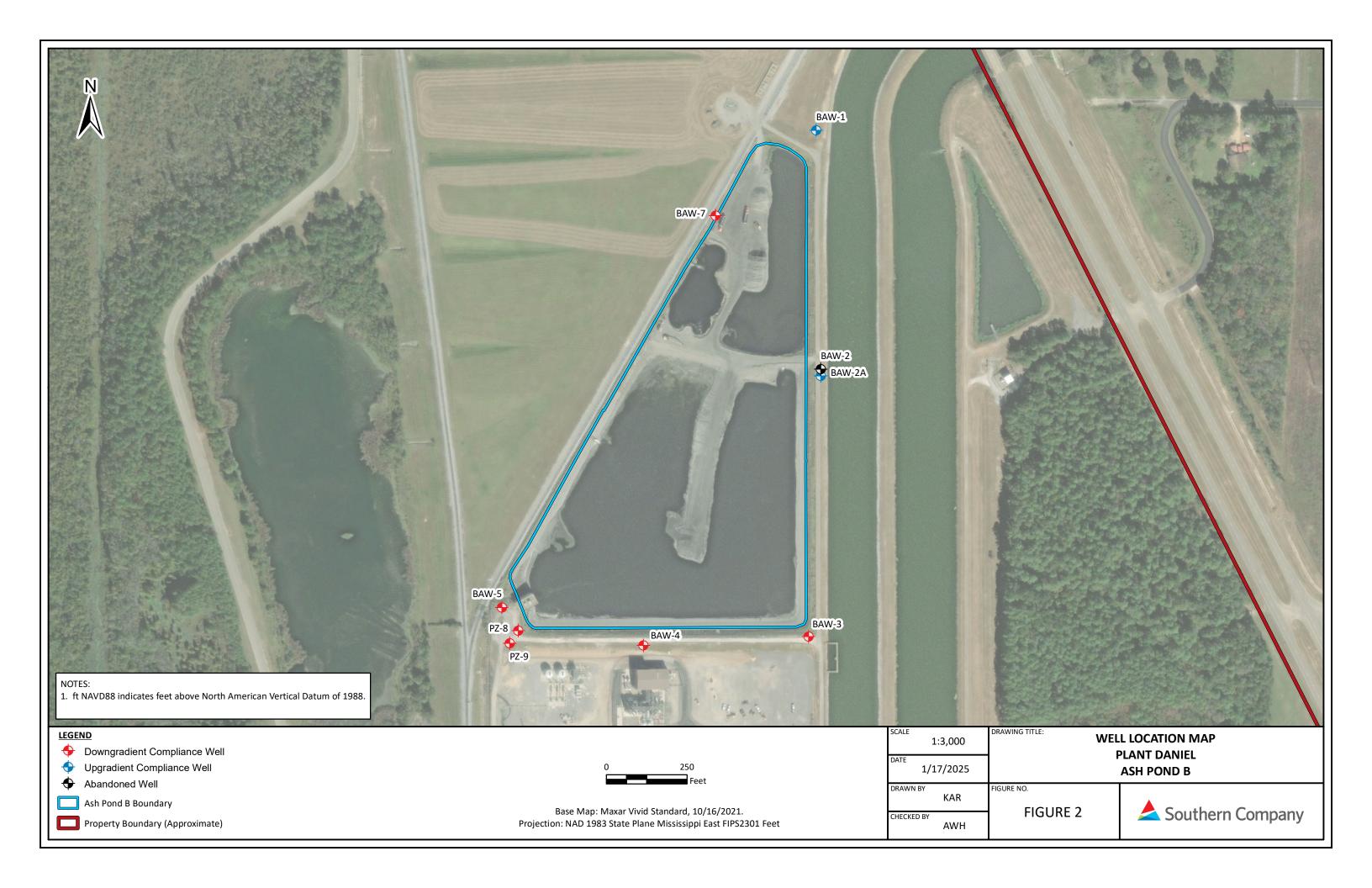
	Second Semi-Annual Monitoring Event												
Well ID	Constituent	Units	Original Result	Duplicate Result	RPD %								
	Barium	mg/L	0.0407	0.0431	5.73								
BAW-3	Calcium	mg/L	0.781	0.8	2.40								
	Cobalt	mg/L	0.0105	0.0107	1.89								
	Chloride	mg/L	5.35	5.29	1.13								
	TDS	mg/L	30	42	33.33								

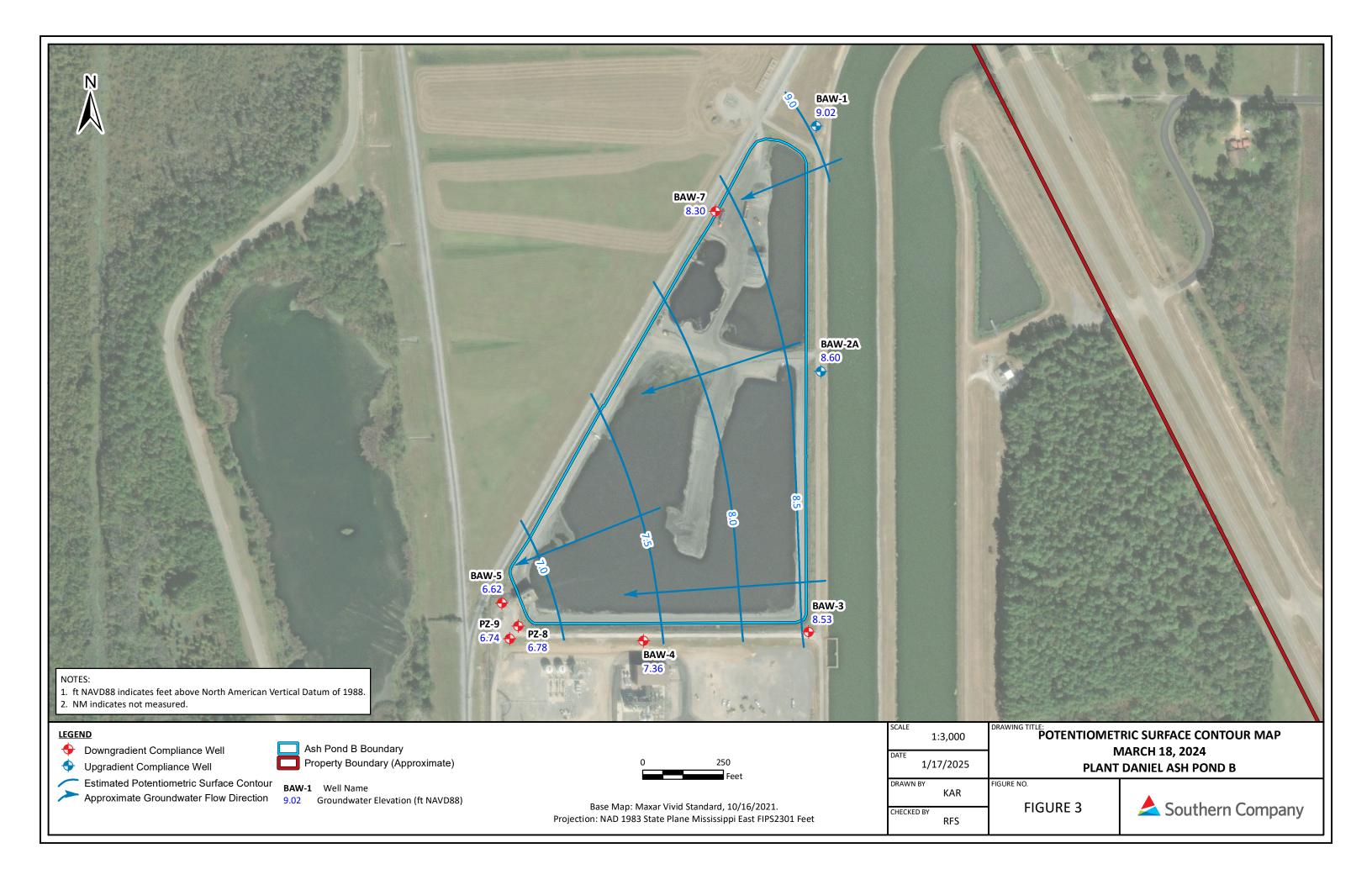
Notes:

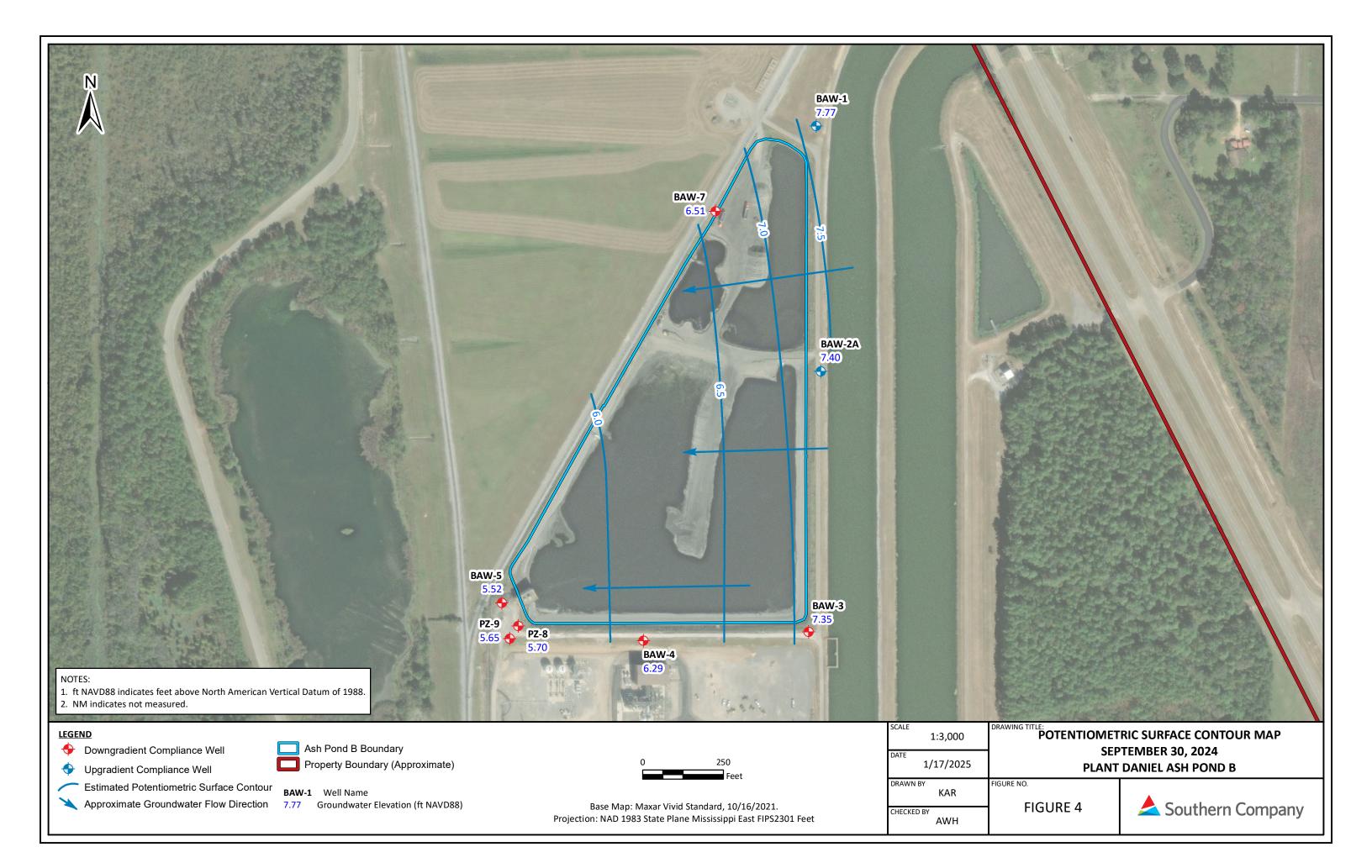
1. The RPD calculations presented are for constituent pairs where original and duplicate results are valid, unqualified detections.

2. RPD calculation results less than or equal to 20% are considered acceptable.


3. Results greater than 20% are given data validation flags to indicate RPD criteria failure.


4. Communication to sampling team and lab may be necessary to explore nature of RPD failure(s).





FIGURES

APPENDIX A

Laboratory and Field Records

Low-Flow Test Report:

Test Date / Time: 3/20/2024 3:22:15 PM Project: Daniel CCR BAW-1 Operator Name: Todd Voreis

Location Name: Daniel CCR BAW-1	Pump Type: BP	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: PE	Serial Number: 852546	
Casing Type: PVC	Pump Intake From TOC: 58.1 ft		
Screen Length: 5 ft	Estimated Total Volume Pumped:		
Top of Screen: 55.6 ft	28000 ml		
Total Depth: 60.6 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 23.06 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0.1 ft		

Test Notes:

Weather Conditions:

Sunny, 69 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
3/20/2024 3:22 PM	00:00	6.67 pH	21.95 °C	36.10 µS/cm	8.20 mg/L		53.1 mV	23.06 ft	400.00 ml/min
3/20/2024 3:27 PM	05:00	4.83 pH	22.13 °C	37.91 µS/cm	5.24 mg/L	1.23 NTU	80.1 mV	23.16 ft	400.00 ml/min
3/20/2024 3:32 PM	10:00	4.79 pH	22.10 °C	38.29 µS/cm	5.20 mg/L	1.04 NTU	89.4 mV	23.16 ft	400.00 ml/min
3/20/2024 3:37 PM	15:00	4.81 pH	21.98 °C	38.18 µS/cm	5.24 mg/L	1.22 NTU	122.1 mV	23.16 ft	400.00 ml/min
3/20/2024 3:42 PM	20:00	4.83 pH	21.82 °C	38.26 µS/cm	5.27 mg/L	1.20 NTU	137.6 mV	23.16 ft	400.00 ml/min
3/20/2024 3:47 PM	25:00	4.84 pH	21.77 °C	38.28 µS/cm	5.29 mg/L	1.05 NTU	149.2 mV	23.16 ft	400.00 ml/min
3/20/2024 3:52 PM	30:00	4.87 pH	21.86 °C	38.32 µS/cm	5.31 mg/L	0.93 NTU	155.9 mV	23.16 ft	400.00 ml/min
3/20/2024 3:57 PM	35:00	4.89 pH	21.85 °C	38.51 µS/cm	5.32 mg/L	0.90 NTU	118.3 mV	23.16 ft	400.00 ml/min
3/20/2024 4:02 PM	40:00	4.88 pH	21.88 °C	38.37 µS/cm	5.35 mg/L	0.84 NTU	162.0 mV	23.16 ft	400.00 ml/min
3/20/2024 4:07 PM	45:00	4.89 pH	21.82 °C	38.43 µS/cm	5.35 mg/L	0.78 NTU	164.9 mV	23.16 ft	400.00 ml/min
3/20/2024 4:12 PM	50:00	4.90 pH	21.77 °C	38.43 µS/cm	5.36 mg/L	0.86 NTU	121.1 mV	23.16 ft	400.00 ml/min
3/20/2024 4:17 PM	55:00	4.91 pH	21.81 °C	38.44 µS/cm	5.34 mg/L	0.72 NTU	120.4 mV	23.16 ft	400.00 ml/min
3/20/2024 4:22 PM	01:00:00	4.91 pH	21.72 °C	38.34 µS/cm	5.35 mg/L	0.60 NTU	166.1 mV	23.16 ft	400.00 ml/min

3/20/2024	01:05:00	4.92 pH	21.73 °C	38.43 µS/cm	5.34 mg/L	0.64 NTU	168.1 mV	23.16 ft	400.00 ml/min
4:27 PM	01.05.00	4.92 pn	21.75 C	30.43 µ3/cm	5.54 mg/∟	0.04 NTO	100.1111	23.10 11	400.00 111/11111
3/20/2024	01.10.00	4.02 ml l	24 69 %	20.27.46/000	E 25 mg/l		169.2 m\/	00.46.#	400.00 ml/min
4:32 PM	01:10:00	4.93 pH	21.68 °C	38.37 µS/cm	5.35 mg/L	0.60 NTU	168.2 mV	23.16 ft	400.00 ml/min

Samples

Sample ID:	Description:
BAW-1	Sample time 1635
DUP-07	Fake sample time 1535

Created using VuSitu from In-Situ, Inc.

Low-Flow Test Report:

Test Date / Time: 3/21/2024 12:00:23 PM Project: Daniel CCR BAW-2A Operator Name: Todd Voreis

Location Name: Daniel CCR BAW-2A	Pump Type: BP	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: PE	Serial Number: 852546	
Casing Type: PVC	Pump Intake From TOC: 62.7 ft		
Screen Length: 10 ft	Estimated Total Volume Pumped:		
Top of Screen: 57.2 ft	26000 ml		
Total Depth: 67.2 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 32.45 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0 ft		

Test Notes:

Weather Conditions:

Partly cloudy, 70 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
3/21/2024 12:00 PM	00:00	4.95 pH	23.28 °C	61.94 µS/cm	7.87 mg/L		171.3 mV	32.45 ft	400.00 ml/min
3/21/2024 12:05 PM	05:00	4.80 pH	23.20 °C	62.68 µS/cm	2.00 mg/L	3.85 NTU	131.1 mV	32.45 ft	400.00 ml/min
3/21/2024 12:10 PM	10:00	4.81 pH	23.16 °C	62.44 µS/cm	2.73 mg/L	3.31 NTU	123.8 mV	32.45 ft	400.00 ml/min
3/21/2024 12:15 PM	15:00	4.81 pH	23.16 °C	62.34 µS/cm	2.95 mg/L	2.32 NTU	121.7 mV	32.45 ft	400.00 ml/min
3/21/2024 12:20 PM	20:00	4.81 pH	23.13 °C	62.20 µS/cm	3.03 mg/L	1.86 NTU	158.2 mV	32.45 ft	400.00 ml/min
3/21/2024 12:25 PM	25:00	4.83 pH	23.12 °C	62.02 µS/cm	3.06 mg/L	1.63 NTU	158.5 mV	32.45 ft	400.00 ml/min
3/21/2024 12:30 PM	30:00	4.82 pH	23.15 °C	61.79 µS/cm	3.06 mg/L	1.24 NTU	158.4 mV	32.45 ft	400.00 ml/min
3/21/2024 12:35 PM	35:00	4.84 pH	23.16 °C	61.55 µS/cm	3.05 mg/L	1.14 NTU	119.4 mV	32.45 ft	400.00 ml/min
3/21/2024 12:40 PM	40:00	4.85 pH	23.16 °C	61.10 µS/cm	3.02 mg/L	1.22 NTU	117.1 mV	32.45 ft	400.00 ml/min
3/21/2024 12:45 PM	45:00	4.85 pH	23.12 °C	60.84 µS/cm	3.02 mg/L	1.29 NTU	116.3 mV	32.45 ft	400.00 ml/min
3/21/2024 12:50 PM	50:00	4.84 pH	23.11 °C	60.49 µS/cm	3.07 mg/L	1.07 NTU	116.4 mV	32.45 ft	400.00 ml/min
3/21/2024 12:55 PM	55:00	4.84 pH	23.10 °C	60.22 µS/cm	3.07 mg/L	1.05 NTU	116.2 mV	32.45 ft	400.00 ml/min
3/21/2024 1:00 PM	01:00:00	4.86 pH	23.07 °C	60.37 µS/cm	3.05 mg/L	1.25 NTU	115.1 mV	32.45 ft	400.00 ml/min

		3/21/2024 1:05 PM	01:05:00	4.86 pH	23.09 °C	59.94 µS/cm	3.06 mg/L	0.95 NTU	114.8 mV	32.45 ft	400.00 ml/min
--	--	----------------------	----------	---------	----------	-------------	-----------	----------	----------	----------	---------------

Samples

Sample ID:	Description:
BAW-2A	Sample time 1310

Created using VuSitu from In-Situ, Inc.

Low-Flow Test Report:

Test Date / Time: 3/21/2024 9:05:36 AM Project: Daniel CCR BAW-3 Operator Name: Todd Voreis

Location Name: Daniel CCR BAW-3	Pump Type: BP	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: PE	Serial Number: 852546	
Casing Type: PVC	Pump Intake From TOC: 58.1 ft		
Screen Length: 10 ft	Estimated Total Volume Pumped:		
Top of Screen: 58.4 ft	26000 ml		
Total Depth: 68.4 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 32 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0 ft		

Test Notes:

Weather Conditions:

Partly cloudy, 59 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
3/21/2024 9:05 AM	00:00	4.29 pH	19.77 °C	51.67 µS/cm	2.58 mg/L		141.9 mV	32.00 ft	400.00 ml/min
3/21/2024 9:10 AM	05:00	4.31 pH	21.64 °C	48.84 µS/cm	0.71 mg/L	2.63 NTU	130.6 mV	32.00 ft	400.00 ml/min
3/21/2024 9:15 AM	10:00	4.30 pH	21.70 °C	48.67 µS/cm	0.51 mg/L	2.89 NTU	171.0 mV	32.00 ft	400.00 ml/min
3/21/2024 9:20 AM	15:00	4.33 pH	21.76 °C	48.42 µS/cm	0.50 mg/L	2.57 NTU	167.8 mV	32.00 ft	400.00 ml/min
3/21/2024 9:25 AM	20:00	4.34 pH	21.86 °C	48.18 µS/cm	0.51 mg/L	1.77 NTU	163.8 mV	32.00 ft	400.00 ml/min
3/21/2024 9:30 AM	25:00	4.35 pH	21.87 °C	47.97 µS/cm	0.51 mg/L	1.52 NTU	159.7 mV	32.00 ft	400.00 ml/min
3/21/2024 9:35 AM	30:00	4.35 pH	21.95 °C	47.78 µS/cm	0.48 mg/L	1.68 NTU	156.5 mV	32.00 ft	400.00 ml/min
3/21/2024 9:40 AM	35:00	4.38 pH	22.00 °C	47.56 µS/cm	0.46 mg/L	1.44 NTU	152.7 mV	32.00 ft	400.00 ml/min
3/21/2024 9:45 AM	40:00	4.39 pH	22.09 °C	47.45 µS/cm	0.45 mg/L	1.16 NTU	150.1 mV	32.00 ft	400.00 ml/min
3/21/2024 9:50 AM	45:00	4.40 pH	22.08 °C	47.33 µS/cm	0.44 mg/L	1.14 NTU	111.0 mV	32.00 ft	400.00 ml/min
3/21/2024 9:55 AM	50:00	4.40 pH	22.12 °C	47.26 µS/cm	0.43 mg/L	1.14 NTU	108.4 mV	32.00 ft	400.00 ml/min
3/21/2024 10:00 AM	55:00	4.40 pH	22.17 °C	47.16 µS/cm	0.43 mg/L	1.45 NTU	138.9 mV	32.00 ft	400.00 ml/min
3/21/2024 10:05 AM	01:00:00	4.40 pH	22.09 °C	47.10 µS/cm	0.42 mg/L	1.22 NTU	141.1 mV	32.00 ft	400.00 ml/min

3/21/2024 10:10 AM	01:05:00	4.39 pH	22.09 °C	47.12 µS/cm	0.42 mg/L	1.04 NTU	141.8 mV	32.00 ft	400.00 ml/min
-----------------------	----------	---------	----------	-------------	-----------	----------	----------	----------	---------------

Samples

Sample ID:	Description:
BAW-3	Sample time 1015

Created using VuSitu from In-Situ, Inc.

Low-Flow Test Report:

Test Date / Time: 3/21/2024 2:22:26 PM Project: Daniel CCR BAW-4 Operator Name: Todd Voreis

Location Name: Daniel CCR BAW-4	Pump Type: BP	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: PE	Serial Number: 852546	
Casing Type: PVC	Pump Intake From TOC: 64.9 ft		
Screen Length: 10 ft	Estimated Total Volume Pumped:		
Top of Screen: 59.9 ft	38000 ml		
Total Depth: 69.9 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 29.51 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0.03 ft		

Test Notes:

Weather Conditions:

Partly cloudy, 67 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.2	
3/21/2024 2:22 PM	00:00	6.33 pH	20.03 °C	888.74 µS/cm	9.10 mg/L		122.7 mV	29.51 ft	400.00 ml/min
3/21/2024 2:27 PM	05:00	5.54 pH	21.82 °C	106.01 µS/cm	0.41 mg/L	96.70 NTU	25.5 mV	29.54 ft	400.00 ml/min
3/21/2024 2:32 PM	10:00	5.59 pH	21.95 °C	110.86 µS/cm	0.21 mg/L	56.50 NTU	16.9 mV	29.54 ft	400.00 ml/min
3/21/2024 2:37 PM	15:00	5.59 pH	21.95 °C	110.64 µS/cm	0.19 mg/L	20.20 NTU	11.8 mV	29.54 ft	400.00 ml/min
3/21/2024 2:42 PM	20:00	5.57 pH	21.94 °C	108.10 µS/cm	0.20 mg/L	8.53 NTU	8.1 mV	29.54 ft	400.00 ml/min
3/21/2024 2:47 PM	25:00	5.54 pH	21.82 °C	104.94 µS/cm	0.20 mg/L	8.98 NTU	5.3 mV	29.54 ft	400.00 ml/min
3/21/2024 2:52 PM	30:00	5.51 pH	21.91 °C	103.15 µS/cm	0.21 mg/L	8.90 NTU	4.0 mV	29.54 ft	400.00 ml/min
3/21/2024 2:57 PM	35:00	5.50 pH	21.91 °C	101.79 µS/cm	0.21 mg/L	7.87 NTU	2.1 mV	29.54 ft	400.00 ml/min
3/21/2024 3:02 PM	40:00	5.49 pH	21.86 °C	100.74 µS/cm	0.21 mg/L	5.61 NTU	0.6 mV	29.54 ft	400.00 ml/min
3/21/2024 3:07 PM	45:00	5.48 pH	21.91 °C	99.78 µS/cm	0.21 mg/L	4.50 NTU	0.8 mV	29.54 ft	400.00 ml/min
3/21/2024 3:12 PM	50:00	5.46 pH	21.94 °C	98.41 µS/cm	0.21 mg/L	4.22 NTU	-0.3 mV	29.54 ft	400.00 ml/min
3/21/2024 3:17 PM	55:00	5.47 pH	21.91 °C	98.19 µS/cm	0.21 mg/L	3.35 NTU	-1.3 mV	29.54 ft	400.00 ml/min
3/21/2024 3:22 PM	01:00:00	5.46 pH	21.90 °C	98.09 µS/cm	0.21 mg/L	3.09 NTU	-0.5 mV	29.54 ft	400.00 ml/min

3/21/2024	01:05:00	5.47 pH	21.93 °C	97.60 µS/cm	0.21 mg/L	2.60 NTU	-1.3 mV	29.54 ft	400.00 ml/min
3:27 PM	01.05.00	5.47 pm	21.35 0	97.00 µ0/cm	0.21 mg/L	2.00 1110	-1.5 111	23.54 h	400.00 111/11111
3/21/2024	01:10:00	5.46 pH	21.81 °C	97.26 µS/cm	0.20 mg/L	3.05 NTU	-2.1 mV	29.54 ft	400.00 ml/min
3:32 PM	01.10.00	5.40 pm	21.01 C	97.20 µ3/cm	0.20 mg/L	3.03 NTO	-2.11110	29.54 h	400.00 111/1111
3/21/2024	01:15:00	5.47 pH	21.77 °C	97.21 µS/cm	0.21 mg/L	4.09 NTU	-2.8 mV	29.54 ft	400.00 ml/min
3:37 PM	01.15.00	5.47 pm	21.77 0	97.21 µ3/cm	0.21 mg/L	4.09 1110	-2.0 111	29.54 h	400.00 111/1111
3/21/2024	01:20:00	5.47 pH	21.88 °C	97.10 µS/cm	0.20 mg/L	3.60 NTU	-1.8 mV	29.54 ft	400.00 ml/min
3:42 PM	01.20.00	5.47 pm	21.00 C	97.10 µ3/cm	0.20 mg/L	3.00 NTO	-1.0 111	29.54 h	400.00 111/1111
3/21/2024	01:25:00	5.47 pH	21.82 °C	96.92 µS/cm	0.20 mg/L	3.17 NTU	-3.4 mV	29.54 ft	400.00 ml/min
3:47 PM	01.25.00	5.47 pm	21.02 0	30.32 µ3/cm	0.20 mg/L	3.17 1110	-5.4 111	23.54 h	400.00 111/1111
3/21/2024	01:30:00	5.47 pH	21.87 °C	96.45 µS/cm	0.20 mg/L	2.24 NTU	-3.8 mV	29.54 ft	400.00 ml/min
3:52 PM	01.30.00	5.47 pn	21.07 C	90.45 µ3/cm	0.20 Mg/L	2.24 NTU	-3.0 1110	29.04 II	400.00 111/11111
3/21/2024	01:35:00	5.47 pH	21.78 °C	96.10 µS/cm	0.20 mg/L	1.92 NTU	-2.5 mV	29.54 ft	400.00 ml/min
3:57 PM	01.35.00	5.47 pH	21.70 C	90.10 µ3/cm	0.20 Mg/L	1.92 NTU	-2.5 1110	29.34 II	400.00 111/11111

Samples

Sample ID:	Description:
BAW-4	Sample time 1600

Low-Flow Test Report:

Test Date / Time: 3/20/2024 4:39:39 PM Project: Daniel CCR BAW-5 Operator Name: Rick Hagendorfer

Location Name: Daniel CCR BAW-05	Pump Type: QED	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: PE	Serial Number: 1055720	
Casing Type: PVC	Pump Intake From TOC: 64.1 ft		
Screen Length: 10 ft	Estimated Total Volume Pumped:		
Top of Screen: 59.1 ft	18000 ml		
Total Depth: 69.1 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 33.26 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0.12 ft		

Test Notes:

Weather Conditions:

Sunny 68

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
3/20/2024 4:39 PM	00:00	6.10 pH	23.52 °C	287.73 µS/cm	1.64 mg/L		81.6 mV	33.26 ft	400.00 ml/min
3/20/2024 4:44 PM	05:00	6.09 pH	23.08 °C	282.58 µS/cm	0.27 mg/L	7.77 NTU	65.2 mV	33.38 ft	400.00 ml/min
3/20/2024 4:49 PM	10:00	6.12 pH	23.01 °C	282.59 µS/cm	0.22 mg/L	7.69 NTU	57.5 mV	33.38 ft	400.00 ml/min
3/20/2024 4:54 PM	15:00	6.13 pH	23.02 °C	286.09 µS/cm	0.21 mg/L	7.15 NTU	52.9 mV	33.38 ft	400.00 ml/min
3/20/2024 4:59 PM	20:00	6.15 pH	23.03 °C	289.99 µS/cm	0.21 mg/L	6.04 NTU	48.5 mV	33.38 ft	400.00 ml/min
3/20/2024 5:04 PM	25:00	6.16 pH	23.00 °C	293.45 µS/cm	0.22 mg/L	5.01 NTU	44.8 mV	33.38 ft	400.00 ml/min
3/20/2024 5:09 PM	30:00	6.18 pH	23.02 °C	294.15 µS/cm	0.22 mg/L	3.27 NTU	41.6 mV	33.38 ft	400.00 ml/min
3/20/2024 5:14 PM	35:00	6.18 pH	23.03 °C	294.34 µS/cm	0.22 mg/L	2.33 NTU	38.9 mV	33.38 ft	400.00 ml/min
3/20/2024 5:19 PM	40:00	6.19 pH	22.99 °C	295.23 µS/cm	0.22 mg/L	2.28 NTU	35.9 mV	33.38 ft	400.00 ml/min
3/20/2024 5:24 PM	45:00	6.20 pH	22.98 °C	295.44 µS/cm	0.23 mg/L	1.86 NTU	33.5 mV	33.38 ft	400.00 ml/min

Samples

Sample ID:

Description:

BAW-05	Sample time 1726
--------	------------------

Low-Flow Test Report:

Test Date / Time: 3/21/2024 8:57:52 AM Project: Daniel CCR BAW-7 Operator Name: Rick Hagendorfer

Location Name: Daniel CCR BAW-07 Well Diameter: 2 in Casing Type: PVC Screen Length: 10 ft Top of Screen: 53.8 ft Total Depth: 63.8 ft Initial Depth to Water: 27.22 ft	Pump Type: QED Tubing Type: PE Pump Intake From TOC: 58.8 ft Estimated Total Volume Pumped: 58000 ml Flow Cell Volume: 90 ml Final Flow Rate: 400 ml/min Final Draw Down: 0.09 ft	Instrument Used: Aqua TROLL 400 Serial Number: 1055720
---	--	---

Test Notes:

Truck that sprays the railroad tracks for weeds passed by while filling equipment blanks. Stopped filling bottles when we saw him approaching, then resumed filling a few minutes after he drove away.

Weather Conditions:

Sunny 55

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
3/21/2024 8:57 AM	00:00	5.70 pH	16.99 °C	55.16 µS/cm	8.71 mg/L		88.7 mV	27.22 ft	400.00 ml/min
3/21/2024 9:02 AM	05:00	4.88 pH	21.12 °C	50.29 µS/cm	5.72 mg/L	42.10 NTU	92.0 mV	27.31 ft	400.00 ml/min
3/21/2024 9:07 AM	10:00	4.88 pH	21.11 °C	49.38 µS/cm	5.62 mg/L	33.80 NTU	95.7 mV	27.31 ft	400.00 ml/min
3/21/2024 9:12 AM	15:00	4.88 pH	21.20 °C	49.02 µS/cm	5.73 mg/L	41.60 NTU	109.5 mV	27.31 ft	400.00 ml/min
3/21/2024 9:17 AM	20:00	4.87 pH	21.41 °C	48.83 µS/cm	5.48 mg/L	33.60 NTU	102.2 mV	27.31 ft	400.00 ml/min
3/21/2024 9:22 AM	25:00	4.86 pH	21.43 °C	48.45 µS/cm	5.87 mg/L	24.20 NTU	117.6 mV	27.31 ft	400.00 ml/min
3/21/2024 9:27 AM	30:00	4.88 pH	21.49 °C	48.54 µS/cm	5.84 mg/L	22.60 NTU	106.2 mV	27.31 ft	400.00 ml/min
3/21/2024 9:32 AM	35:00	4.89 pH	21.51 °C	49.12 µS/cm	6.13 mg/L	14.10 NTU	121.5 mV	27.31 ft	400.00 ml/min
3/21/2024 9:37 AM	40:00	4.89 pH	21.60 °C	48.57 µS/cm	6.05 mg/L	13.10 NTU	108.8 mV	27.31 ft	400.00 ml/min
3/21/2024 9:42 AM	45:00	4.89 pH	21.56 °C	48.37 µS/cm	5.79 mg/L	10.30 NTU	109.0 mV	27.31 ft	400.00 ml/min
3/21/2024 9:47 AM	50:00	4.89 pH	21.55 °C	48.25 µS/cm	6.00 mg/L	9.19 NTU	109.5 mV	27.31 ft	400.00 ml/min
3/21/2024 9:52 AM	55:00	4.88 pH	21.41 °C	48.30 µS/cm	6.04 mg/L	8.95 NTU	110.1 mV	27.31 ft	400.00 ml/min
3/21/2024 9:57 AM	01:00:00	4.89 pH	21.33 °C	48.04 µS/cm	5.95 mg/L	7.08 NTU	126.5 mV	27.31 ft	400.00 ml/min

3/21/2024 10:02 AM	01:05:00	4.89 pH	21.35 °C	48.71 µS/cm	6.07 mg/L	6.56 NTU	111.6 mV	27.31 ft	400.00 ml/min
3/21/2024 10:07 AM	01:10:00	4.89 pH	21.44 °C	48.40 µS/cm	6.07 mg/L	5.76 NTU	111.8 mV	27.31 ft	400.00 ml/min
3/21/2024 10:12 AM	01:15:00	4.89 pH	21.37 °C	48.44 µS/cm	6.10 mg/L	6.26 NTU	128.4 mV	27.31 ft	400.00 ml/min
3/21/2024 10:17 AM	01:20:00	4.90 pH	21.42 °C	49.11 µS/cm	6.29 mg/L	6.35 NTU	129.4 mV	27.31 ft	400.00 ml/min
3/21/2024 10:22 AM	01:25:00	4.89 pH	21.55 °C	48.24 µS/cm	6.20 mg/L	6.14 NTU	113.4 mV	27.31 ft	400.00 ml/min
3/21/2024 10:27 AM	01:30:00	4.89 pH	21.55 °C	48.51 µS/cm	6.23 mg/L	6.23 NTU	113.1 mV	27.31 ft	400.00 ml/min
3/21/2024 10:32 AM	01:35:00	4.88 pH	21.66 °C	48.37 µS/cm	6.20 mg/L	5.50 NTU	113.6 mV	27.31 ft	400.00 ml/min
3/21/2024 10:37 AM	01:40:00	4.88 pH	21.59 °C	48.23 µS/cm	6.21 mg/L	4.74 NTU	113.5 mV	27.31 ft	400.00 ml/min
3/21/2024 10:42 AM	01:45:00	4.91 pH	21.56 °C	48.46 µS/cm	6.29 mg/L	4.29 NTU	112.3 mV	27.31 ft	400.00 ml/min
3/21/2024 10:47 AM	01:50:00	4.91 pH	21.59 °C	48.15 µS/cm	6.22 mg/L	4.12 NTU	129.1 mV	27.31 ft	400.00 ml/min
3/21/2024 10:52 AM	01:55:00	4.90 pH	21.62 °C	48.82 µS/cm	6.28 mg/L	4.08 NTU	114.0 mV	27.31 ft	400.00 ml/min
3/21/2024 10:57 AM	02:00:00	4.90 pH	21.73 °C	48.62 µS/cm	6.21 mg/L	3.95 NTU	130.3 mV	27.31 ft	400.00 ml/min
3/21/2024 11:02 AM	02:05:00	4.91 pH	21.87 °C	48.05 µS/cm	6.24 mg/L	3.60 NTU	114.2 mV	27.31 ft	400.00 ml/min
3/21/2024 11:07 AM	02:10:00	4.90 pH	21.99 °C	48.37 µS/cm	6.31 mg/L	3.36 NTU	131.5 mV	27.31 ft	400.00 ml/min
3/21/2024 11:12 AM	02:15:00	4.90 pH	22.03 °C	48.75 µS/cm	6.32 mg/L	3.25 NTU	115.4 mV	27.31 ft	400.00 ml/min
3/21/2024 11:17 AM	02:20:00	4.91 pH	22.00 °C	48.82 µS/cm	6.38 mg/L	3.69 NTU	131.6 mV	27.31 ft	400.00 ml/min
3/21/2024 11:22 AM	02:25:00	4.89 pH	21.99 °C	48.56 µS/cm	6.32 mg/L	3.42 NTU	134.1 mV	27.31 ft	400.00 ml/min

Samples

Sample ID:	Description:
BAW-07	Sample time 1125
DUP-08	Fake sample time 1025
FB-03	Sample time 0815
EB-03	Sample time 0820

Low-Flow Test Report:

Test Date / Time: 3/21/2024 12:40:37 PM Project: Daniel CCR BAW-8 Operator Name: Rick Hagendorfer

Location Name: Daniel CCR BAW-8	Pump Type: BP	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: Pe	Serial Number: 1055720	
Casing Type: PVC	Pump Intake From TOC: 63.7 ft		
Screen Length: 63.7 ft	Estimated Total Volume Pumped:		
Top of Screen: 58.7 ft	8000 ml		
Total Depth: 68.7 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 33.12 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0.06 ft		

Test Notes:

Weather Conditions:

Cloudy 65

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
3/21/2024 12:40 PM	00:00	6.00 pH	23.61 °C	259.40 µS/cm	5.99 mg/L		125.6 mV	33.12 ft	400.00 ml/min
3/21/2024 12:45 PM	05:00	6.15 pH	22.62 °C	265.12 µS/cm	0.51 mg/L	0.62 NTU	77.3 mV	33.18 ft	400.00 ml/min
3/21/2024 12:50 PM	10:00	6.17 pH	22.53 °C	263.29 µS/cm	0.37 mg/L	0.58 NTU	65.6 mV	33.18 ft	400.00 ml/min
3/21/2024 12:55 PM	15:00	6.17 pH	22.47 °C	263.18 µS/cm	0.32 mg/L	0.70 NTU	59.7 mV	33.18 ft	400.00 ml/min
3/21/2024 1:00 PM	20:00	6.18 pH	22.48 °C	263.76 µS/cm	0.24 mg/L	0.46 NTU	54.6 mV	33.18 ft	400.00 ml/min

Samples

Sample ID:	Description:
BAW-08	Sample time 1304

Low-Flow Test Report:

Test Date / Time: 3/21/2024 2:17:27 PM Project: Daniel CCR BAW-9 Operator Name: Rick Hagendorfer

Location Name: Daniel CCR BAW-9	Pump Type: BP	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: Pe	Serial Number: 1055720	
Casing Type: PVC	Pump Intake From TOC: 58.1 ft		
Screen Length: 10 ft	Estimated Total Volume Pumped:		
Top of Screen: 53.1 ft	10000 ml		
Total Depth: 63.1 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 32.42 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0.09 ft		

Test Notes:

Weather Conditions:

Cloudy 65

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
3/21/2024 2:17 PM	00:00	6.17 pH	22.13 °C	289.32 µS/cm	0.32 mg/L		57.0 mV	32.42 ft	400.00 ml/min
3/21/2024 2:22 PM	05:00	6.19 pH	22.07 °C	290.24 µS/cm	0.25 mg/L	0.70 NTU	52.4 mV	32.51 ft	400.00 ml/min
3/21/2024 2:27 PM	10:00	6.19 pH	21.96 °C	286.26 µS/cm	0.22 mg/L	0.88 NTU	49.8 mV	32.51 ft	400.00 ml/min
3/21/2024 2:32 PM	15:00	6.21 pH	22.03 °C	287.14 µS/cm	0.28 mg/L	1.23 NTU	46.6 mV	32.51 ft	400.00 ml/min
3/21/2024 2:37 PM	20:00	6.22 pH	22.03 °C	287.35 µS/cm	0.33 mg/L	0.99 NTU	43.8 mV	32.51 ft	400.00 ml/min
3/21/2024 2:42 PM	25:00	6.20 pH	22.01 °C	284.35 µS/cm	0.30 mg/L	0.77 NTU	42.8 mV	32.51 ft	400.00 ml/min

Samples

Samp	le ID:	Description:
BAV	V-09	Sample time 1445

Water Quality Instrument Calibration Form

Project/Site:	Plant 1	DANICL		Project #:		Field Personne	: Rice A	tegende	when	RDI	H Environn	nental	-
Water Quality Me	ter - Model/S	erial #: Aqua	Troll 400- /	055720			Turbidimeter	- Model/Seri	al # Hach 2'	100Q-19100	10080.	487	_
Dissolved Oxygen	DEP SO	P Date	Time	Temp (°C)	Saturation (mg/L) ¹	Reading (mg/L)	Reading (%)	Pass or Fail	0.1 - 10 NTU Std <u>//)_</u> NTU				Lot # A 3 [49
CAL ICV CCV CAL ICV CCV CAL ICV CCD CAL ICV CCV		<u>7-20-24</u> <u>3-20-24</u> <u>3-20-24</u>	0639 0643 1406	14.6 <u>14.6</u> 27.9	10.18 10.18 7.84	Acci 10,24 10,23 7,68	eptance Criteria 100.2 11.9 47.3	- +/-0.3mg/L 	CAL ICV CCV CAL CO CCV CAL ICV CCV CAL ICV CCV	Accep 3-20-24 3-20-24 3-20-24	tance Criteria 9.29 9.55 9.41	8 F	Exp. 70/202
Specific Conductance	DEP SOP FT 1200	Date	Time	Standard (uS/cm)	Standard Lot #	Standard Exp. Date	Reading (uS/cm)	Pass or Fail	11 - 40 NTU StdNTU	Date	Reading (NTU)	Pass or Fail	
CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV		3-20-24 3-20-24 3-20-24	0634 0637 1409	<u>/413</u> <u>/413</u> <u>/413</u>	3651475 -3677475 -3677475	10/2024	Acceptance Crit 39 3 4 2 4 23	eria: +/- 5% - ① F - ② F - ② F - P F - P F - P F - P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Acce	ptance Criter	ia: +/- 8% PF PF PF PF PF	
рΗ	DEP SOP FT 1100	Date	Time	Standard (SU)	Standard Lot #	Standard Exp. Date	Reading (SU)	Pass or Fail	41 - 100 NTU StdNTU	Date	Reading (NTU)	Pass or Fail	
AL ICV CCV AL CV CCV AL CV CCV AL CV CCV AL CV CCV AL ICV CCV AL ICV CCV		3-20-24 3-20-24 3-20-24 3-20-24 3-20-24 3-20-24 3-20-24 3-20-24	0623 0623 0624 0626 1416 1550	4.00 7.00 7.00 4.00 4.00 7.00	3651074 3651252 3661252 3661074 3661074 3661052	Acc 5/2025 5/2025 5/2025 5/2025 5/2025	eptence Criterie 4.01 6.94 7.04 4.02 4.02 7.06	E+/-0.2 SU D F D F D F Ø F Ø F Ø F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Accept	ance Criteria	: +/- 6.5% P F P F P F P F P F	
RP	SOP N/A	Date	Time	Std. mV @ Temp °C	Standard Lot #	Standard Exp. Date	Reading (mV)	Pass or Fail	>100 NTU StdNTU	Date	Reading (NTU)	Pass or Fail	
AL ICV CCV AL ICV CCV AL ICV CCV AL ICV CCV ecific Conductance	- - Probe Clea	3-20-24 3-20-24 3-20-24 	0628 0629 1414	228025 228025 228025 278025	24002258 24002258 2400228 membrane Char	62024 362524 62024	cceptance Crite ZZG ZZZ 2Z7	02 F 02 F 02 F 02 F 02 F 02 F P F	CAL ICV CCV Cal ICV CCV Cal ICV CCV Cal ICV CCV	Accep	tance Criteri	a: +/- 5% P F P F P F P F	
See Table FS 2200-2 o					Comments:								

ICV - Initial Calibration Verification

CCV - Continuing Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable)

Calibrate pH using at least two standards (typ. pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7)

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

Water Quality Instrument Calibration Form

Project/Site: Pla				Project #:		Field Personnel:		/			Environm		L.
Water Quality Meter	- Model/Ser	rial #: Aqua 1	roll 400/ Seria	al# 10557	20				# Hach 2100Q/S	Serial # 19109	000804	87	101# 12:40
Dissolved Oxygen	DEP SOP FT 1500	Date	Time	Temp (°C)	Saturation (mg/L) ¹	Reading (mg/L)	Reading (%)	Pass or Fail	0.1 - 10 NTU Std 10_NTU	DATE/TIME	Reading (NTU)		Lot # ,13299 Exp. 10/2024
CAL ICV CCV CAL CO CCV CAL ICV CO CAL ICV CCV		3-21-24 3-21-24 3-21-24	8704 8707 /402	<u>17.9</u> <u>17.7</u> 19.3	9.49 9.53 9.22	Acces 4.53 4.58 9.31	otance Criteria: + 99, /20, 99, 2	1-0.3mg/L 120 F 120 F 120 F P F	CAD ICV CCV CAL COP CCV CAL ICV CCV CAL ICV CCV	Accept 3/21/24 0707 3/21/24 0707 3/21/24 0708 3/21/24	ance Criteria 9,43 9,35 9,54		192024
Specific Conductance	DEP SOP FT 1200	Date	Time	Standard (uS/cm)	Standard Lot #	Standard Exp. Date	Reading (uS/cm)	Pass or Fail	11 - 40 NTU StdNTU	DATE/TIME	Reading (NTU)	Pass or Fail	
CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV		<u>3-21-24</u> <u>3-21-24</u> <u>3-21-24</u>	0651 2659 1357	<u>/413</u> <u>/413</u> _/413	3631475 3631475 3631475 	10[2024 10[2024 10[2024	Acceptance Criter / 413 / 412 / 412 / 429	11a: +/- 5% 119 F 129 F 129 F 129 F 129 F 129 F 129 F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Accep	otance Criter	ia: +/- 8% P F P F P F P F P F P F	
рН	DEP SOP FT 1100	Date	Time	Standard (SU)	Standard Lot #	Standard Exp. Date	Reading (SU)	Pass or Fail	41 - 100 NTU StdNTU	DATE/TIME	Reading (NTU)	Pass or Fail	
CAL ICV CCV CAL OF CCV CAL OF CCV CAL ICV OF CAL ICV OF CAL ICV OF		3-21-24 3-21-24 3-21-24 3-21-24 3-21-24 3-21-24	0637 0640 0645 1352 1354	4.00 7.00 7.00 4.00 4.00 7.00	3661074 3661252 3661252 3661252 3661074 3661074 3661252	5 2025 5 2025 5 2025 5 / 2025 5 / 2025 5 / 2025	eptance Griteria: 4.00 7.02 7.03 4.00 4.00 7.09	+/-0.2SU 10 F 19 F 19 F 19 F 19 F 19 F 19 F 19 F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Accepta	ance Criteria	: +/- 6.5% P F P F P F P F P F	
ORP	SOP N/A	Date	Time	Std. mV @ Temp °C	Standard Lot #	Standard Exp. Date	Reading (mV)	Pass or Fail	>100 NTU StdNTU	DATE/TIME	Reading (NTU)	Pass or Fail	
CAL ICV CCV CAL CD CCV CAL ICV OCV CAL ICV OCV CAL ICV CCV Specific Conductance 1, See Table FS 2200-2			0648 0649 /359 No	228225° 728225° 728225° Disolved Oxyge	<u>2400225</u> 8 <u>24002258</u> <u>24002258</u> 	6/2024 6/2024 6/2024	Company Criter	ia:+/-5% ⑦ F ⑦ F ⑦ F P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Accep	otance Criter	ia: +/- 5% P F P F P F P F	
CAL - Initial Calibration					Comments:								-

ICV - Initial Calibration Verification

CCV - Continuing Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable)

Calibrate pH using at least two standards (typ. pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7)

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Robert (Trey) Singleton Southern Company 3535 Colonnade Parkway Bin S 530 EC Birmingham, Alabama 35243 Generated 4/24/2024 2:31:13 PM Revision 1

JOB DESCRIPTION

Plant Daniel Ash Pond

JOB NUMBER

180-171314-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Authorized for release by Shali Brown, Project Manager II Shali.Brown@et.eurofinsus.com (615)301-5031 Generated 4/24/2024 2:31:13 PM Revision 1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Certification Summary	6
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	15
QC Sample Results	24
	29
Chain of Custody	33
Receipt Checklists	37

Job ID: 180-171314-1

Eurofins Pittsburgh

Job Narrative 180-171314-1

042424 Revised report to include field pH at client request. This report replaces the report previously issued on 041824.

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/22/2024 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.8°C, 2.8°C, 3.0°C and 3.6°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 6020B - Total Recoverable: The continuing calibration verification (CCV) associated with batch 180-463957 recovered above the upper control limit for Chromium. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: BAW-1 (180-171314-1), BAW-2A (180-171314-2), BAW-3 (180-171314-3), BAW-4 (180-171314-4), BAW-5 (180-171314-5), BAW-7 (180-171314-6), BAW-8 (180-171314-7), BAW-9 (180-171314-8), DUP-07 (180-171314-9), DUP-08 (180-171314-10), FB-03 (180-171314-11), EB-03 (180-171314-12), (LCS 180-463817/2-A), (MB 180-463817/1-A), (180-171396-E-1-A), (180-171396-E-1-B MS), (180-171396-E-1-C MSD), (180-171396-E-1-A PDS) and (180-171396-E-1-A SD ^5).

Method 6020B - Total Recoverable: The linear range check (LRC) standard recovery associated with preparation batch 180-463817 and analytical batch 180-463957 is outside the acceptance criteria for the following analytes: Boron. The concentration of these analytes are below those found in the calibration standard. The sample results have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Definitions/Glossary

Qualifiers

RER

RPD

TEF TEQ

TNTC

RL

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Qualifiers		3
HPLC/IC		
Qualifier	Qualifier Description	4
В	Compound was found in the blank and sample.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
Metals		
Qualifier	Qualifier Description	
^+	Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.	
^5-	Linear Range Check (LRC) is outside acceptance limits, low biased.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		8
Abbreviation	These commonly used abbreviations may or may not be present in this report.	Q
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	3
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	

Client: Southern Company Project/Site: Plant Daniel Ash Pond Job ID: 180-171314-1

Laboratory: Eurofins Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

uthority	Program	Identification Number	Expiration Date
rkansas DEQ	State	19-033-0	06-27-24
alifornia	State	2891	04-30-24
onnecticut	State	PH-0688	09-30-24
orida	NELAP	E871008	06-30-24
eorgia	State	PA 02-00416	04-30-25
nois	NELAP	004375	06-30-24
isas	NELAP	E-10350	01-31-25
ntucky (UST)	State	162013	04-30-23 *
ntucky (WW)	State	KY98043	12-31-24
uisiana	NELAP	04041	06-30-22 *
iisiana (All)	NELAP	04041	06-30-24
ne	State	PA00164	03-06-26
nesota	NELAP	042-999-482	12-31-24
/ Hampshire	NELAP	2030	04-04-24 *
Jersey	NELAP	PA005	06-30-24
York	NELAP	11182	04-01-25
h Carolina (WW/SW)	State	434	12-31-24
h Dakota	State	R-227	04-30-24
lon	NELAP	PA-2151	02-06-25
nsylvania	NELAP	02-00416	04-30-25
de Island	State	LAO00362	01-01-25
th Carolina	State	89014	04-30-25
as	NELAP	T104704528	03-31-25
Fish & Wildlife	US Federal Programs	058448	03-31-24 *
A	US Federal Programs	P330-16-00211	04-11-26
ı	NELAP	PA001462019-8	05-31-24
inia	NELAP	10043	07-14-24
st Virginia DEP	State	142	01-31-25
consin	State	998027800	08-31-24

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Sample Summary

Client: Southern Company Project/Site: Plant Daniel Ash Pond

Job ID: 180-171314-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-171314-1	BAW-1	Water	03/20/24 16:35	03/22/24 09:30
180-171314-2	BAW-2A	Water	03/21/24 13:10	03/22/24 09:30
180-171314-3	BAW-3	Water	03/21/24 10:15	03/22/24 09:30
180-171314-4	BAW-4	Water	03/21/24 16:00	03/22/24 09:30
180-171314-5	BAW-5	Water	03/20/24 17:26	03/22/24 09:30
180-171314-6	BAW-7	Water	03/21/24 11:25	03/22/24 09:30
180-171314-7	BAW-8	Water	03/21/24 13:04	03/22/24 09:30
180-171314-8	BAW-9	Water	03/21/24 14:45	03/22/24 09:30
180-171314-9	DUP-07	Water	03/20/24 15:35	03/22/24 09:30
180-171314-10	DUP-08	Water	03/21/24 10:25	03/22/24 09:30
180-171314-11	FB-03	Water	03/21/24 08:15	03/22/24 09:30
180-171314-12	EB-03	Water	03/21/24 08:20	03/22/24 09:30

5

6

Method Summary

Client: Southern Company Project/Site: Plant Daniel Ash Pond

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	EET PIT
EPA 6020B	Metals (ICP/MS)	SW846	EET PIT
EPA 7470A	Mercury (CVAA)	SW846	EET PIT
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET PIT
Field Sampling	Field Sampling	EPA	EET PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET PIT
7470A	Preparation, Mercury	SW846	EET PIT

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Job ID: 180-171314-1

Matrix: Water

Lab Sample ID: 180-171314-1

Client Sample ID: BAW-1 Date Collected: 03/20/24 16:35 Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		1	1 mL	1 mL	463571	03/27/24 06:12	M1D	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020B t ID: DORY		1			463957	03/28/24 21:36	MRG	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020B t ID: DORY		1			465756	04/17/24 19:18	LWM	EET PIT
Total/NA	Prep	7470A			25 mL	25 mL	463409	03/25/24 07:29	RJR	EET PIT
Total/NA	Analysis Instrumen	EPA 7470A tt ID: HGY		1			463616	03/26/24 12:21	RJR	EET PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	463633	03/26/24 16:48	LWM	EET PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			466337	03/20/24 17:35	FDS	EET PIT

Client Sample ID: BAW-2A Date Collected: 03/21/24 13:10 Date Received: 03/22/24 09:30

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA EPA 9056A Analysis 1 mL 1 mL 463571 03/27/24 07:25 M1D EET PIT 1 Instrument ID: CHICS2100B Total Recoverable 3005A 25 mL 03/28/24 12:12 SJM EET PIT Prep 25 mL 463817 EPA 6020B **Total Recoverable** Analysis 1 463957 03/28/24 21:39 MRG EET PIT Instrument ID: DORY **Total Recoverable** Prep 3005A 25 mL 25 mL 463817 03/28/24 12:12 SJM EET PIT Total Recoverable Analysis EPA 6020B 465756 04/17/24 19:24 LWM 1 EET PIT Instrument ID: DORY Total/NA 7470A 25 mL EET PIT Prep 25 mL 463409 03/25/24 07:29 RJR Total/NA Analysis EPA 7470A 463616 03/26/24 12:24 RJR EET PIT 1 Instrument ID: HGY Total/NA Analysis SM 2540C 100 mL 100 mL 463633 03/26/24 16:48 LWM EET PIT 1 Instrument ID: NOEQUIP 03/21/24 14:10 FDS Total/NA Analysis **Field Sampling** 466337 EET PIT 1 Instrument ID: NOEQUIP

Client Sample ID: BAW-3 Date Collected: 03/21/24 10:15 Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1 mL	463571	03/27/24 07:40	M1D	EET PIT
	Instrumer	t ID: CHICS2100B								

Eurofins Pittsburgh

Matrix: Water

Lab Sample ID: 180-171314-2 Matrix: Water

Lab Sample ID: 180-171314-3

4/24/2024 (Rev. 1)

Client Sample ID: BAW-3 Date Collected: 03/21/24 10:15

Date Received: 03/22/24 09:30

Prep Type Total Recoverable Total Recoverable	Batch Type Prep Analysis Instrumer	Batch Method 3005A EPA 6020B ti ID: DORY	Run	Dil Factor	Initial Amount 25 mL	Final Amount 25 mL	Batch Number 463817 463957	Prepared or Analyzed 03/28/24 12:12 03/28/24 21:42		EET PIT EET PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumer	3005A EPA 6020B at ID: DORY		1	25 mL	25 mL	463817 465756	03/28/24 12:12 04/17/24 19:26		EET PIT EET PIT
Total/NA Total/NA	Prep Analysis Instrumer	7470A EPA 7470A nt ID: HGY		1	25 mL	25 mL	463409 463616	03/25/24 07:29 03/26/24 12:25		EET PIT EET PIT
Total/NA	Analysis Instrumer	SM 2540C nt ID: NOEQUIP		1	100 mL	100 mL	463633	03/26/24 16:48	LWM	EET PIT
Total/NA	Analysis Instrumer	Field Sampling nt ID: NOEQUIP		1			466337	03/21/24 11:15	FDS	EET PIT

Client Sample ID: BAW-4 Date Collected: 03/21/24 16:00 Date Received: 03/22/24 09:30

Prep Type Total/NA	Batch Type Analysis	Batch Method EPA 9056A tID: CHICS2100B	Run	Dil Factor 1	Initial Amount 1 mL	Final Amount 1 mL	Batch Number 463571	Prepared or Analyzed 03/27/24 07:55	Analyst M1D	Lab EET PIT
Total Recoverable Total Recoverable	Prep Analysis	3005A EPA 6020B ti ID: DORY		1	25 mL	25 mL	463817 463957	03/28/24 12:12 03/28/24 21:45		EET PIT EET PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A EPA 6020B t ID: DORY		1	25 mL	25 mL	463817 465756	03/28/24 12:12 04/17/24 19:29		EET PIT EET PIT
Total/NA Total/NA	Prep Analysis Instrumen	7470A EPA 7470A tt ID: HGY		1	25 mL	25 mL	463409 463616	03/25/24 07:29 03/26/24 12:26		EET PIT EET PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	463633	03/26/24 16:48	LWM	EET PIT
Total/NA	Analysis Instrumen	Field Sampling It ID: NOEQUIP		1			466337	03/21/24 17:00	FDS	EET PIT

Client Sample ID: BAW-5 Date Collected: 03/20/24 17:26 Date Received: 03/22/24 09:30

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B	. <u> </u>	1	1 mL	1 mL	463571	03/27/24 02:59	M1D	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020B t ID: DORY		1			463957	03/28/24 21:48	MRG	EET PIT

Eurofins Pittsburgh

Matrix: Water

Job ID: 180-171314-1

Lab Sample ID: 180-171314-3 Matrix: Water

Lab Sample ID: 180-171314-4

Lab Sample ID: 180-171314-5

Matrix: Water

Lab Sample ID: 180-171314-5

Lab Sample ID: 180-171314-6

Lab Sample ID: 180-171314-7

Matrix: Water

Matrix: Water

Client Sample ID: BAW-5 Date Collected: 03/20/24 17:26 Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020B at ID: DORY		1			465756	04/17/24 19:32	LWM	EET PIT
Total/NA	Prep	7470A			25 mL	25 mL	463409	03/25/24 07:29	RJR	EET PIT
Total/NA	Analysis Instrumen	EPA 7470A ht ID: HGY		1			463616	03/26/24 12:27	RJR	EET PIT
Total/NA	Analysis Instrumen	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	463633	03/26/24 16:48	LWM	EET PIT
Total/NA	Analysis Instrumen	Field Sampling It ID: NOEQUIP		1			466337	03/20/24 18:26	FDS	EET PIT

Client Sample ID: BAW-7 Date Collected: 03/21/24 11:25 Date Received: 03/22/24 09:30

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method Factor Amount Amount Number or Analyzed Туре Run Analyst Lab Total/NA EPA 9056A 463964 03/30/24 01:32 M1D EET PIT Analysis 1 mL 1 1 mL Instrument ID: CHICS2100B **Total Recoverable** 3005A Prep 25 mL 25 mL 463817 03/28/24 12:12 SJM EET PIT Total Recoverable Analysis EPA 6020B 463957 03/28/24 21:56 MRG EET PIT 1 Instrument ID: DORY Total Recoverable Prep 3005A 25 mL 25 mL 463817 03/28/24 12:12 SJM EET PIT **Total Recoverable** Analysis EPA 6020B 1 465756 04/17/24 19:35 LWM EET PIT Instrument ID: DORY Total/NA Prep 7470A 25 mL 25 mL 463409 03/25/24 07:29 RJR EET PIT Total/NA Analysis EPA 7470A 463616 1 03/26/24 12:31 RJR EET PIT Instrument ID: HGY Total/NA Analysis SM 2540C EET PIT 100 mL 100 mL 463633 03/26/24 16:48 LWM 1 Instrument ID: NOEQUIP Total/NA Analysis **Field Sampling** 1 466337 03/21/24 12:25 FDS EET PIT Instrument ID: NOEQUIP

Client Sample ID: BAW-8 Date Collected: 03/21/24 13:04 Date Received: 03/22/24 09:30

Prep Type Total/NA	Batch Type Analysis	Batch Method EPA 9056A	Run	Dil Factor	Initial Amount 1 mL	Final Amount 1 mL	Batch Number 464013	Prepared or Analyzed 03/30/24 16:33	Analyst M1D	Lab EET PIT
	Instrumer	t ID: INTEGRION								
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumer	EPA 6020B at ID: DORY		1			463957	03/28/24 21:59	MRG	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumer	EPA 6020B at ID: DORY		1			465756	04/17/24 19:37	LWM	EET PIT

Eurofins Pittsburgh

8

Matrix: Water

Lab Sample ID: 180-171314-7 Matrix: Water

Lab Sample ID: 180-171314-8

Matrix: Water

Date Collected: 03/21/24 13:04 Date Received: 03/22/24 09:30

Client Sample ID: BAW-8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			25 mL	25 mL	463409	03/25/24 07:29	RJR	EET PIT
Total/NA	Analysis Instrumen	EPA 7470A tt ID: HGY		1			463616	03/26/24 12:32	RJR	EET PIT
Total/NA	Analysis Instrumen	SM 2540C tt ID: NOEQUIP		1	100 mL	100 mL	463633	03/26/24 16:48	LWM	EET PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			466337	03/21/24 14:04	FDS	EET PIT

Client Sample ID: BAW-9 Date Collected: 03/21/24 14:45 Date Received: 03/22/24 09:30

Batch Batch Dil Initial Batch Final Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis EPA 9056A 1 1 mL 1 mL 464013 03/30/24 16:51 M1D EET PIT Instrument ID: INTEGRION Total Recoverable Prep 3005A 25 mL 25 mL 463817 03/28/24 12:12 SJM EET PIT Total Recoverable Analysis EPA 6020B 463957 03/28/24 22:02 MRG 1 EET PIT Instrument ID: DORY **Total Recoverable** 3005A Prep 25 mL 25 mL 463817 03/28/24 12:12 SJM EET PIT **Total Recoverable** Analysis EPA 6020B 465756 04/17/24 19:46 LWM EET PIT 1 Instrument ID: DORY 7470A Total/NA Prep 25 mL 25 mL 463409 03/25/24 07:29 RJR EET PIT Total/NA 463616 Analysis EPA 7470A 1 03/26/24 12:34 RJR EET PIT Instrument ID: HGY Total/NA Analysis SM 2540C 1 100 mL 100 mL 463633 03/26/24 16:48 LWM EET PIT Instrument ID: NOEQUIP Total/NA Analysis **Field Sampling** 466337 03/21/24 15:45 FDS EET PIT 1 Instrument ID: NOEQUIP

Client Sample ID: DUP-07 Date Collected: 03/20/24 15:35 Date Received: 03/22/24 09:30

Lab Sample ID: 180-171314-9 Matrix: Water

Prep Type Total/NA	Batch Type Analysis Instrumer	Batch Method EPA 9056A it ID: INTEGRION	Run	Dil Factor 1	Initial Amount 1 mL	Final Amount 1 mL	Batch Number 464013	Prepared or Analyzed 03/30/24 15:19	Analyst M1D	EET PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumer	3005A EPA 6020B at ID: DORY		1	25 mL	25 mL	463817 463957	03/28/24 12:12 03/28/24 22:04		EET PIT EET PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumer	3005A EPA 6020B it ID: DORY		1	25 mL	25 mL	463817 465756	03/28/24 12:12 04/17/24 19:49		EET PIT EET PIT
Total/NA Total/NA	Prep Analysis Instrumer	7470A EPA 7470A tt ID: HGY		1	25 mL	25 mL	463409 463616	03/25/24 07:29 03/26/24 12:35		EET PIT EET PIT

Eurofins Pittsburgh

8

11 12

Lab Sample ID: 180-171314-9 **Matrix: Water**

Lab Sample ID: 180-171314-10

Matrix: Water

Client Sample ID: DUP-07 Date Collected: 03/20/24 15:35 Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	463633	03/26/24 16:48	LWM	EET PIT

Client Sample ID: DUP-08 Date Collected: 03/21/24 10:25 Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A at ID: INTEGRION		1	1 mL	1 mL	464013	03/30/24 16:14	M1D	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020B at ID: DORY		1			463957	03/28/24 22:07	MRG	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020B at ID: DORY		1			465756	04/17/24 19:51	LWM	EET PIT
Total/NA	Prep	7470A			25 mL	25 mL	463409	03/25/24 07:29	RJR	EET PIT
Total/NA	Analysis Instrumen	EPA 7470A ht ID: HGY		1			463616	03/26/24 12:36	RJR	EET PIT
Total/NA	Analysis Instrumen	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	463633	03/26/24 16:48	LWM	EET PIT

Client Sample ID: FB-03 Date Collected: 03/21/24 08:15 Date Received: 03/22/24 09:30

Lab Sample ID: 180-171314-11 Matrix: Water

Prep Type Total/NA	Batch Type Analysis	Batch Method EPA 9056A	Run	Dil Factor	Initial Amount 1 mL	Final Amount 1 mL	Batch Number 463707	Prepared or Analyzed 03/28/24 01:14	Analyst M1D	EET PIT
	Instrumer	t ID: INTEGRION								
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumer	EPA 6020B at ID: DORY		1			463957	03/28/24 22:10	MRG	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumer	EPA 6020B at ID: DORY		1			465756	04/17/24 19:54	LWM	EET PIT
Total/NA	Prep	7470A			25 mL	25 mL	463409	03/25/24 07:29	RJR	EET PIT
Total/NA	Analysis Instrumer	EPA 7470A at ID: HGY		1			463616	03/26/24 12:37	RJR	EET PIT
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	463636	03/26/24 17:03	LWM	EET PIT

Job ID: 180-171314-1

Client Sample ID: EB-03 Date Collected: 03/21/24 08:20 Date Received: 03/22/24 09:30

Lab Sample ID: 180-171314-12 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA 9056A nt ID: INTEGRION		1	1 mL	1 mL	463707	03/28/24 00:55	M1D	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumer	EPA 6020B nt ID: DORY		1			463957	03/28/24 22:13	MRG	EET PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	463817	03/28/24 12:12	SJM	EET PIT
Total Recoverable	Analysis Instrumer	EPA 6020B nt ID: DORY		1			465756	04/17/24 19:57	LWM	EET PIT
Total/NA	Prep	7470A			25 mL	25 mL	463409	03/25/24 07:29	RJR	EET PIT
Total/NA	Analysis Instrumer	EPA 7470A ht ID: HGY		1			463616	03/26/24 12:38	RJR	EET PIT
Total/NA	Analysis Instrumer	SM 2540C nt ID: NOEQUIP		1	100 mL	100 mL	463636	03/26/24 17:03	LWM	EET PIT

Laboratory References:

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: EET PIT Batch Type: Prep RJR = Ron Rosenbaum SJM = Shannon Mueller Batch Type: Analysis FDS = Sampler Field LWM = Leslie McIntire M1D = Maureen Donlin MRG = Mismel Garcia RJR = Ron Rosenbaum

Client Sample ID: BAW-1 Date Collected: 03/20/24 16:35 Date Received: 03/22/24 09:30

Boron

Cadmium

Lab Sample ID: 180-171314-1

Job ID: 180-171314-1

Method: SW846 EPA 9056A - A	Anions, Ion	Chromato	graphy						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.17		1.00	0.713	-			03/27/24 06:12	1
Fluoride	0.0436	JB	0.100	0.0260	0			03/27/24 06:12	1
Sulfate	1.41		1.00	0.756	mg/L			03/27/24 06:12	1
Method: SW846 EPA 6020B - M	letals (ICP)	MS) - Tota	l Recoveral	ble					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.000967		0.00200	0.000967	mg/L		03/28/24 12:12	03/28/24 21:36	1
Arsenic	<0.000282		0.00100	0.000282	mg/L		03/28/24 12:12	03/28/24 21:36	1
Barium	0.0347		0.0100	0.00314	mg/L		03/28/24 12:12	03/28/24 21:36	
Beryllium	<0.000274		0.00100	0.000274	mg/L		03/28/24 12:12	03/28/24 21:36	
Boron	<0.0601	^5-	0.0800	0.0601	mg/L		03/28/24 12:12	03/28/24 21:36	1
Cadmium	<0.000217		0.00100	0.000217	mg/L		03/28/24 12:12	03/28/24 21:36	1
Calcium	1.05		0.500	0.127	mg/L		03/28/24 12:12	03/28/24 21:36	1
Chromium	<0.00153		0.00200	0.00153	mg/L		03/28/24 12:12	04/17/24 19:18	1
Cobalt	0.00128		0.000500	0.000261	mg/L		03/28/24 12:12	03/28/24 21:36	1
ead	<0.000376		0.00100	0.000376	mg/L		03/28/24 12:12	03/28/24 21:36	1
_ithium	0.00133	J	0.00500	0.00129	mg/L		03/28/24 12:12	03/28/24 21:36	1
Molybdenum	<0.000610		0.00500	0.000610	mg/L		03/28/24 12:12	03/28/24 21:36	1
Selenium	<0.000739		0.00500	0.000739	mg/L		03/28/24 12:12	03/28/24 21:36	1
Fhallium	0.000549	J	0.00100	0.000472	mg/L		03/28/24 12:12	03/28/24 21:36	1
^{llercury} General Chemistry	0.000141	•	0.000200	0.000130			03/25/24 07:29	03/26/24 12:21	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	29.0		10.0	10.0	mg/L			03/26/24 16:48	
Method: EPA Field Sampling -	Field Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	4.93				SU			03/20/24 17:35	1
lient Sample ID: BAW-2A						La	b Sample	ID: 180-171	314-2
ate Collected: 03/21/24 13:10 ate Received: 03/22/24 09:30								Matrix	: Wateı
Method: SW846 EPA 9056A - A	nione Ion	Chromato	aranhu						
Analyte		Qualifier	graphy RL	мы	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	9.52	Quaimer	1.00	0.713		<u> </u>	Flepaleu	03/27/24 07:25	
Fluoride	9.52 0.0515	18	0.100	0.0260	-			03/27/24 07:25	
		JD	1.00	0.0260	-			03/27/24 07:25	
Sulfate	6.92				ilig/L			03/21/24 01:25	1
Method: SW846 EPA 6020B - N Analyte	•	MS) - Tota Qualifier	I Recoveral RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.000967	Juanno	0.00200	0.000967			03/28/24 12:12		
Arsenic	<0.000307		0.00200	0.000307	-			03/28/24 21:39	1
	0.000202		0.00100	0.000202	····9/ L		55125127 12.1Z		
	0 0265		0 0100	0 00314	ma/l		03/28/24 12.12	03/28/24 21:39	1
Barium Beryllium	0.0265 <0.000274		0.0100 0.00100	0.00314 0.000274				03/28/24 21:39 03/28/24 21:39	1

Eurofins Pittsburgh

03/28/24 12:12 03/28/24 21:39

03/28/24 12:12 03/28/24 21:39

0.0800

0.00100

0.0601 mg/L

0.000217 mg/L

0.0604 J ^5-

< 0.000217

1

1

Client Sample ID: BAW-2A Date Collected: 03/21/24 13:10 Date Received: 03/22/24 09:30

Lab Sample ID: 180-171314-2

Matrix: Water

5 6

9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	0.469	J	0.500	0.127	mg/L		03/28/24 12:12	03/28/24 21:39	1
Chromium	<0.00153		0.00200	0.00153	mg/L		03/28/24 12:12	04/17/24 19:24	1
Cobalt	0.000677		0.000500	0.000261	mg/L		03/28/24 12:12	03/28/24 21:39	1
Lead	<0.000376		0.00100	0.000376	mg/L		03/28/24 12:12	03/28/24 21:39	
Lithium	0.00174	J	0.00500	0.00129	mg/L		03/28/24 12:12	03/28/24 21:39	1
Molybdenum	<0.000610		0.00500	0.000610	mg/L		03/28/24 12:12	03/28/24 21:39	1
Selenium	<0.000739		0.00500	0.000739	mg/L		03/28/24 12:12	03/28/24 21:39	1
Thallium	<0.000472		0.00100	0.000472	mg/L		03/28/24 12:12	03/28/24 21:39	1
Method: SW846 EPA 7470A - I	Mercury (CV	/AA)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000150	J	0.000200	0.000130	mg/L		03/25/24 07:29	03/26/24 12:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	38.0		10.0	10.0	mg/L			03/26/24 16:48	1
Method: EPA Field Sampling -	Field Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	4.86				SU			03/21/24 14:10	
lient Sample ID: BAW-3 ate Collected: 03/21/24 10:15						La	ib Sample	ID: 180-171 Matrix	
ate Received: 03/22/24 09:30									
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A				MDI	Unit	п	Prepared	Analyzed	Dil Fac
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte	Result	Chromato Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride	Result 5.21	Qualifier	RL 1.00	0.713	mg/L	<u>D</u>	Prepared	03/27/24 07:40	,
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride	Result	Qualifier	RL		mg/L mg/L	<u>D</u>	Prepared		
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate	Result 5.21 0.0537 7.60	Qualifier J B	RL 1.00 0.100 1.00	0.713 0.0260 0.756	mg/L mg/L	<u>D</u>	Prepared	03/27/24 07:40 03/27/24 07:40	
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I	Result 5.21 0.0537 7.60 Wetals (ICP/	Qualifier J B MS) - Tota	RL 1.00 0.100 1.00	0.713 0.0260 0.756	mg/L mg/L mg/L			03/27/24 07:40 03/27/24 07:40 03/27/24 07:40	
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte	Result 5.21 0.0537 7.60 Vietais (ICP/ Result	Qualifier J B	RL 1.00 0.100 1.00 I Recoveral RL	0.713 0.0260 0.756 ble MDL	mg/L mg/L mg/L Unit	D	Prepared	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 Mnalyzed	Dil Fac
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony	Result 5.21 0.0537 7.60 Metals (ICP/ Result <0.000967	Qualifier J B MS) - Tota	RL 1.00 0.100 1.00 0 0 1.00 1.00 1.00 I Recoveral RL 0.00200	0.713 0.0260 0.756 ble MDL 0.000967	mg/L mg/L mg/L Unit mg/L		Prepared 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 Analyzed 03/28/24 21:42	Dil Fac
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic	Result 5.21 0.0537 7.60 Metals (ICP/ Result <0.000967	Qualifier J B MS) - Tota	RL 1.00 0.100 1.00 1.00 0.100 I Recoveral RL 0.00200 0.00100	0.713 0.0260 0.756 ble <u>MDL</u> 0.000967 0.000282	mg/L mg/L mg/L Unit mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 Analyzed 03/28/24 21:42 03/28/24 21:42	Dil Fa
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium	Result 5.21 0.0537 7.60 Metals (ICP/ Result <0.000967	Qualifier J B MS) - Tota	RL 1.00 0.100 1.00 1.00 I Recoveral RL 0.00200 0.00100 0.0100	0.713 0.0260 0.756 ble <u>MDL</u> 0.000967 0.000282 0.00314	mg/L mg/L mg/L Mnit mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/28/24 07:40 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	Dil Fac
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium	Result 5.21 0.0537 7.60 Metals (ICP/ Result <0.000967	Qualifier J B MS) - Tota Qualifier	RL 1.00 0.100 1.00 0 0 I Recoveral RL 0.00200 0.00100 0.00100 0.00100	0.713 0.0260 0.756 ble <u>MDL</u> 0.000967 0.000282 0.00314 0.000274	mg/L mg/L mg/L Mg/L mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/28/24 21:40 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	Dil Fa
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium Boron	Result 5.21 0.0537 7.60 Metals (ICP/ Result <0.000967	Qualifier J B MS) - Tota Qualifier	RL 1.00 0.100 1.00 0.100 1.00 I Recoveral RL 0.00200 0.00100 0.00100 0.00100 0.0800	0.713 0.0260 0.756 ble 0.000967 0.000282 0.00314 0.000274 0.000274	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	Dil Fa
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium Boron Cadmium	Result 5.21 0.0537 7.60 Metals (ICP/ Result <0.000967	Qualifier J B MS) - Tota Qualifier	RL 1.00 0.100 1.00 0.100 1.00 I Recoveral RL 0.00200 0.00100 0.00100 0.00100 0.0800 0.00100	0.713 0.0260 0.756 ble 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217	mg/L mg/L mg/L Mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 Analyzed 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	 Dil Fac
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium	Result 5.21 0.0537 7.60 Wetals (ICP/ Result <0.000967	Qualifier J B MS) - Tota Qualifier	RL 1.00 0.100 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	0.713 0.0260 0.756 ble MDL 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127	mg/L mg/L mg/L Mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	Dil Fac
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Chromium	Result 5.21 0.0537 7.60 Vletals (ICP/ Result <0.000967	Qualifier J B MS) - Tota Qualifier	RL 1.00 0.100 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200	0.713 0.0260 0.756 ble MDL 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127 0.0153	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	Dil Fac
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt	Result 5.21 0.0537 7.60 Metals (ICP/ Result <0.000967	Qualifier J B MS) - Tota Qualifier	RL 1.00 0.100 1.00 0.100 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.00200 0.000500	0.713 0.0260 0.756 ble MDL 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127 0.0153 0.000261	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	O3/27/24 07:40 O3/27/24 07:40 O3/27/24 07:40 O3/27/24 07:40 O3/27/24 07:40 O3/27/24 07:40 O3/28/24 07:40 O3/28/24 21:42 O3/28/24 21:42	<u>Dil Fa</u>
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Lead	Result 5.21 0.0537 7.60 Metals (ICP/ Result <0.000967	Qualifier J B MS) - Tota Qualifier ^5- J	RL 1.00 0.100 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00100 0.00200 0.00200 0.00200 0.000500 0.00100	0.713 0.0260 0.756 ble 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127 0.00153 0.000261 0.000376	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/28/24 07:40 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	Dil Fac
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Lead Lithium	Result 5.21 0.0537 7.60 Metals (ICP/ Result <0.000967	Qualifier J B MS) - Tota Qualifier ^5- J	RL 1.00 0.100 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00000 0.000500 0.00100 0.00100 0.00100 0.00100 0.00100	0.713 0.0260 0.756 ble 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127 0.0153 0.000261 0.000376 0.00129	mg/L mg/L mg/L Mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/28/24 07:40 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	Dil Fac
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Lead Lithium Molybdenum	Result 5.21 0.0537 7.60 Vletals (ICP/ Result <0.000967	Qualifier J B MS) - Tota Qualifier ^5- J	RL 1.00 0.100 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.00200 0.000500 0.00100 0.00500 0.00500 0.00500	0.713 0.0260 0.756 ble MDL 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127 0.0153 0.000261 0.000376 0.00129 0.000610	mg/L mg/L mg/L Mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m		Prepared 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/28/24 07:40 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	Dil Fa
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Lead Lithium Molybdenum Selenium	Result 5.21 0.0537 7.60 Metals (ICP/ Result <0.000967	Qualifier J B MS) - Tota Qualifier ^5- J	RL 1.00 0.100 1.00 1.00 1.00 1.00 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.00200 0.00500 0.00500 0.00500 0.00500 0.00500	0.713 0.0260 0.756 ble MDL 0.000967 0.000282 0.00314 0.000274 0.000217 0.127 0.00153 0.000261 0.000376 0.00129 0.000610 0.000739	mg/L mg/L mg/L Mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m		Prepared 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 Analyzed 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	<u>Dil Fa</u>
ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Lead Lithium Molybdenum Selenium Thallium	Result 5.21 0.0537 7.60 Vletals (ICP/ Result <0.000967	Qualifier J B MS) - Tota Qualifier ^5- J	RL 1.00 0.100 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.00200 0.000500 0.00100 0.00500 0.00500 0.00500	0.713 0.0260 0.756 ble MDL 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127 0.0153 0.000261 0.000376 0.00129 0.000610	mg/L mg/L mg/L Mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m		Prepared 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/28/24 07:40 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	Dil Fac
Analyte Chloride Fluoride Sulfate Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - I Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Lead Lithium Molybdenum Selenium	Result 5.21 0.0537 7.60 Metals (ICP) Result <0.000967	Qualifier J B MS) - Tota Qualifier ^5- J	RL 1.00 0.100 1.00 1.00 1.00 1.00 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.00200 0.00500 0.00500 0.00500 0.00500 0.00500	0.713 0.0260 0.756 ble MDL 0.000967 0.000282 0.00314 0.000274 0.000217 0.127 0.00153 0.000261 0.000376 0.00129 0.000610 0.000739 0.000472	mg/L mg/L mg/L Mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m		Prepared 03/28/24 12:12 03/28/24 12:12	03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 03/27/24 07:40 Analyzed 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42 03/28/24 21:42	Dil Fac

Client Sample Results

		Client	Sample	Resul	ts				
lient: Southern Company roject/Site: Plant Daniel Ash Por	nd							Job ID: 180-17	1314-1
Client Sample ID: BAW-3 ate Collected: 03/21/24 10:15 ate Received: 03/22/24 09:30						La	b Sample	ID: 180-171 Matrix:	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	31.0		10.0		mg/L			03/26/24 16:48	1
Method: EPA Field Sampling - Analyte		oling Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	4.39	Quaimer			SU	<u> </u>		03/21/24 11:15	1
Client Sample ID: BAW-4 Date Collected: 03/21/24 16:00 Date Received: 03/22/24 09:30						La	b Sample	ID: 180-171 Matrix:	
Method: SW846 EPA 9056A - A Analyte		Chromato Qualifier	ography RL	МП	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.17	Quaimer	1.00	0.713			Flepaleu	03/27/24 07:55	
Fluoride	0.0578	JB	0.100	0.0260	-			03/27/24 07:55	1
Sulfate	12.1		1.00		mg/L			03/27/24 07:55	1
_ Method: SW846 EPA 6020B - M	Metals (ICP/	'MS) - Tota	I Recoverat	ole					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.000967		0.00200	0.000967	mg/L		03/28/24 12:12	03/28/24 21:45	1
Arsenic	0.00159		0.00100	0.000282	mg/L		03/28/24 12:12	03/28/24 21:45	1
Barium	0.0246		0.0100	0.00314	mg/L		03/28/24 12:12	03/28/24 21:45	1
Beryllium	<0.000274		0.00100	0.000274	mg/L		03/28/24 12:12	03/28/24 21:45	1
Boron	0.115	^5-	0.0800	0.0601	mg/L		03/28/24 12:12	03/28/24 21:45	1
Cadmium	<0.000217		0.00100	0.000217	mg/L		03/28/24 12:12	03/28/24 21:45	1
Calcium	7.31		0.500	0.127	mg/L		03/28/24 12:12	03/28/24 21:45	1
Chromium	<0.00153		0.00200	0.00153	mg/L		03/28/24 12:12	04/17/24 19:29	1
Cobalt	0.00160		0.000500	0.000261	mg/L		03/28/24 12:12	03/28/24 21:45	1
Lead	<0.000376		0.00100	0.000376	mg/L		03/28/24 12:12	03/28/24 21:45	1
Lithium	0.0130		0.00500	0.00129	mg/L		03/28/24 12:12	03/28/24 21:45	1
Molybdenum	0.000937	J	0.00500	0.000610	mg/L		03/28/24 12:12	03/28/24 21:45	1
Selenium	<0.000739		0.00500	0.000739	mg/L		03/28/24 12:12	03/28/24 21:45	1
Thallium	<0.000472		0.00100	0.000472	mg/L		03/28/24 12:12	03/28/24 21:45	1
Method: SW846 EPA 7470A - M				_				_	
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000135	J	0.000200	0.000130	mg/L		03/25/24 07:29	03/26/24 12:26	1
General Chemistry	_	• •••		• <i>·</i>		_	_ .		.
Analyte		Qualifier				<u>D</u>	Prepared	Analyzed 03/26/24 16:48	Dil Fac
Total Dissolved Solids (SM 2540C)	64.0	aling	10.0	10.0	mg/L			03/20/24 16:48	1
Method: EPA Field Sampling - Analyte		Qualifier	RL	мп	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	5.47	Sudiniel		MDL	SU		Tepareu	03/21/24 17:00	1
Client Sample ID: BAW-5 Date Collected: 03/20/24 17:26						La	b Sample	ID: 180-171 Matrix:	
Date Received: 03/22/24 09:30									
Method: SW846 EPA 9056A - A Analyte		Chromato Qualifier	o <mark>graphy</mark> RL	וחא	Unit	D	Prepared	Analyzed	Dil Fac
		Sudiniti							
Chloride	9.00		1.00	0.713	mg/L			03/27/24 02:59 Eurofins Pitt	1 tsburgh

Client Sample ID: BAW-5 Date Collected: 03/20/24 17:26 Date Received: 03/22/24 09:30

Job ID: 180-171314	-1
--------------------	----

Lab Sample ID: 180-171314-5 Matrix: Water

9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.110	В	0.100	0.0260	mg/L			03/27/24 02:59	1
Sulfate	30.0		1.00	0.756	mg/L			03/27/24 02:59	1
Method: SW846 EPA 6020B - N	letals (ICP/	MS) - Tota	I Recoveral	ble					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.000967		0.00200	0.000967	mg/L		03/28/24 12:12	03/28/24 21:48	1
Arsenic	0.00515		0.00100	0.000282	mg/L		03/28/24 12:12	03/28/24 21:48	
Barium	0.0958		0.0100	0.00314	mg/L		03/28/24 12:12	03/28/24 21:48	
Beryllium	<0.000274		0.00100	0.000274	mg/L		03/28/24 12:12	03/28/24 21:48	• • • • • •
Boron	0.686	^5-	0.0800	0.0601	mg/L		03/28/24 12:12	03/28/24 21:48	
Cadmium	<0.000217		0.00100	0.000217	mg/L		03/28/24 12:12	03/28/24 21:48	
Calcium	28.9		0.500	0.127	mg/L		03/28/24 12:12	03/28/24 21:48	1
Chromium	<0.00153		0.00200	0.00153	mg/L		03/28/24 12:12	04/17/24 19:32	
Cobalt	0.00131		0.000500	0.000261	mg/L		03/28/24 12:12	03/28/24 21:48	1
₋ead	<0.000376		0.00100	0.000376	mg/L		03/28/24 12:12	03/28/24 21:48	• • • • • •
_ithium	0.0786		0.00500	0.00129	mg/L		03/28/24 12:12	03/28/24 21:48	
Molybdenum	0.00366	J	0.00500	0.000610	mg/L		03/28/24 12:12	03/28/24 21:48	
Selenium	<0.000739		0.00500	0.000739	mg/L		03/28/24 12:12	03/28/24 21:48	
	<0.000472	/AA)	0.00100	0.000472	mg/L		03/28/24 12:12	03/28/24 21:48	
Method: SW846 EPA 7470A - N Analyte	lercury (C\	Qualifier	0.00100 RL 0.000200	0.000472 MDL 0.000130	Unit	D	03/28/24 12:12 Prepared 03/25/24 07:29	03/28/24 21:48 Analyzed 03/26/24 12:27	Dil Fa
Method: SW846 EPA 7470A - N Analyte Mercury	lercury (C) Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry	Mercury (C) Result 0.000134	Qualifier J	RL 0.000200	MDL 0.000130	Unit mg/L		Prepared 03/25/24 07:29	Analyzed 03/26/24 12:27	Dil Fac
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte	lercury (CV Result 0.000134 Result	Qualifier	RL 0.000200 RL	MDL 0.000130 MDL	Unit mg/L Unit	D	Prepared	Analyzed 03/26/24 12:27 Analyzed	Dil Fa
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte	Mercury (C) Result 0.000134	Qualifier J	RL 0.000200	MDL 0.000130 MDL	Unit mg/L		Prepared 03/25/24 07:29	Analyzed 03/26/24 12:27	Dil Fac
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte Fotal Dissolved Solids (SM 2540C)	Result 0.000134 Result 164	Qualifier J Qualifier	RL 0.000200 RL	MDL 0.000130 MDL	Unit mg/L Unit		Prepared 03/25/24 07:29	Analyzed 03/26/24 12:27 Analyzed	Dil Fac
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte Fotal Dissolved Solids (SM 2540C) Method: EPA Field Sampling -	lercury (CV Result 0.000134 Result 164	Qualifier J Qualifier	RL 0.000200 RL	MDL 0.000130 MDL	Unit mg/L Unit mg/L		Prepared 03/25/24 07:29	Analyzed 03/26/24 12:27 Analyzed	Dil Fac
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte Fotal Dissolved Solids (SM 2540C) Method: EPA Field Sampling - Analyte	lercury (CV Result 0.000134 Result 164	Qualifier J Qualifier	RL 0.000200 RL 10.0	MDL 0.000130 MDL 10.0	Unit mg/L Unit mg/L	D	Prepared 03/25/24 07:29 Prepared	Analyzed 03/26/24 12:27 Analyzed 03/26/24 16:48	Dil Fa
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte Fotal Dissolved Solids (SM 2540C) Method: EPA Field Sampling - Analyte Field pH	lercury (CV Result 0.000134 Result 164 Field Samp Result	Qualifier J Qualifier	RL 0.000200 RL 10.0	MDL 0.000130 MDL 10.0	Unit mg/L Unit mg/L Unit	D	Prepared 03/25/24 07:29 Prepared Prepared	Analyzed 03/26/24 12:27 Analyzed 03/26/24 16:48 Analyzed 03/20/24 18:26	Dil Fa Dil Fa
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte Total Dissolved Solids (SM 2540C) Method: EPA Field Sampling - Analyte Field pH Ilient Sample ID: BAW-7	lercury (CV Result 0.000134 Result 164 Field Samp Result	Qualifier J Qualifier	RL 0.000200 RL 10.0	MDL 0.000130 MDL 10.0	Unit mg/L Unit mg/L Unit	D	Prepared 03/25/24 07:29 Prepared Prepared	Analyzed 03/26/24 12:27 Analyzed 03/26/24 16:48 Analyzed	Dil Fac Dil Fac Dil Fac
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte Total Dissolved Solids (SM 2540C) Method: EPA Field Sampling - Analyte Field pH Iient Sample ID: BAW-7 ate Collected: 03/21/24 11:25	lercury (CV Result 0.000134 Result 164 Field Samp Result	Qualifier J Qualifier	RL 0.000200 RL 10.0	MDL 0.000130 MDL 10.0	Unit mg/L Unit mg/L Unit	D	Prepared 03/25/24 07:29 Prepared Prepared	Analyzed 03/26/24 12:27 Analyzed 03/26/24 16:48 Analyzed 03/20/24 18:26 ID: 180-171	Dil Fac Dil Fac Dil Fac
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte Total Dissolved Solids (SM 2540C) Method: EPA Field Sampling - Analyte Field pH Iient Sample ID: BAW-7 ate Collected: 03/21/24 11:25	lercury (CV Result 0.000134 Result 164 Field Samp Result	Qualifier J Qualifier	RL 0.000200 RL 10.0	MDL 0.000130 MDL 10.0	Unit mg/L Unit mg/L Unit	D	Prepared 03/25/24 07:29 Prepared Prepared	Analyzed 03/26/24 12:27 Analyzed 03/26/24 16:48 Analyzed 03/20/24 18:26 ID: 180-171	Dil Fa Dil Fa Dil Fa
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte Total Dissolved Solids (SM 2540C) Method: EPA Field Sampling - Analyte Field pH Lient Sample ID: BAW-7 ate Collected: 03/21/24 11:25 ate Received: 03/22/24 09:30	Aercury (CV Result 0.000134 Result 164 Field Samp Result 6.20	Qualifier J Qualifier Dling Qualifier	RL 0.000200 RL 10.0 RL	MDL 0.000130 MDL 10.0	Unit mg/L Unit mg/L Unit	D	Prepared 03/25/24 07:29 Prepared Prepared	Analyzed 03/26/24 12:27 Analyzed 03/26/24 16:48 Analyzed 03/20/24 18:26 ID: 180-171	Dil Fa Dil Fa Dil Fa
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte Total Dissolved Solids (SM 2540C) Method: EPA Field Sampling - Analyte Field pH lient Sample ID: BAW-7 ate Collected: 03/21/24 11:25 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte	Anions, Ion	Qualifier J Qualifier Dling Qualifier	RL 0.000200 RL 10.0 RL graphy RL	MDL 0.000130 MDL 10.0 MDL	Unit mg/L Unit mg/L Unit SU	D	Prepared 03/25/24 07:29 Prepared Prepared	Analyzed 03/26/24 12:27 Analyzed 03/26/24 16:48 Analyzed 03/20/24 18:26 ID: 180-171	Dil Fac Dil Fac Dil Fac
Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte Total Dissolved Solids (SM 2540C) Method: EPA Field Sampling - Analyte Field pH Client Sample ID: BAW-7 ate Collected: 03/21/24 11:25 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte	Anions, Ion	Qualifier J Qualifier Dling Qualifier Chromato	RL 0.000200 RL 10.0 RL	MDL 0.000130 MDL 10.0 MDL 0.713	Unit mg/L Unit mg/L Unit SU	D D 	Prepared 03/25/24 07:29 Prepared Prepared	Analyzed 03/26/24 12:27 Analyzed 03/26/24 16:48 Analyzed 03/20/24 18:26 ID: 180-171 Matrix:	Dil Fac Dil Fac Dil Fac 314-6
Thallium Method: SW846 EPA 7470A - N Analyte Mercury General Chemistry Analyte Total Dissolved Solids (SM 2540C) Method: EPA Field Sampling - Analyte Field pH Elient Sample ID: BAW-7 ate Collected: 03/21/24 11:25 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride	Arrient Contract Cont	Qualifier J Qualifier Dling Qualifier Chromato Qualifier	RL 0.000200 RL 10.0 RL graphy RL	MDL 0.000130 MDL 10.0 MDL	Unit mg/L Unit mg/L Unit SU Unit mg/L mg/L	D D 	Prepared 03/25/24 07:29 Prepared Prepared	Analyzed 03/26/24 12:27 Analyzed 03/26/24 16:48 Analyzed 03/20/24 18:26 ID: 180-171 Matrix: Analyzed	Dil Fa Dil Fa Dil Fa 314-(: Wate

Method: SW846 EPA 6020B - Metals (ICP/MS) - Total Recoverable

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.000967		0.00200	0.000967	mg/L		03/28/24 12:12	03/28/24 21:56	1
Arsenic	<0.000282		0.00100	0.000282	mg/L		03/28/24 12:12	03/28/24 21:56	1
Barium	0.0307		0.0100	0.00314	mg/L		03/28/24 12:12	03/28/24 21:56	1
Beryllium	<0.000274		0.00100	0.000274	mg/L		03/28/24 12:12	03/28/24 21:56	1
Boron	<0.0601	^5-	0.0800	0.0601	mg/L		03/28/24 12:12	03/28/24 21:56	1
Cadmium	<0.000217		0.00100	0.000217	mg/L		03/28/24 12:12	03/28/24 21:56	1
Calcium	1.38		0.500	0.127	mg/L		03/28/24 12:12	03/28/24 21:56	1

Job ID: 180-171314-1

Lab Sample ID: 180-171314-6 Matrix: Water

Date Collected: 03/21/24 11:25 Date Received: 03/22/24 09:30

Client Sample ID: BAW-7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chromium	<0.00153		0.00200	0.00153	mg/L		03/28/24 12:12	04/17/24 19:35	
Cobalt	0.00186		0.000500	0.000261	mg/L		03/28/24 12:12	03/28/24 21:56	
_ead	<0.000376		0.00100	0.000376	mg/L		03/28/24 12:12	03/28/24 21:56	
_ithium	0.00370	J	0.00500	0.00129	mg/L		03/28/24 12:12	03/28/24 21:56	
Molybdenum	<0.000610		0.00500	0.000610	mg/L		03/28/24 12:12	03/28/24 21:56	
Selenium	<0.000739		0.00500	0.000739	mg/L		03/28/24 12:12	03/28/24 21:56	
Fhallium	<0.000472		0.00100	0.000472	mg/L		03/28/24 12:12	03/28/24 21:56	
Method: SW846 EPA 7470A - N	Aercury (CV	/AA)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.000143	J	0.000200	0.000130	mg/L		03/25/24 07:29	03/26/24 12:31	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Total Dissolved Solids (SM 2540C)	40.0		10.0	10.0	mg/L			03/26/24 16:48	
Method: EPA Field Sampling -	Field Samp	oling							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Field pH	4.89				SU			03/21/24 12:25	
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30	Anions. Ion	Chromato	graphy			Lč		ID: 180-171 Matrix	
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A		Chromato Qualifier	graphy RL	MDL	Unit	La	Prepared		: Wate
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte				<u>MDL</u> 0.713				Matrix	: Wate
Client Sample ID: BAW-8 ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride	Result	Qualifier	RL		mg/L			Matrix	: Wate
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride	Result 12.1	Qualifier	RL 1.00	0.713	mg/L mg/L			Matrix Analyzed 03/30/24 16:33	
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate	Result 12.1 0.0833 30.6	Qualifier J	RL 1.00 0.100 1.00	0.713 0.0260 0.756	mg/L mg/L			Matrix	: Wate
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - M Analyte	Result 12.1 0.0833 30.6 Metals (ICP/ Result	Qualifier J	RL 1.00 0.100 1.00 I Recoveral RL	0.713 0.0260 0.756 ble MDL	mg/L mg/L mg/L Unit		Prepared	Matrix	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - M Analyte	Result 12.1 0.0833 30.6 Metals (ICP/	Qualifier J /MS) - Tota	RL 1.00 0.100 1.00	0.713 0.0260 0.756 ble MDL 0.000967	mg/L mg/L mg/L Unit mg/L	<u>D</u>	Prepared	Matrix	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - M Analyte Antimony	Result 12.1 0.0833 30.6 Metals (ICP/ Result	Qualifier J /MS) - Tota	RL 1.00 0.100 1.00 I Recoveral RL	0.713 0.0260 0.756 ble <u>MDL</u> 0.000967 0.000282	mg/L mg/L mg/L Unit mg/L mg/L	<u>D</u>	Prepared Prepared 03/28/24 12:12 03/28/24 12:12	Matrix Analyzed 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/28/24 21:59 03/28/24 21:59	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - M Analyte Antimony Arsenic	Result 12.1 0.0833 30.6 Metals (ICP/ Result <0.000967	Qualifier J /MS) - Tota	RL 1.00 0.100 1.00 0 0 0 0 0 0 0 1.00 0 1.00	0.713 0.0260 0.756 ble <u>MDL</u> 0.000967 0.000282 0.00314	mg/L mg/L mg/L Unit mg/L mg/L mg/L	<u>D</u>	Prepared Prepared 03/28/24 12:12 03/28/24 12:12	Matrix Analyzed 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - M Analyte Antimony Arsenic Barium Beryllium	Result 12.1 0.0833 30.6 Metals (ICP/ Result <0.000967 0.00461 0.0612 <0.000274	Qualifier J / <mark>MS) - Tota</mark> Qualifier	RL 1.00 0.100 1.00 0 I Recoveral RL 0.00200 0.00100 0.00100	0.713 0.0260 0.756 ble 0.000967 0.000282 0.00314 0.000274	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Matrix Analyzed 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 Analyzed 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - M Analyte Antimony Arsenic Barium Beryllium	Result 12.1 0.0833 30.6 Metals (ICP/ Result <0.000967 0.00461 0.0612	Qualifier J / <mark>MS) - Tota</mark> Qualifier	RL 1.00 0.100 1.00 0 0 1.00 1.00 1.00 1.00 1.00 1.00 0.00200 0.00100 0.0100	0.713 0.0260 0.756 ble <u>MDL</u> 0.000967 0.000282 0.00314	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Matrix Analyzed 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 Analyzed 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - N Analyte Antimony Arsenic Barium Beryllium Boron	Result 12.1 0.0833 30.6 Metals (ICP/ Result <0.000967 0.00461 0.0612 <0.000274	Qualifier J / <mark>MS) - Tota</mark> Qualifier	RL 1.00 0.100 1.00 0 I Recoveral RL 0.00200 0.00100 0.00100	0.713 0.0260 0.756 ble 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Matrix Analyzed 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 Analyzed 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - N Analyte Antimony Arsenic Barium Boron Cadmium	Result 12.1 0.0833 30.6 Metals (ICP/ Result <0.000967	Qualifier J / <mark>MS) - Tota</mark> Qualifier	RL 1.00 0.100 1.00 0.100 0.000 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.0800	0.713 0.0260 0.756 ble 0.000967 0.000282 0.00314 0.000274 0.0601	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Matrix Analyzed 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 Malyzed 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - N Analyte Antimony Arsenic Barium Beryllium Boron Cadmium	Result 12.1 0.0833 30.6 Metals (ICP/ Result <0.000967	Qualifier J / <mark>MS) - Tota</mark> Qualifier	RL 1.00 0.100 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.0800 0.00100	0.713 0.0260 0.756 ble 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Matrix Analyzed 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 Malyzed 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - N Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium	Result 12.1 0.0833 30.6 Metals (ICP/ Result <0.000967 0.00461 0.0612 <0.000274 0.578 <0.000217 18.6	Qualifier J / <mark>MS) - Tota</mark> Qualifier	RL 1.00 0.100 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	0.713 0.0260 0.756 ble MDL 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Matrix	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - N Analyte Antimony Arsenic Barium Boron Cadmium Calcium Chromium	Result 12.1 0.0833 30.6 Metals (ICP/ Result <0.000967	Qualifier J / <mark>MS) - Tota</mark> Qualifier	RL 1.00 0.100 1.00 0.100 1.00 I Recoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200	0.713 0.0260 0.756 ble MDL 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127 0.0153	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Matrix Analyzed 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/28/24 21:59 03/28/24 21:59	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - N Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt _ead	Result 12.1 0.0833 30.6 Metals (ICP/ Result <0.000967	Qualifier J / <mark>MS) - Tota</mark> Qualifier	RL 1.00 0.100 1.00 0.100 1.00 IRcoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.000500	0.713 0.0260 0.756 ble MDL 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127 0.00153 0.000261	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Matrix Analyzed 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 Analyzed 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59 03/28/24 21:59	: Wate
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - N Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Lead	Result 12.1 0.0833 30.6 Metals (ICP/ Result <0.000967	Qualifier J (MS) - Tota Qualifier ^5-	RL 1.00 0.100 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00100 0.00200 0.00200 0.000500 0.00100	0.713 0.0260 0.756 ble 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127 0.0153 0.000261 0.000376 0.00129	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/24 12:12 03/28/24 12:12	Matrix 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/28/24 21:59 03/28/24 21:59	Dil Fa
ate Collected: 03/21/24 13:04 ate Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride	Result 12.1 0.0833 30.6 Metals (ICP/ Result <0.000967	Qualifier J (MS) - Tota Qualifier ^5-	RL 1.00 0.100 1.00 1.00 1.00 IRecoveral RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.000500 0.00100 0.00500	0.713 0.0260 0.756 ble 0.000967 0.000282 0.00314 0.000274 0.0601 0.000217 0.127 0.00153 0.000261 0.000376	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 03/28/24 12:12 03/28/24 12:12	Matrix 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/30/24 16:33 03/28/24 21:59 03/28/24 21:59	Dil Fa

Method: SW846 EPA 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000142	J	0.000200	0.000130	mg/L		03/25/24 07:29	03/26/24 12:32	1

Client Sample Results

		Client	Sample	Result	ts				
lient: Southern Company roject/Site: Plant Daniel Ash Pon	nd						L.	Job ID: 180-17	1314-1
Client Sample ID: BAW-8 Date Collected: 03/21/24 13:04 Date Received: 03/22/24 09:30						La	b Sample	ID: 180-171 Matrix:	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	150		10.0		mg/L			03/26/24 16:48	1
Method: EPA Field Sampling -		-	DI	MDI	11-2:4	Р	Dranarad	Analyzod	
Analyte Field pH	6.18	Qualifier	RL	MDL	SU	<u>D</u>	Prepared	Analyzed 03/21/24 14:04	Dil Fac
Client Sample ID: BAW-9 Date Collected: 03/21/24 14:45 Date Received: 03/22/24 09:30						La	b Sample	ID: 180-171 Matrix:	
 Method: SW846 EPA 9056A - A Analyte		Chromato Qualifier	ography RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.3		- <u> </u>	0.713			Гібраїби	03/30/24 16:51	1
Fluoride	0.115		0.100	0.0260	-			03/30/24 16:51	1
Sulfate	39.8		1.00	0.756	•			03/30/24 16:51	1
 Method: SW846 EPA 6020B - N									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Antimony	<0.000967		0.00200	0.000967	-			03/28/24 22:02	1
Arsenic	0.0110		0.00100	0.000282	•			03/28/24 22:02	1
Barium	0.0695		0.0100	0.00314				03/28/24 22:02	1
Beryllium	<0.000274		0.00100	0.000274	-			03/28/24 22:02	1
Boron	0.558	^5-	0.0800	0.0601	•		03/28/24 12:12	03/28/24 22:02	1
Cadmium	<0.000217		0.00100	0.000217				03/28/24 22:02	•
Calcium	15.9		0.500	0.127	-			03/28/24 22:02	
Chromium	<0.00153		0.00200	0.00153	-		03/28/24 12:12	04/17/24 19:46	1
Cobalt	0.00338		0.000500	0.000261				03/28/24 22:02	1
Lead	< 0.000376		0.00100	0.000376	-			03/28/24 22:02	1
Lithium	0.0336		0.00500	0.00129	-		03/28/24 12:12	03/28/24 22:02	1
Molybdenum	0.00807		0.00500	0.000610			03/28/24 12:12	03/28/24 22:02	1
Selenium	<0.000739		0.00500	0.000739	-		03/28/24 12:12	03/28/24 22:02	1
Thallium	<0.000472		0.00100	0.000472	mg/L		03/28/24 12:12	03/28/24 22:02	1
Method: SW846 EPA 7470A - N			DI	MDI	11 14		Destroyed	Arrehmed	
Analyte	0.000138	Qualifier	RL 0.000200		Unit mg/l	<u>D</u>	Prepared	Analyzed 03/26/24 12:34	Dil Fac
Mercury	0.000138	J	0.000200	0.000130	mg/∟		03/25/24 07:29	03/26/24 12:34	
General Chemistry	Pocult	Qualifier	RL	MDI	Unit	D	Bronarod	Apolyzod	Dil Fa
Analyte Total Dissolved Solids (SM 2540C)	162	Quaimer	RL 10.0		mg/L	Ľ	Prepared	Analyzed 03/26/24 16:48	
Method: EPA Field Sampling -		oling			ing, E			00/20/21	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Field pH	6.20				SU			03/21/24 15:45	
							h Comula	ID: 400 474	044.0
Client Sample ID: DUP-07 Date Collected: 03/20/24 15:35 Date Received: 03/22/24 09:30						La	b Sample	ID: 180-171 Matrix:	
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte Chloride	6.84		1.00	0.713				03/30/24 15:19	

RL

0.100

MDL Unit

0.0260 mg/L

Client Sample ID: DUP-07 Date Collected: 03/20/24 15:35 Date Received: 03/22/24 09:30

Analyte

Fluoride

Method: SW846 EPA 9056A - Anions, Ion Chromatography (Continued)

Result Qualifier

0.0417 J

	 •		10	404

Prepared

D

9

Dil Fac

1

Lab Sample ID: 180-171314-9 **Matrix: Water**

Job ID: 180-171314-1

Analyzed

03/30/24 15:19

Lab Sample ID: 180-171314-10

Matrix: Water

1.83		1.00	0.756	mg/L			03/30/24 15:19	1
letals (ICP/	MS) - Tota	I Recoveral	ble					
		RL		Unit	D	Prepared	Analyzed	Dil Fac
< 0.000967		0.00200	0.000967	mg/L		03/28/24 12:12	03/28/24 22:04	1
<0.000282		0.00100	0.000282	mg/L		03/28/24 12:12	03/28/24 22:04	1
0.0359		0.0100	0.00314	mg/L		03/28/24 12:12	03/28/24 22:04	1
<0.000274		0.00100	0.000274	mg/L		03/28/24 12:12	03/28/24 22:04	1
<0.0601	^5-	0.0800	0.0601	mg/L		03/28/24 12:12	03/28/24 22:04	1
<0.000217		0.00100	0.000217	mg/L		03/28/24 12:12	03/28/24 22:04	1
1.10		0.500	0.127	mg/L		03/28/24 12:12	03/28/24 22:04	1
<0.00153		0.00200	0.00153	mg/L		03/28/24 12:12	04/17/24 19:49	1
0.00129		0.000500	0.000261	mg/L		03/28/24 12:12	03/28/24 22:04	1
<0.000376		0.00100	0.000376	mg/L		03/28/24 12:12	03/28/24 22:04	1
0.00137	J	0.00500	0.00129	mg/L		03/28/24 12:12	03/28/24 22:04	1
<0.000610		0.00500	0.000610	mg/L		03/28/24 12:12	03/28/24 22:04	1
<0.000739		0.00500	0.000739	mg/L		03/28/24 12:12	03/28/24 22:04	1
<0.000472		0.00100	0.000472	mg/L		03/28/24 12:12	03/28/24 22:04	1
Aercury (CV	/AA)							
· · · · ·		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.000143	J	0.000200	0.000130	mg/L		03/25/24 07:29	03/26/24 12:35	1
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
29.0		10.0		mg/L			03/26/24 16:48	
	Aletals (ICP/ Result <0.000967	Actals (ICP/MS) - Total Result Qualifier <0.000967	Result Qualifier RL <0.000967	Result Qualifier RL MDL <0.000967	Result Qualifier RL MDL Unit <0.000967	Result Qualifier RL MDL Unit D <0.000967	Result Qualifier RL MDL Unit D Prepared <0.000967	Metals (ICP/MS) - Total Recoverable Result Qualifier RL MDL Unit D Prepared Analyzed <0.000967

Client Sample ID: DUP-08

Date Collected: 03/21/24 10:25 Date Received: 03/22/24 09:30

Analyte	9056A - Anions, Ion Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.70		1.00	0.713	mg/L			03/30/24 16:14	1
Fluoride	<0.0260		0.100	0.0260	mg/L			03/30/24 16:14	1
Sulfate	1.82		1.00	0.756	mg/L			03/30/24 16:14	1

Method: SW846 EPA 6020B - Metals (ICP/MS) - Total Recoverable

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.000967		0.00200	0.000967	mg/L		03/28/24 12:12	03/28/24 22:07	1
Arsenic	<0.000282		0.00100	0.000282	mg/L		03/28/24 12:12	03/28/24 22:07	1
Barium	0.0315		0.0100	0.00314	mg/L		03/28/24 12:12	03/28/24 22:07	1
Beryllium	<0.000274		0.00100	0.000274	mg/L		03/28/24 12:12	03/28/24 22:07	1
Boron	<0.0601	^5-	0.0800	0.0601	mg/L		03/28/24 12:12	03/28/24 22:07	1
Cadmium	<0.000217		0.00100	0.000217	mg/L		03/28/24 12:12	03/28/24 22:07	1
Calcium	1.39		0.500	0.127	mg/L		03/28/24 12:12	03/28/24 22:07	1
Chromium	<0.00153		0.00200	0.00153	mg/L		03/28/24 12:12	04/17/24 19:51	1
Cobalt	0.00190		0.000500	0.000261	mg/L		03/28/24 12:12	03/28/24 22:07	1
Lead	<0.000376		0.00100	0.000376	mg/L		03/28/24 12:12	03/28/24 22:07	1
Lithium	0.00379	J	0.00500	0.00129	mg/L		03/28/24 12:12	03/28/24 22:07	1

Client: Southern Company Project/Site: Plant Daniel Ash Pond

Client Sample ID: DUP-08 Date Collected: 03/21/24 10:25 Date Received: 03/22/24 09:30

Chromium

Cobalt

Lithium

Molybdenum

Selenium

Thallium

Lead

Lab Sample ID: 180-171314-10 **Matrix: Water**

5

9

1

1

1

1

1

1

1

1

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Molybdenum	<0.000610		0.00500	0.000610	mg/L		03/28/24 12:12	03/28/24 22:07	1
Selenium	<0.000739		0.00500	0.000739	mg/L		03/28/24 12:12	03/28/24 22:07	1
Thallium	<0.000472		0.00100	0.000472	mg/L		03/28/24 12:12	03/28/24 22:07	1
Method: SW846 EPA 7470A - N	/lercury (C\	/AA)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000142	J	0.000200	0.000130	mg/L		03/25/24 07:29	03/26/24 12:36	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	40.0		10.0	10.0	mg/L			03/26/24 16:48	1
ate Received: 03/22/24 09:30		Chromata	aranhu					Matrix	: Water
Date Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A		Chromato Qualifier	graphy RL	MDL	Unit	D	Prepared	Matrix Analyzed	Dil Fac
Date Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte			• • •	<u>MDL</u> 0.713		<u>D</u>	Prepared		
Date Collected: 03/21/24 08:15 Date Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride	Result		RL		mg/L	<u>D</u>	Prepared	Analyzed	Dil Fac
Date Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride	Result <0.713		RL 1.00	0.713	mg/L mg/L	<u>D</u>	Prepared	Analyzed 03/28/24 01:14	Dil Fac
Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - M	Result <0.713 <0.0260 <0.756	Qualifier	RL 1.00 0.100 1.00	0.713 0.0260 0.756	mg/L mg/L mg/L			Analyzed 03/28/24 01:14 03/28/24 01:14 03/28/24 01:14	Dil Fac 1 1 1
Analyte Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - M Analyte	Result <0.713 <0.0260 <0.756 //etals (ICP/ Result	Qualifier	RL 1.00 0.100 1.00 I Recoveral RL	0.713 0.0260 0.756 DIE MDL	mg/L mg/L mg/L Unit	D	Prepared	Analyzed 03/28/24 01:14 03/28/24 01:14 03/28/24 01:14 Analyzed	Dil Fac 1 1 1 Dil Fac
Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - M Analyte Antimony	Result <0.713	Qualifier	RL 1.00 0.100 1.00 0 0 0 0 0 0 0 1.00 1.00 1.00 I Recoveral RL 0.00200	0.713 0.0260 0.756 ble MDL 0.000967	mg/L mg/L mg/L Unit mg/L		Prepared 03/28/24 12:12	Analyzed 03/28/24 01:14 03/28/24 01:14 03/28/24 01:14 Analyzed 03/28/24 22:10	Dil Fac 1 1 1
Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - N Analyte Antimony Arsenic	Result <0.713	Qualifier	RL 1.00 0.100 1.00 1.00 0.000 0.00200 0.00100	0.713 0.0260 0.756 DIE MDL 0.000967 0.000282	mg/L mg/L mg/L Unit mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12	Analyzed 03/28/24 01:14 03/28/24 01:14 03/28/24 01:14 Analyzed 03/28/24 22:10 03/28/24 22:10	Dil Fac 1 1 1 1 1 Dil Fac 1
Analyte Analyte Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - N Analyte Antimony Arsenic Barium	Result <0.713	Qualifier	RL 1.00 0.100 1.00 1.00 1.00 I Recoveral RL 0.00200 0.00100 0.0100	0.713 0.0260 0.756 ble <u>MDL</u> 0.000967 0.000282 0.00314	mg/L mg/L mg/L Unit mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Analyzed 03/28/24 01:14 03/28/24 01:14 03/28/24 01:14 Analyzed 03/28/24 22:10 03/28/24 22:10 03/28/24 22:10	Dil Fac 1 1 1 1 1 Dil Fac 1 1
Analyte Antimony Arsenic Barium Beryllium	Result <0.713	Qualifier MS) - Tota Qualifier	RL 1.00 0.100 1.00 0 I Recoveral RL 0.00200 0.00100 0.00100	0.713 0.0260 0.756 DIE MDL 0.000967 0.000282 0.00314 0.000274	mg/L mg/L mg/L <u>Unit</u> mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Analyzed 03/28/24 01:14 03/28/24 01:14 03/28/24 01:14 03/28/24 01:14 03/28/24 22:10 03/28/24 22:10 03/28/24 22:10 03/28/24 22:10	Dil Fac 1 1 1 1 1 Dil Fac 1 1 1
Analyte Analyte Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 EPA 6020B - N Analyte Antimony Arsenic Barium Beryllium Boron	Result <0.713	Qualifier MS) - Tota Qualifier	RL 1.00 0.100 1.00 0.100 0.00200 0.00100 0.00100 0.00100 0.0800	0.713 0.0260 0.756 ble <u>MDL</u> 0.000967 0.000282 0.00314 0.000274 0.000274	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Analyzed 03/28/24 01:14 03/28/24 01:14 03/28/24 01:14 03/28/24 01:14 03/28/24 22:10 03/28/24 22:10 03/28/24 22:10 03/28/24 22:10 03/28/24 22:10	Dil Fac 1 1 1 1 1 Dil Fac 1 1 1 1
Date Received: 03/22/24 09:30 Method: SW846 EPA 9056A - A Analyte Chloride Fluoride	Result <0.713	Qualifier MS) - Tota Qualifier	RL 1.00 0.100 1.00 0 I Recoveral RL 0.00200 0.00100 0.00100	0.713 0.0260 0.756 DIE MDL 0.000967 0.000282 0.00314 0.000274	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12 03/28/24 12:12	Analyzed 03/28/24 01:14 03/28/24 01:14 03/28/24 01:14 03/28/24 01:14 03/28/24 22:10 03/28/24 22:10 03/28/24 22:10 03/28/24 22:10	Dil Fac 1 1 1 1 1 Dil Fac 1 1 1

Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.000200 03/25/24 07:29 03/26/24 12:37 0.000148 J 0.000130 mg/L Mercury **General Chemistry** Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids (SM 2540C) <10.0 10.0 10.0 mg/L 03/26/24 17:03

0.00200

0.000500

0.00100

0.00500

0.00500

0.00500

0.00100

0.00153 mg/L

0.000261 mg/L

0.000376 mg/L

0.00129 mg/L

0.000610 mg/L

0.000739 mg/L

0.000472 mg/L

< 0.00153

< 0.000261

< 0.000376

< 0.00129

< 0.000610

< 0.000739

< 0.000472

Method: SW846 EPA 7470A - Mercury (CVAA)

Eurofins Pittsburgh

03/28/24 12:12 04/17/24 19:54

03/28/24 12:12 03/28/24 22:10

03/28/24 12:12 03/28/24 22:10

03/28/24 12:12 03/28/24 22:10

03/28/24 12:12 03/28/24 22:10

03/28/24 12:12 03/28/24 22:10

03/28/24 12:12 03/28/24 22:10

4/24/2024 (Rev. 1)

Client Sample ID: EB-03 Date Collected: 03/21/24 08:20 Date Received: 03/22/24 09:30

_

Job ID: 180-171314-1

Lab Sample ID: 180-171314-12 Matrix: Water

Method: SW846 EPA	9056A - Anions, Ion Chromato	ography						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.713	1.00	0.713	mg/L			03/28/24 00:55	1
Fluoride	<0.0260	0.100	0.0260	mg/L			03/28/24 00:55	1
Sulfate	<0.756	1.00	0.756	mg/L			03/28/24 00:55	1
_ Method: SW846 EPA	6020B - Metals (ICP/MS) - Tota	al Recoveral	ole					
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.000067	0.00000	0.000067	ma m /l		02/20/24 12:12	02/20/24 22:42	

Antimony	<0.000967	0.00200	0.000967 mg/L	03/28/24 12:12 03/28/24 22:13	1
Arsenic	<0.000282	0.00100	0.000282 mg/L	03/28/24 12:12 03/28/24 22:13	1
Barium	<0.00314	0.0100	0.00314 mg/L	03/28/24 12:12 03/28/24 22:13	1 9
Beryllium	<0.000274	0.00100	0.000274 mg/L	03/28/24 12:12 03/28/24 22:13	1
Boron	<0.0601 ^5-	0.0800	0.0601 mg/L	03/28/24 12:12 03/28/24 22:13	1 10
Cadmium	<0.000217	0.00100	0.000217 mg/L	03/28/24 12:12 03/28/24 22:13	1
Calcium	<0.127	0.500	0.127 mg/L	03/28/24 12:12 03/28/24 22:13	1 11
Chromium	<0.00153	0.00200	0.00153 mg/L	03/28/24 12:12 04/17/24 19:57	1
Cobalt	<0.000261	0.000500	0.000261 mg/L	03/28/24 12:12 03/28/24 22:13	1 12
Lead	<0.000376	0.00100	0.000376 mg/L	03/28/24 12:12 03/28/24 22:13	1
Lithium	<0.00129	0.00500	0.00129 mg/L	03/28/24 12:12 03/28/24 22:13	1 13
Molybdenum	<0.000610	0.00500	0.000610 mg/L	03/28/24 12:12 03/28/24 22:13	1
Selenium	<0.000739	0.00500	0.000739 mg/L	03/28/24 12:12 03/28/24 22:13	1
Thallium	<0.000472	0.00100	0.000472 mg/L	03/28/24 12:12 03/28/24 22:13	1
_					

Method: SW846	EPA	7470A -	Mercury	(CVAA)
---------------	-----	---------	---------	--------

Analyte Mercury	Result 0.000143	Qualifier J	RL 0.000200	MDL 0.000130		<u> </u>	Prepared 03/25/24 07:29	Analyzed 03/26/24 12:38	Dil Fac
General Chemistry Analyte Total Dissolved Solids (SM 2540C)	Result	Qualifier	RL 10.0	MDL 10.0	Unit mg/L	D	Prepared	Analyzed 03/26/24 17:03	Dil Fac

Lab Sample ID: MB 180-463571/58

Lab Sample ID: LCS 180-463571/59

Matrix: Water

Matrix: Water

Analyte

Chloride

Fluoride

Sulfate

Analysis Batch: 463571

Method: EPA 9056A - Anions, Ion Chromatography

MB MB

<0.713

<0.756

0.03160 J

Result Qualifier

Prep Type: Total/NA

1 7 8 8 9 - 10

Dil Fac

1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prepared

D

Client Sample ID: Method Blank

Analyzed

03/27/24 02:30

03/27/24 02:30

03/27/24 02:30

Client Sample ID: BAW-5

Client Sample ID: BAW-5

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 463571 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits

RL

1.00

1.00

0.100

MDL Unit

0.713 mg/L

0.0260 mg/L

0.756 mg/L

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 50.0	50.55		mg/L		101	80 - 120	
Fluoride	2.50	2.713		mg/L		109	80 - 120	
Sulfate	50.0	49.80		mg/L		100	80 - 120	

Lab Sample ID: 180-171314-5 MS Matrix: Water Analysis Batch: 463571

-	Sample Sample	Spike	MS	MS				%Rec	
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	9.00	50.0	59.13		mg/L		100	80 - 120	
Fluoride	0.110 B	2.50	2.707		mg/L		104	80 - 120	
Sulfate	30.0	50.0	79.46		mg/L		99	80 - 120	

Lab Sample ID: 180-171314-5 MSD Matrix: Water

Analysis Batch: 463571

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	9.00		50.0	59.32		mg/L		101	80 - 120	0	15
Fluoride	0.110	В	2.50	2.690		mg/L		103	80 - 120	1	15
Sulfate	30.0		50.0	78.62		mg/L		97	80 - 120	1	15

Lab Sample ID: MB 180-463707/6 Matrix: Water

Analysis Batch: 463707

-	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.713		1.00	0.713	mg/L			03/27/24 13:06	1
Fluoride	<0.0260		0.100	0.0260	mg/L			03/27/24 13:06	1
Sulfate	<0.756		1.00	0.756	mg/L			03/27/24 13:06	1

Lab Sample ID: LCS 180-463707/7 Matrix: Water

Analysis Batch: 463707

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	48.14		mg/L		96	80 - 120	
Fluoride	2.50	2.544		mg/L		102	80 - 120	
Sulfate	50.0	47.53		mg/L		95	80 - 120	

QC Sample Results

4 5 6

Method: EPA 9056A - Anions, Ion Chromatography (Continued)

0								Clie	ent Sam	ple ID: Method	d Blan
•										•	
МВ	МВ										
Result	Qualifier	F	2L	MDL	Unit		D	Р	repared	Analyzed	Dil Fa
<0.713		1.0	00 00).713	mg/L				•	03/29/24 17:39	
<0.0260		0.10			-					03/29/24 17:39	
<0.756		1.(0 0	.756	mg/L					03/29/24 17:39	
31						Cli	ient	Sai	mple ID:		
										Prep Type: T	otal/N/
		Spike	LCS	LCS	5					%Rec	
				Qua	lifier	Unit		D	%Rec	Limits	
		50.0	47.30			mg/L			95	80 - 120	
		2.50	2.573			mg/L			103	80 - 120	
		50.0	46.48			mg/L			93	80 - 120	
								<u></u>		nia ID: Mathar	d Diam
								CIIE	ent Sam		
										Prep Type: 1	otal/N
мр	MD										
		-		мы	Unit		п	Б	roparad	Analyzod	Dil Fa
	Quanner						<u> </u>	-	repareu	·	Dirra
					-						
		0.10			-						
<0 756		1 (<u>ا</u> م							11.3/30/2/ 11.4/	
<0.756		1.(00 C	0.756	ing, E					03/30/24 11:47	
		1.()O C).756		Cli	ient	Sai	mple ID:		
<0.756 7		1.(00 C	0.756	ing/E	Cli	ient	Sai	mple ID:	Lab Control	Sampl
		1.()0 C	0.756	iiig/ L	Cli	ient	Sai	mple ID:		Sampl
		1.(Spike		LCS	-	Cli	ient	Sai	mple ID:	Lab Control	Sampl
				LCS	5	Cli Unit	ient	Sai D	mple ID: %Rec	Lab Control S Prep Type: T	Sampl
		Spike	LCS	LCS	5		ient			Lab Control S Prep Type: To %Rec	Sampl
		Spike Added	LCS Result	LCS	5	Unit	ient		%Rec	Lab Control S Prep Type: T %Rec Limits	Sampl
		Spike Added 50.0	LCS Result 47.86	LCS	5	Unit mg/L	ient		% Rec _	Lab Control S Prep Type: To %Rec Limits 80 - 120	
	Result <0.713	MB Qualifier <0.713	MB MB Result Qualifier F <0.713	MB MB <0.713	MB MB <0.713	MB MB Result Qualifier RL MDL Unit <0.713	MB MB <0.713	MB MB Result Qualifier RL MDL Unit D <0.713	MB MB Result Qualifier RL MDL Unit D P <0.713	MB MB Result Qualifier RL MDL Unit D Prepared <0.713	MB MB Result Qualifier RL MDL Unit D Prepared Analyzed O3/29/24 17:39 <0.0260

Antimony	<0.000967	0.00200	0.000967 mg/L	03/28/24 12:12	03/28/24 21:31	1
Arsenic	<0.000282	0.00100	0.000282 mg/L	03/28/24 12:12	03/28/24 21:31	1
Barium	<0.00314	0.0100	0.00314 mg/L	03/28/24 12:12	03/28/24 21:31	1
Beryllium	<0.000274	0.00100	0.000274 mg/L	03/28/24 12:12	03/28/24 21:31	1
Boron	<0.0601 ^5-	0.0800	0.0601 mg/L	03/28/24 12:12	03/28/24 21:31	1
Cadmium	<0.000217	0.00100	0.000217 mg/L	03/28/24 12:12	03/28/24 21:31	1
Calcium	<0.127	0.500	0.127 mg/L	03/28/24 12:12	03/28/24 21:31	1
Cobalt	<0.000261	0.000500	0.000261 mg/L	03/28/24 12:12	03/28/24 21:31	1
Lead	<0.000376	0.00100	0.000376 mg/L	03/28/24 12:12	03/28/24 21:31	1
Lithium	<0.00129	0.00500	0.00129 mg/L	03/28/24 12:12	03/28/24 21:31	1
Molybdenum	<0.000610	0.00500	0.000610 mg/L	03/28/24 12:12	03/28/24 21:31	1
Selenium	<0.000739	0.00500	0.000739 mg/L	03/28/24 12:12	03/28/24 21:31	1

QC Sample Results

Job ID: 180-171314-1

Method: EPA 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 180-463	817/1-A									ole ID: Metho	
Matrix: Water								P	rep Typ	e: Total Reco	
Analysis Batch: 463957										Prep Batch:	46381
	MB	MB									
Analyte		Qualifier	RL	I	MDL Un	it	D		epared	Analyzed	Dil Fa
Thallium	<0.000472		0.00100	0.000)472 mg	/L		03/28	8/24 12:12	03/28/24 21:31	
Lab Sample ID: MB 180-463	817/1-A							Clie	nt Samp	ole ID: Metho	d Blanl
Matrix: Water								Р	rep Typ	e: Total Reco	verabl
Analysis Batch: 465756										Prep Batch:	46381
-	MB	МВ									
Analyte	Result	Qualifier	RL	I	MDL Un	it	D	Pr	epared	Analyzed	Dil Fa
Chromium	<0.00153		0.00200	0.00	0153 mg	/L		03/28	3/24 12:12	04/17/24 19:12	
Lab Sample ID: LCS 180-46	3817/2-A					С	lient	t San	nple ID:	Lab Control	Sampl
Natrix: Water										e: Total Reco	
Analysis Batch: 463957										Prep Batch:	
			Spike	LCS	LCS					%Rec	
Analyte			Added	Result	Qualifie	r Unit		D	%Rec	Limits	
Antimony			0.250	0.2723		mg/L			109	80 - 120	
Arsenic			1.00	1.060		mg/L			106	80 - 120	
Barium			1.00	1.040		mg/L			104	80 - 120	
Beryllium			0.500	0.5132		mg/L			103	80 - 120	
Boron			0.250	0.2445	^5-	mg/L			98	80 - 120	
Cadmium			0.500	0.5295	•	mg/L			106	80 - 120	
Calcium			25.0	26.50		mg/L			106	80 - 120	
Chromium			0.500	0.5452	^+	mg/L			109	80 - 120	
Cobalt			0.500	0.5163		mg/L			103	80 - 120	
_ead			0.500	0.5323		mg/L			106	80 - 120	
ithium			0.500	0.5244		mg/L			105	80 - 120	
Nolybdenum			0.500	0.5428		mg/L			109	80 - 120	
Selenium			1.00	1.067		mg/L			107	80 - 120	
Thallium			1.00	1.087		mg/L			109	80 - 120	
Lab Sample ID: LCS 180-46	3817/2-1					C	lion	San	ania ID:	Lab Control	Sampl
Matrix: Water	001112-A									e: Total Reco	
Analysis Batch: 465756									тер тур	Prep Batch:	
			Spike	LCS	LCS					%Rec	40001
Analyte			Added		Qualifie	r Unit		D	%Rec	Limits	
Chromium			0.500	0.5001		mg/L			100	80 - 120	
lethod: EPA 7470A - Me		()									
		(~~)									
Lab Sample ID: MB 180-463	409/1-A							Clie	nt Samp	ole ID: Metho	
Matrix: Water										Prep Type: T	
Analysis Batch: 463616										Prep Batch:	46340
	MB	MB									
Analyte	Result	Qualifier	RL	I	MDL Un	it	D	Pr	epared	Analyzed	Dil Fa
Mercury	< 0.000130		0.000200	0.000	0130 mg	/	_	03/25	5/24 07.29	03/26/24 12:19	

Eurofins Pittsburgh

0.000130 mg/L

Job ID: 180-171314-1

10

Method: EPA 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 180-46 Matrix: Water	53409/2-A					Clie	ent Sai		: Lab Con		
									Prep Typ		
Analysis Batch: 463616			Calles	1.00	1.00				Prep Ba %Rec	tcn: 4	63409
Analyte			Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec Limits		
Mercury			0.00250	0.002801	Quaimer		<u>D</u>		80 - 120		
Mercury			0.00250	0.002601		mg/L		112	60 - 120		
Lab Sample ID: 180-171314	I-1 MS							Clie	nt Sample	D: E	BAW-1
Matrix: Water									Prep Typ		
Analysis Batch: 463616									Prep Ba		
·····, ····	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	0.000141	J	0.00100	0.001206		mg/L		107	75 - 125		
-											
Lab Sample ID: 180-171314	I-1 MSD							Clie	nt Sample		
Matrix: Water									Prep Typ		
Analysis Batch: 463616									Prep Ba	tch: 4	
	•	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.000141	J	0.00100	0.001215		mg/L		107	75 - 125	1	20
-	3633/1						Clie	ent Sam	ple ID: Me		
Lab Sample ID: MB 180-463 Matrix: Water Analysis Batch: 463633	3633/1	MB MB					Clie	ent Sam	ple ID: Me Prep Typ		
Matrix: Water Analysis Batch: 463633		MB MB		RI	MDI Unit				Prep Typ	e: To	tal/NA
Matrix: Water Analysis Batch: 463633 Analyte	Re	MB MB sult Qualifier			MDL Unit			ent Sam	-	e: To	tal/NA Dil Fac
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46	Re <	sult Qualifier			MDL 10.0 mg/L	Clic	<u>D</u> P	repared	Prep Typ <u>Analyz</u> 	ed 6:48	Dil Fac 1 ample
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water	Re <	sult Qualifier				Clie	<u>D</u> P	repared	Prep Typ 	ed 6:48	Dil Fac 1 ample
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water	Re <	sult Qualifier		10.0	10.0 mg/L	Clie	<u>D</u> P	repared	Prep Typ Analyz 03/26/24 : Lab Con Prep Typ	ed 6:48	Dil Fac 1 ample
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633	Re <	sult Qualifier	Spike	10.0 LCS	10.0 mg/L		<u>D</u> P ent Sai	repared mple ID:	Prep Typ Analyz 03/26/24 Lab Con Prep Typ %Rec	ed 6:48	Dil Fac 1 ample
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte	Re <	sult Qualifier		10.0 LCS	10.0 mg/L	Clic Unit mg/L	<u>D</u> P	repared	Prep Typ Analyz 03/26/24 : Lab Con Prep Typ	ed 6:48	Dil Fac 1 ample
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids	Re < 53633/2	sult Qualifier	Spike Added	10.0 LCS Result	10.0 mg/L	Unit	<u>D</u> P ent Sai	mple ID MRec 103	Prep Typ Analyz 03/26/24 Lab Con Prep Typ %Rec Limits 85 - 115	ed 6:48 trol Sa e: To	Dil Fac 1 ample tal/NA
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte	Re < 53633/2	sult Qualifier	Spike Added	10.0 LCS Result	10.0 mg/L	Unit	<u>D</u> P ent Sai	mple ID MRec 103	Analyz O3/26/24 Lab Con Prep Typ %Rec Limits 85 - 115 Mt Sample	e: To ed 6:48 - trol Sa be: To e: To	tal/NA Dil Fac 1 ample tal/NA
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids	Re < 53633/2	sult Qualifier	Spike Added	10.0 LCS Result	10.0 mg/L	Unit	<u>D</u> P ent Sai	mple ID MRec 103	Prep Typ Analyz 03/26/24 Lab Con Prep Typ %Rec Limits 85 - 115	e: To ed 6:48 - trol Sa be: To e: To	tal/NA Dil Fac 1 ample tal/NA
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: 180-171314	Re < 53633/2	sult Qualifier	Spike Added	10.0 LCS Result	10.0 mg/L	Unit	<u>D</u> P ent Sai	mple ID MRec 103	Analyz O3/26/24 Lab Con Prep Typ %Rec Limits 85 - 115 Mt Sample	e: To ed 6:48 - trol Sa be: To e: To	tal/NA Dil Fac 1 ample tal/NA
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: 180-171314 Matrix: Water	Re 63633/2 	sult Qualifier	Spike Added	10.0 LCS Result 314.0	10.0 mg/L	Unit	<u>D</u> P ent Sai	mple ID MRec 103	Analyz O3/26/24 Lab Con Prep Typ %Rec Limits 85 - 115 Mt Sample	e: To ed 6:48 - trol Sa be: To e: To	Dil Fac 1 ample tal/NA 3AW-5 tal/NA
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: 180-171314 Matrix: Water Analysis Batch: 463633	Re 53633/2 4-5 DU Sample	10.0 Qualifier	Spike Added	10.0 LCS Result 314.0	LCS Qualifier	Unit	<u>D</u> P ent Sai	mple ID MRec 103	Analyz O3/26/24 Lab Con Prep Typ %Rec Limits 85 - 115 Mt Sample	e: To ed 6:48 - trol Sa be: To e: To	Dil Fac 1 ample tal/NA 3AW-5 tal/NA RPD
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: 180-171314 Matrix: Water Analysis Batch: 463633 Analyte	Re 53633/2 4-5 DU Sample	Sample	Spike Added	10.0 LCS Result 314.0	10.0 mg/L LCS Qualifier DU Qualifier	Unit mg/L	DP Pent Sar	mple ID MRec 103	Analyz O3/26/24 Lab Con Prep Typ %Rec Limits 85 - 115 Mt Sample	e: To ed 6:48 trol Sa be: To e ID: E be: To	Dil Fac Dil Fac ample tal/NA BAW-5 tal/NA RPE Limi
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: 180-171314 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: MB 180-463	Re 53633/2 4-5 DU Sample Result 164	Sample	Spike Added	10.0 LCS Result 314.0 DU Result	10.0 mg/L LCS Qualifier DU Qualifier	Unit mg/L	DPP ent Sar D	mple ID %Rec 103 Clie	Prep Typ Analyz 03/26/24 Lab Con Prep Typ %Rec Limits 85 - 115 mt Sample Prep Typ	e: To ed 6:48 trol Sa be: To e: To e: To RPD 2 ethod	tal/NA Dil Fac 1 ample tal/NA BAW-5 tal/NA RPD Limit 10 Blank
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: 180-171314 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: MB 180-463 Matrix: Water	Re 53633/2 4-5 DU Sample Result 164	Sample	Spike Added	10.0 LCS Result 314.0 DU Result	10.0 mg/L LCS Qualifier DU Qualifier	Unit mg/L	DPP ent Sar D	mple ID %Rec 103 Clie	Prep Typ Analyz 03/26/24 Lab Con Prep Typ %Rec Limits 85 - 115 mt Sample Prep Typ	e: To ed 6:48 trol Sa be: To e: To e: To RPD 2 ethod	tal/NA Dil Fac 1 ample tal/NA BAW-5 tal/NA RPD Limit 10 Blank
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: 180-171314 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: MB 180-463	Re 53633/2 4-5 DU Sample Result 164	Sample	Spike Added	10.0 LCS Result 314.0 DU Result	10.0 mg/L LCS Qualifier DU Qualifier	Unit mg/L	DPP ent Sar D	mple ID %Rec 103 Clie	Prep Typ Analyz 03/26/24 Lab Con Prep Typ %Rec Limits 85 - 115 mt Sample Prep Typ	e: To ed 6:48 trol Sa be: To e: To e: To RPD 2 ethod	tal/NA Dil Fac 1 ample tal/NA BAW-5 tal/NA RPD Limit 10 Blank
Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: LCS 180-46 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: 180-171314 Matrix: Water Analysis Batch: 463633 Analyte Total Dissolved Solids Lab Sample ID: MB 180-463 Matrix: Water	Re 53633/2 4-5 DU Sample Result 164 3636/1	Sample	Spike Added 305	10.0 LCS Result 314.0 DU Result 167.0	10.0 mg/L LCS Qualifier DU Qualifier	Unit mg/L	DPP ent Sar D D	mple ID %Rec 103 Clie	Prep Typ Analyz 03/26/24 Lab Con Prep Typ %Rec Limits 85 - 115 mt Sample Prep Typ	e: To ed 6:48 trol Sa pe: To PilD: E pe: To 2 trod RPD 2 trod 2	tal/NA <u>Dil Fac</u> 1 ample tal/NA <u>BAW-5 tal/NA RPD Limit 10 Blank</u>

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 180-463636/2 Matrix: Water Analysis Batch: 463636		Client Sample ID: Lab C Prep T			: Lab Control Sample Prep Type: Total/NA		
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Dissolved Solids	305	288.0		mg/L		94	85 - 115

Eurofins Pittsburgh

10

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Water

Water

Water

Water

Water

Client Sample ID

BAW-1

BAW-2A

BAW-3

BAW-4

BAW-5

BAW-5

BAW-5

Method Blank

Lab Control Sample

Method

EPA 9056A

Prep Batch

7 8 9 10 11

LCS 180-463571/59 180-171314-5 MS

Analysis Batch: 463571

HPLC/IC

Lab Sample ID

180-171314-1

180-171314-2

180-171314-3

180-171314-4

180-171314-5

MB 180-463571/58

180-171314-5 MSD

Analysis Batch: 463707

Lab Sample ID 180-171314-11	Client Sample ID FB-03	Prep Type Total/NA	Matrix Water	Method F EPA 9056A	Prep Batch	
180-171314-12	EB-03	Total/NA	Water	EPA 9056A		1
MB 180-463707/6	Method Blank	Total/NA	Water	EPA 9056A		L
LCS 180-463707/7	Lab Control Sample	Total/NA	Water	EPA 9056A		

Analysis Batch: 463964

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-171314-6	BAW-7	Total/NA	Water	EPA 9056A	
MB 180-463964/30	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-463964/31	Lab Control Sample	Total/NA	Water	EPA 9056A	

Analysis Batch: 464013

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-171314-7	BAW-8	Total/NA	Water	EPA 9056A	
180-171314-8	BAW-9	Total/NA	Water	EPA 9056A	
180-171314-9	DUP-07	Total/NA	Water	EPA 9056A	
180-171314-10	DUP-08	Total/NA	Water	EPA 9056A	
MB 180-464013/6	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-464013/7	Lab Control Sample	Total/NA	Water	EPA 9056A	

Metals

Prep Batch: 463409

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-171314-1	BAW-1	Total/NA	Water	7470A	
180-171314-2	BAW-2A	Total/NA	Water	7470A	
180-171314-3	BAW-3	Total/NA	Water	7470A	
180-171314-4	BAW-4	Total/NA	Water	7470A	
180-171314-5	BAW-5	Total/NA	Water	7470A	
180-171314-6	BAW-7	Total/NA	Water	7470A	
180-171314-7	BAW-8	Total/NA	Water	7470A	
180-171314-8	BAW-9	Total/NA	Water	7470A	
180-171314-9	DUP-07	Total/NA	Water	7470A	
180-171314-10	DUP-08	Total/NA	Water	7470A	
180-171314-11	FB-03	Total/NA	Water	7470A	
180-171314-12	EB-03	Total/NA	Water	7470A	
MB 180-463409/1-A	Method Blank	Total/NA	Water	7470A	
LCS 180-463409/2-A	Lab Control Sample	Total/NA	Water	7470A	
180-171314-1 MS	BAW-1	Total/NA	Water	7470A	

Metals (Continued)

Prep Batch: 463409 (Continued)

Lab Sample ID 180-171314-1 MSD	Client Sample ID BAW-1	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch
Analysis Batch: 46	3616				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-171314-1	BAW-1	Total/NA	Water	EPA 7470A	463409

180-171314-1	BAVV-1	Iotal/NA	vvater	EPA /4/0A	463409	
180-171314-2	BAW-2A	Total/NA	Water	EPA 7470A	463409	
180-171314-3	BAW-3	Total/NA	Water	EPA 7470A	463409	
180-171314-4	BAW-4	Total/NA	Water	EPA 7470A	463409	8
180-171314-5	BAW-5	Total/NA	Water	EPA 7470A	463409	
180-171314-6	BAW-7	Total/NA	Water	EPA 7470A	463409	
180-171314-7	BAW-8	Total/NA	Water	EPA 7470A	463409	
180-171314-8	BAW-9	Total/NA	Water	EPA 7470A	463409	
180-171314-9	DUP-07	Total/NA	Water	EPA 7470A	463409	
180-171314-10	DUP-08	Total/NA	Water	EPA 7470A	463409	1
180-171314-11	FB-03	Total/NA	Water	EPA 7470A	463409	H
180-171314-12	EB-03	Total/NA	Water	EPA 7470A	463409	
MB 180-463409/1-A	Method Blank	Total/NA	Water	EPA 7470A	463409	
LCS 180-463409/2-A	Lab Control Sample	Total/NA	Water	EPA 7470A	463409	
180-171314-1 MS	BAW-1	Total/NA	Water	EPA 7470A	463409	
180-171314-1 MSD	BAW-1	Total/NA	Water	EPA 7470A	463409	

Prep Batch: 463817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-171314-1	BAW-1	Total Recoverable	Water	3005A	
180-171314-2	BAW-2A	Total Recoverable	Water	3005A	
180-171314-3	BAW-3	Total Recoverable	Water	3005A	
180-171314-4	BAW-4	Total Recoverable	Water	3005A	
180-171314-5	BAW-5	Total Recoverable	Water	3005A	
180-171314-6	BAW-7	Total Recoverable	Water	3005A	
180-171314-7	BAW-8	Total Recoverable	Water	3005A	
180-171314-8	BAW-9	Total Recoverable	Water	3005A	
180-171314-9	DUP-07	Total Recoverable	Water	3005A	
180-171314-10	DUP-08	Total Recoverable	Water	3005A	
180-171314-11	FB-03	Total Recoverable	Water	3005A	
180-171314-12	EB-03	Total Recoverable	Water	3005A	
MB 180-463817/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-463817/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 463957

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-171314-1	BAW-1	Total Recoverable	Water	EPA 6020B	463817
180-171314-2	BAW-2A	Total Recoverable	Water	EPA 6020B	463817
180-171314-3	BAW-3	Total Recoverable	Water	EPA 6020B	463817
180-171314-4	BAW-4	Total Recoverable	Water	EPA 6020B	463817
180-171314-5	BAW-5	Total Recoverable	Water	EPA 6020B	463817
180-171314-6	BAW-7	Total Recoverable	Water	EPA 6020B	463817
180-171314-7	BAW-8	Total Recoverable	Water	EPA 6020B	463817
180-171314-8	BAW-9	Total Recoverable	Water	EPA 6020B	463817
180-171314-9	DUP-07	Total Recoverable	Water	EPA 6020B	463817
180-171314-10	DUP-08	Total Recoverable	Water	EPA 6020B	463817
180-171314-11	FB-03	Total Recoverable	Water	EPA 6020B	463817

QC Association Summary

11 12

Analysis Batch: 463957 (Continued)

Lab Sample ID 180-171314-12	Client Sample ID EB-03	Prep Type Total Recoverable	Matrix Water	Method EPA 6020B	Prep Batch 463817
MB 180-463817/1-A	Method Blank	Total Recoverable	Water	EPA 6020B	463817
LCS 180-463817/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020B	463817

Analysis Batch: 465756

Metals (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-171314-1	BAW-1	Total Recoverable	Water	EPA 6020B	463817
180-171314-2	BAW-2A	Total Recoverable	Water	EPA 6020B	463817
180-171314-3	BAW-3	Total Recoverable	Water	EPA 6020B	463817
180-171314-4	BAW-4	Total Recoverable	Water	EPA 6020B	463817
180-171314-5	BAW-5	Total Recoverable	Water	EPA 6020B	463817
180-171314-6	BAW-7	Total Recoverable	Water	EPA 6020B	463817
180-171314-7	BAW-8	Total Recoverable	Water	EPA 6020B	463817
180-171314-8	BAW-9	Total Recoverable	Water	EPA 6020B	463817
180-171314-9	DUP-07	Total Recoverable	Water	EPA 6020B	463817
180-171314-10	DUP-08	Total Recoverable	Water	EPA 6020B	463817
180-171314-11	FB-03	Total Recoverable	Water	EPA 6020B	463817
180-171314-12	EB-03	Total Recoverable	Water	EPA 6020B	463817
MB 180-463817/1-A	Method Blank	Total Recoverable	Water	EPA 6020B	463817
LCS 180-463817/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020B	463817

General Chemistry

Analysis Batch: 463633

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-171314-1	BAW-1	Total/NA	Water	SM 2540C	
180-171314-2	BAW-2A	Total/NA	Water	SM 2540C	
180-171314-3	BAW-3	Total/NA	Water	SM 2540C	
180-171314-4	BAW-4	Total/NA	Water	SM 2540C	
180-171314-5	BAW-5	Total/NA	Water	SM 2540C	
180-171314-6	BAW-7	Total/NA	Water	SM 2540C	
180-171314-7	BAW-8	Total/NA	Water	SM 2540C	
180-171314-8	BAW-9	Total/NA	Water	SM 2540C	
180-171314-9	DUP-07	Total/NA	Water	SM 2540C	
180-171314-10	DUP-08	Total/NA	Water	SM 2540C	
MB 180-463633/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-463633/2	Lab Control Sample	Total/NA	Water	SM 2540C	
180-171314-5 DU	BAW-5	Total/NA	Water	SM 2540C	

Analysis Batch: 463636

Lab Sample ID 180-171314-11	Client Sample ID FB-03	Prep Type Total/NA	Matrix Water	Method SM 2540C	Prep Batch
180-171314-12	EB-03	Total/NA	Water	SM 2540C	
MB 180-463636/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-463636/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Field Service / Mobile Lab

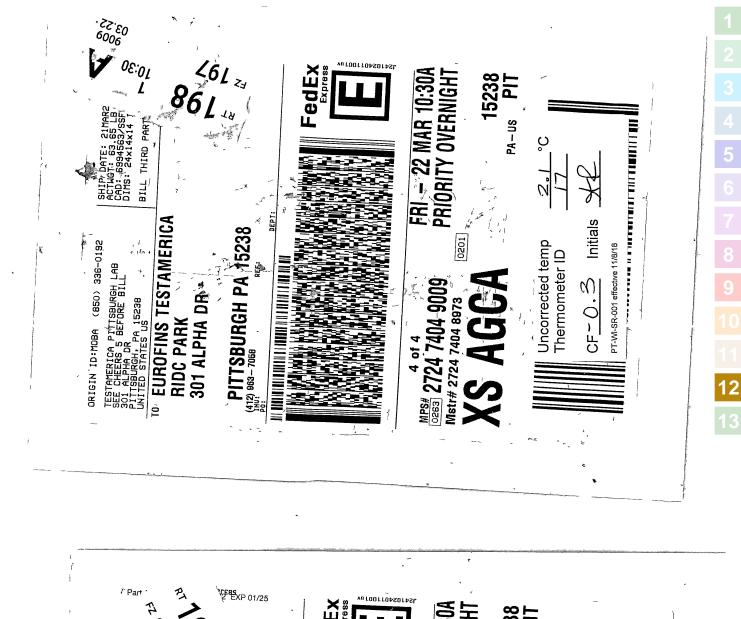
Analysis Batch: 466337

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-171314-1	BAW-1	Total/NA	Water	Field Sampling	
180-171314-2	BAW-2A	Total/NA	Water	Field Sampling	

QC Association Summary

Job ID: 180-171314-1

Field Service / Mobile Lab (Continued)


Analysis Batch: 466337 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-171314-3	BAW-3	Total/NA	Water	Field Sampling	
180-171314-4	BAW-4	Total/NA	Water	Field Sampling	
180-171314-5	BAW-5	Total/NA	Water	Field Sampling	
180-171314-6	BAW-7	Total/NA	Water	Field Sampling	
180-171314-7	BAW-8	Total/NA	Water	Field Sampling	
180-171314-8	BAW-9	Total/NA	Water	Field Sampling	

Pittsburgh, PA 15238 Phone (412) 963-7058 Fax (412) 963-2468	Chain of	stod	cord		C CU(OTINS Environment Testing America
Client Information	Sampler RUK (TOD)> X	Keity Lab PM	Lab PM Brown, Shali	Carrier Tracking No(s)	COC No:
Client Contact: SCS Contacts	Pholog 550-336-0192		wn@eurofinset.com		Page 12 2
Company SCS			nalysis	Requested	/) #qor
Address 3535 Colonnade Pkwy Bin S 530 EC	Due Date Requested:				
Clty Birmingham	TAT Requested (days):				A - HUL M - THEXAME B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip Alabama					
Phone 205 992.6283	#04	(0			
Email SCS Contacts	# 0M		(VI br 91stl		I - Ice J - DI Water
Project Name Daniel Ash Pond B CCR	Project # 18020047	9 (,,62	ns III qu u2 əbi		K - EDA
	#MOSS	iqms5	qA) 4f toul3 e sbilo2		of cor Other:
	Sample	Sample Matrix d Type (www.ii. (C=comp, owwaie), d	donn MS/M 208 Custom 656 Chlorid 656 Chlorid 656 Ra 228 738 738 738 738 738 738 738 738 738 73		tedmuM list
Sample Identification	Sample Date Time G	BT=Tissue, A=Air) tion Code:	o⊥ 06 .≠∠ :09) usto	P Special Instructions/Note:
Paus-1	N	5 N	X Y X X X	J o t	
RAUN-7.4	1210		XXX	CPai	2.9
	1015	3	XXX	314	9
BAW-4	1600	N N	XXXXXX		9
B.A S	1726	3	X X X X	180	9
BAW-7	1125		XXX		9
BAW-8	3-21-24 1307	جم م	XXXX		9
B4W-9	3-21-24 144S	or on 2	XXXXXX		6
Dup-07	3-20-24 1535	é w no	XXXXX		0
DUP-08	1025	8 3 5	XXXXX		.0
F8-03	3-21-24 0815 0	6- W 10	x x x x		e
ssible Hazard Identification		Radiological	Sample Disposal (A fee may	be assessed if sample	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Deliverable Requested 1, II, III, IV, Other (specify)		6	Special Instructions/QC Requirements	ements	
Empty Kit Relinquished by	Date	Time	ne.	Method of Shipment:	ent:
Relinquished by high life	Date/Time 24 11048	Company Company	Cherry Strand	Date	AN44/12 124 1931 21/22/1800
Relinquished by			Received by	Date/Time	Time Company
Relinquished by ⁻	Date/Time	Company	Received by	Date/Time	Time Company
Custody Seals Intact: Custody Seal No.			Cooler Temperature(s) °C and Other Remarks	ner Remarks	
					Ver: 01/16/2010

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phone (412) 963-7058 Fax (412) 963-2468	0	Chain o	f Cust	of Custody Record	COL	σ								دد دور س	چې eurofins	S Environment Testing America	t Testing	
	Sampler			Lab PM Brown, Shali	Shali					Carrie	Carrier Tracking No(s)	g No(s)		COC No:	No:			
	Phone	-		E-Mail shali b	rown@	eurofir	E-Mail shall brown@eurofinset.com	۶		1				Page	Para	e 242		
Company SCS								Analysis		Requested	ted			.# qof		0		
is Colonnade Pkwy Bin S 530 EC	Due Date Requested:	÷						`						Pres	Preservation Codes:			
ų	TAT Requested (days):	/s):			144 C	- 11									A - HUL B - NaOH C - Zn Apetate	M - Nexarie N - None O - AsNaO2		
Lip Ma					33	·								2 Z Z Z	itriq Acid aHSO4 aOH			
Phone 205 992 6283	PO#				14.5 g									.9 -9 -9 -9	mchlor scorbic Act		ahydrate	
	#OM				(ON	(41.01	ətetl	P							I - Ice J - DI Water			
nd B CCR	Project # 18020047			5971 9	l 10 sa	ue us de										W - pH 4-5 Z - other (speci	(A)	
	:#MOSS			Jumes	r) as	1~)+1								of col				
Samula Mantification	Samnle Date	Sample (Sample Type (C=comp,	Matrix (w=water, s=solid, O=waatsolid, O=waatsolid, O=waatsolid, O=waatsolid, O=waatsolid, O=waatsolid,	M/SM motie	AT0 Mercury	90656 Chlorid	beviozzid isto 83 226 Ra 228						Total Number	Snecia	Snecial Instructions/Note		
			-1 61		\triangleright	+	+	+					-			V		
68-03	42-12-2	0820	5	Ž.		XX	2	x x						5				
	2	3	5			<u> </u>	+	¥					-	2				
					1			+										
					<u> </u>													
Docethla Havard Idontification					- Sam			\ ∆ fee	- unav h	20226	sed if s	amnles	are rei	ained Io	nder tha	are retained longer than 1 month)		
Non-Hazard Flammable Skin Irritant Poison B	on B Unknown		Radiological			Retur	n To Cl	lient		Return To Client Disposal By Lab	Disposal By Lab	ab		Archive For	or	Months		
					Spec	al Inst	ructions	Special Instructions/QC Requirements	equiren	nents								
inquished by		Date			Time [.]						Method o	Method of Shipment:	÷.					
Relinquished by highly light	Date/Time 3-21-24	164	8	Company P.D.H. GW.		Received by	5	5	(Date Tinte	1221	24	193	する。	LU LU	
Relinquished by	Date/Time		\$	Company	<u>۳</u>	Received	PV-					Date/Time	me			Company		
Relinquished by	Date/Time		U	Company	αž.	Received by	Δ					Date/Time	eu			Company		
Custody Seals Intact Custody Seal No. Δ Yes Δ No					0	ooler Te	mperatur	e(s) °C a	nd Other	Cooler Temperature(s) °C and Other Remarks								
							1:	12	1	1	9	8		6	5	Ver: 01/16/2019	1	1
							3	2	1	0								

AHS 1241024011001 n FedEx E396/858/27685 # 156297-435 RADB2 EXP 01/25 Ċ PRIORITY OVER PAP =2500 FRI - 22 MA ×14×14 IN BILL THIRD PARTY -0.3 Initials SHIP D ACTMGT CAD: 6 DIMS: 6 r-WI-SR-001 effective 11/8/18 0201 Thermometer ID PITTSBURGH PA 15238 EUROFINS TESTAMERICA 24 7404 8984 (850) 336-0192 TESTAMERICA PITTSBURGH LAB SEE CHERS 5 BEFORE BILL SEE CHERD DR 15238 PITTSBURGH, PA 15238 DITTSBURGH, PA 15238 Ь **301 ALPHA' DR** 2 of 4 RIDC PARK 579 B ORIGIN ID: MOBA 2 10 111dyeW 415171-081 15238 PIT Part # 156297-435 % ARUBE EXP 01/25 VU FOOT FOASO FAS - 22 MAR 10:30A / OVERNIGHT FedEx 8995 03.22 SHIP DATE: 21MAR24 ACTWGT: 64.05 LB CAD: 6994563/SSFE2500 DIMS: 24x14x14 IN PA-US 10:30 BILL THIRD PARTY THE DATE: THGT: 64 FRI – 2 Priorit кт 198 F2 197 DEPT: CF<u>こ0、</u>3 Initials 0201 **EUROFINS TESTAMERICA** PITTSBURGH PA 15238 (412) 963-7068 REF: Uncorrected temp PT-WI-SR-001 effective 11/8/18 (850) 336-0192 Thermometer ID 1997 OZES 2724 7404 8995 TESTAMERICA PITTSBURGH LAB SEE CHEERS 5 BEFORE BILL 301 ALPHA DR PITTSBURGH, DR 15238 UNITED STATES US Mstr# 2724 7404 8973 **301 ALPHA DR** 3 of 4 **RIDC PARK** ORIGIN ID: MOBA 10

Client: Southern Company

Login Number: 171314 List Number: 1 Creator: Abernathy, Eric L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 180-171314-1

List Source: Eurofins Pittsburgh

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

5

Attn: Robert (Trey) Singleton Southern Company 3535 Colonnade Parkway Bin S 530 EC Birmingham, Alabama 35243 Generated 4/23/2024 7:53:20 PM

JOB DESCRIPTION

Plant Daniel Ash Pond

JOB NUMBER

180-171314-2

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

See page two for job notes and contact information.

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Generated 4/23/2024 7:53:20 PM

Authorized for release by Shali Brown, Project Manager II Shali.Brown@et.eurofinsus.com (615)301-5031

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Certification Summary	6
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	13
QC Sample Results	21
QC Association Summary	22
Chain of Custody	23
Receipt Checklists	29

Job ID: 180-171314-2

Eurofins Pittsburgh

Job Narrative 180-171314-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/22/2024 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.8° C, 2.8° C, 3.0° C and 3.6° C.

Gas Flow Proportional Counter

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Rad

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Southern Company Project/Site: Plant Daniel Ash Pond

Qualifiers

Rad

Rad		
Qualifier	Qualifier Description	4
U	Result is less than the sample detection limit.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	7
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Accreditation/Certification Summary

Client: Southern Company Project/Site: Plant Daniel Ash Pond Job ID: 180-171314-2

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

uthority	Program	Identification Number	Expiration Date
laska (UST)	State	20-001	05-06-25
NAB	Dept. of Defense ELAP	L2305	04-06-25
NAB	Dept. of Energy	L2305.01	04-06-25
NAB	ISO/IEC 17025	L2305	04-06-25
rizona	State	AZ0813	12-08-24
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-24
Connecticut	State	PH-0241	03-31-25
lorida	NELAP	E87689	06-30-24
II - RadChem Recognition	State	n/a	06-30-24
linois	NELAP	200023	11-30-24
owa	State	373	12-01-24
ansas	NELAP	E-10236	10-31-24
čentucky (DW)	State	KY90125	12-31-24
čentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-24
ouisiana	NELAP	04080	06-30-22 *
ouisiana (All)	NELAP	04080	06-30-24
ouisiana (DW)	State	LA011	12-31-24
laryland	State	310	09-30-24
lassachusetts	State	M-MO054	06-30-24
II - RadChem Recognition	State	9005	06-30-24
lissouri	State	780	06-30-25
levada	State	MO00054	07-31-24
lew Jersey	NELAP	MO002	06-30-24
lew Mexico	State	MO00054	06-30-24
lew York	NELAP	11616	03-31-25
lorth Carolina (DW)	State	29700	07-31-24
lorth Dakota	State	R-207	06-30-24
Oklahoma	NELAP	9997	08-31-24
Dregon	NELAP	4157	09-01-24
ennsylvania	NELAP	68-00540	02-28-25
South Carolina	State	85002001	06-30-24
exas	NELAP	T104704193	07-31-24
IS Fish & Wildlife	US Federal Programs	058448	07-31-24
ISDA	US Federal Programs	P330-17-00028	05-18-26
Itah	NELAP	MO00054	07-31-24
írginia	NELAP	10310	06-15-25
Vashington	State	C592	08-30-24
Vest Virginia DEP	State	381	10-31-24

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Sample Summary

Client: Southern Company Project/Site: Plant Daniel Ash Pond

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-171314-1	BAW-1	Water	03/20/24 16:35	03/22/24 09:30
180-171314-2	BAW-2A	Water	03/21/24 13:10	03/22/24 09:30
180-171314-3	BAW-3	Water	03/21/24 10:15	03/22/24 09:30
180-171314-4	BAW-4	Water	03/21/24 16:00	03/22/24 09:30
180-171314-5	BAW-5	Water	03/20/24 17:26	03/22/24 09:30
180-171314-6	BAW-7	Water	03/21/24 11:25	03/22/24 09:30
180-171314-7	BAW-8	Water	03/21/24 13:04	03/22/24 09:30
180-171314-8	BAW-9	Water	03/21/24 14:45	03/22/24 09:30
180-171314-9	DUP-07	Water	03/20/24 15:35	03/22/24 09:30
180-171314-10	DUP-08	Water	03/21/24 10:25	03/22/24 09:30
180-171314-11	FB-03	Water	03/21/24 08:15	03/22/24 09:30
180-171314-12	EB-03	Water	03/21/24 08:20	03/22/24 09:30

Method Summary

Client: Southern Company Project/Site: Plant Daniel Ash Pond

Method	Method Description	Protocol	Laboratory
9315	Radium-226 (GFPC)	SW846	EET SL
9320	Radium-228 (GFPC)	SW846	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Client Sample ID: BAW-1 Date Collected: 03/20/24 16:35

Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			1003.33 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			658078	04/22/24 08:57	EMH	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Prep	PrecSep_0			1003.33 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656291	04/10/24 12:02	SCB	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Analysis	Ra226_Ra228		1			658328	04/23/24 18:39	FLC	EET SL
	Instrume	nt ID: NOEQUIP								

Client Sample ID: BAW-2A

Date Collected: 03/21/24 13:10 Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			997.25 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			658078	04/22/24 08:57	EMH	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Prep	PrecSep_0			997.25 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656291	04/10/24 12:02	SCB	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Analysis	Ra226_Ra228		1			658328	04/23/24 18:39	FLC	EET SL
	Instrume	nt ID: NOEQUIP								

Client Sample ID: BAW-3

Date Collected: 03/21/24 10:15 Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			999.47 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			658078	04/22/24 08:57	EMH	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Prep	PrecSep_0			999.47 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656291	04/10/24 12:03	SCB	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Analysis	Ra226_Ra228		1			658328	04/23/24 18:39	FLC	EET SL
	Instrume	nt ID: NOEQUIP								

Client Sample ID: BAW-4

Date Collected: 03/21/24 16:00 Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			995.64 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			658078	04/22/24 08:58	EMH	EET SL
	Instrume	nt ID: GFPCBLUE								

Eurofins Pittsburgh

Matrix: Water

Lab Sample ID: 180-171314-1

Lab Sample ID: 180-171314-2

Lab Sample ID: 180-171314-3

Lab Sample ID: 180-171314-4

Matrix: Water

Matrix: Water

Matrix: Water

5 8

Client Sample ID: BAW-4 Date Collected: 03/21/24 16:00

Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep_0			995.64 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656291	04/10/24 12:03	SCB	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Analysis	Ra226_Ra228		1			658328	04/23/24 18:39	FLC	EET SL
	Instrume	nt ID: NOEQUIP								

Client Sample ID: BAW-5

Date Collected: 03/20/24 17:26

Date	Received:	03/22/24	09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			992.98 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			658078	04/22/24 08:58	EMH	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Prep	PrecSep_0			992.98 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656291	04/10/24 12:03	SCB	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Analysis	Ra226_Ra228		1			658328	04/23/24 18:39	FLC	EET SL
	Instrume	nt ID: NOEQUIP								

Client Sample ID: BAW-7

Date Collected: 03/21/24 11:25

Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			993.78 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			658078	04/22/24 08:58	EMH	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Prep	PrecSep_0			993.78 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656291	04/10/24 12:03	SCB	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Analysis	Ra226_Ra228		1			658328	04/23/24 18:39	FLC	EET SL
	Instrume	nt ID: NOEQUIP								

Client Sample ID: BAW-8

Date Collected: 03/21/24 13:04 Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			990.93 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			658078	04/22/24 08:58	EMH	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Prep	PrecSep_0			990.93 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656291	04/10/24 12:03	SCB	EET SL
	Instrume	nt ID: GFPCBLUE								

Lab Sample ID: 180-171314-4

Lab Sample ID: 180-171314-5

Lab Sample ID: 180-171314-6

Lab Sample ID: 180-171314-7

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: BAW-8 Date Collected: 03/21/24 13:04

Date Received: 03/22/24 09:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
Total/NA	Analysis	Ra226_Ra228		1	Amount		658328	04/23/24 18:39	FLC	EET SL

Client Sample ID: BAW-9

Date Collected: 03/21/24 14:45 Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			998.28 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			658078	04/22/24 08:58	EMH	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Prep	PrecSep_0			998.28 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656293	04/10/24 11:55	SCB	EET SL
	Instrume	nt ID: GFPCPURPLE								
Total/NA	Analysis	Ra226_Ra228		1			658328	04/23/24 18:39	FLC	EET SL
	Instrume	nt ID: NOEQUIP								

Client Sample ID: DUP-07 Date Collected: 03/20/24 15:35

Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			992.62 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			658078	04/22/24 08:58	EMH	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Prep	PrecSep_0			992.62 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656293	04/10/24 11:55	SCB	EET SL
	Instrume	nt ID: GFPCPURPLE								
Total/NA	Analysis	Ra226_Ra228		1			658328	04/23/24 18:39	FLC	EET SL
	Instrume	nt ID: NOEQUIP								

Client Sample ID: DUP-08

Date Collected: 03/21/24 10:25

Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			999.57 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			658078	04/22/24 08:58	EMH	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Prep	PrecSep_0			999.57 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656293	04/10/24 11:55	SCB	EET SL
	Instrume	nt ID: GFPCPURPLE								
Total/NA	Analysis	Ra226_Ra228		1			658328	04/23/24 18:39	FLC	EET SL
	Instrume	nt ID: NOEQUIP								

Eurofins Pittsburgh

Lab Sample ID: 180-171314-7 Matrix: Water

Lab Sample ID: 180-171314-8

Lab Sample ID: 180-171314-9

Lab Sample ID: 180-171314-10

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 180-171314-12

Matrix: Water

Client Sample ID: FB-03 Date Collected: 03/21/24 08:15

Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			997.20 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			657955	04/22/24 08:44	SCB	EET SL
	Instrume	nt ID: GFPCRED								
Total/NA	Prep	PrecSep_0			997.20 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656293	04/10/24 11:55	SCB	EET SL
	Instrume	nt ID: GFPCPURPLE								
Total/NA	Analysis	Ra226_Ra228		1			658328	04/23/24 18:39	FLC	EET SL
	Instrume	nt ID: NOEQUIP								

Client Sample ID: EB-03 Date Collected: 03/21/24 08:20

Date Received: 03/22/24 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			992.36 mL	1.0 g	654483	03/28/24 09:26	KAK	EET SL
Total/NA	Analysis	9315		1			658078	04/22/24 16:52	EMH	EET SL
	Instrume	nt ID: GFPCBLUE								
Total/NA	Prep	PrecSep_0			992.36 mL	1.0 g	654485	03/28/24 09:44	KAK	EET SL
Total/NA	Analysis	9320		1			656293	04/10/24 11:55	SCB	EET SL
	Instrume	nt ID: GFPCPURPLE								
Total/NA	Analysis	Ra226_Ra228		1			658328	04/23/24 18:39	FLC	EET SL
	Instrume	nt ID: NOEQUIP								

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Analyst References:

Lab: EET SL

Batch Type: Prep

KAK = Kayla King

Batch Type: Analysis

EMH = Elizabeth Hoerchler

FLC = Fernando Cruz

SCB = Sarah Bernsen

8

Client Sample ID: BAW-1 Date Collected: 03/20/24 16:35

Method: SW846 9	315 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.248		0.0968	0.0993	1.00	0.0979	pCi/L	03/28/24 09:26	04/22/24 08:57	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.0		30 - 110					03/28/24 09:26	04/22/24 08:57	1

Method: SW846 9320 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.720		0.402	0.407	1.00	0.565	pCi/L	03/28/24 09:44	04/10/24 12:02	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.0		30 - 110					03/28/24 09:44	04/10/24 12:02	1
Y Carrier	81.1		30 - 110					03/28/24 09:44	04/10/24 12:02	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.968		0.413	0.419	5.00	0.565	pCi/L		04/23/24 18:39	1
226 + 228										

Client Sample ID: BAW-2A

Date Collected: 03/21/24 13:10

Date Received: 03/22/24 09:30

Method: SW846 931	15 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.222		0.0926	0.0947	1.00	0.0953	pCi/L	03/28/24 09:26	04/22/24 08:57	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.0		30 - 110					03/28/24 09:26	04/22/24 08:57	1

Method: SW846 9320 - Radium-228 (GFPC)

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.891		0.458	0.465	1.00	0.642	pCi/L	03/28/24 09:44	04/10/24 12:02	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.0		30 - 110					03/28/24 09:44	04/10/24 12:02	1
Y Carrier	77.8		30 _ 110					03/28/24 09:44	04/10/24 12:02	1

Job ID: 180-171314-2

Lab Sample ID: 180-171314-1 Matrix: Water

Lab Sample ID: 180-171314-2

Matrix: Water

9

Client Sample Results

Client Sample ID: BAW-24 Date Collected: 03/21/24 13:10

Client Sample ID: BAW-2A	Lab Sample ID: 180-171314-2	
Date Collected: 03/21/24 13:10	Matrix: Water	
Date Received: 03/22/24 09:30		
Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228		
Count Total		5

			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.11		0.467	0.475	5.00	0.642	pCi/L		04/23/24 18:39	1
226 + 228										

Client Sample ID: BAW-3

Date Collected: 03/21/24 10:15 Date Received: 03/22/24 09:30

Method: SW846 931	5 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.162		0.0759	0.0773	1.00	0.0841	pCi/L	03/28/24 09:26	04/22/24 08:57	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.5		30 - 110					03/28/24 09:26	04/22/24 08:57	1

Method: SW846 9320 - Radium-228 (GFPC)

			Count	Iotai						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.764		0.379	0.385	1.00	0.517	pCi/L	03/28/24 09:44	04/10/24 12:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.5		30 - 110					03/28/24 09:44	04/10/24 12:03	1
Y Carrier	79.3		30 - 110					03/28/24 09:44	04/10/24 12:03	1

Tatal

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.926		0.387	0.393	5.00	0.517	pCi/L		04/23/24 18:39	1
226 + 228										

Client Sample ID: BAW-4

Date Collected: 03/21/24 16:00 Date Received: 03/22/24 09:30

Lab Sample ID: 180-171314-4

Matrix: Water

Method: SW846 93	15 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.212		0.0867	0.0888	1.00	0.0905	pCi/L	03/28/24 09:26	04/22/24 08:58	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.3		30 - 110					03/28/24 09:26	04/22/24 08:58	1

9

Job ID: 180-171314-2

Lab Sample ID: 180-171314-3

Matrix: Water

Client Sample ID: BAW-4 Date Collected: 03/21/24 16:00

Date Received: 03/22/24 09:30

Method: SW846 93	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.542	U	0.387	0.391	1.00	0.593	pCi/L	03/28/24 09:44	04/10/24 12:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.3		30 - 110					03/28/24 09:44	04/10/24 12:03	1
Y Carrier	84.5		30 _ 110					03/28/24 09:44	04/10/24 12:03	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.754		0.397	0.401	5.00	0.593	pCi/L		04/23/24 18:39	1
226 + 228										

Client Sample ID: BAW-5

Date Collected: 03/20/24 17:26 Date Received: 03/22/24 09:30

_

Method: SW846 93	815 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.467		0.128	0.135	1.00	0.102	pCi/L	03/28/24 09:26	04/22/24 08:58	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.0		30 - 110					03/28/24 09:26	04/22/24 08:58	1

Method: SW846 9320 - Radium-228 (GFPC)

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.291	U	0.395	0.396	1.00	0.662	pCi/L	03/28/24 09:44	04/10/24 12:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.0		30 - 110					03/28/24 09:44	04/10/24 12:03	1
Y Carrier	78.9		30 - 110					03/28/24 09:44	04/10/24 12:03	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.758		0.415	0.418	5.00	0.662 pCi/L		04/23/24 18:39	1

Matrix: Water

Job ID: 180-171314-2

Lab Sample ID: 180-171314-4

Lab Sample ID: 180-171314-5

5 6

4/23/2024

Client Sample ID: BAW-7 Date Collected: 03/21/24 11:25

Date Received: 03/22/24 09:30

Method: SW846 93	315 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.181		0.0906	0.0921	1.00	0.111	pCi/L	03/28/24 09:26	04/22/24 08:58	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.5		30 - 110					03/28/24 09:26	04/22/24 08:58	1

Method: SW846 9320 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.425	U	0.326	0.328	1.00	0.497	pCi/L	03/28/24 09:44	04/10/24 12:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.5		30 - 110					03/28/24 09:44	04/10/24 12:03	1
Y Carrier	82.6		30 - 110					03/28/24 09:44	04/10/24 12:03	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radi 226 + 228	um 0.606		0.338	0.341	5.00	0.497	pCi/L		04/23/24 18:39	1

Client Sample ID: BAW-8

Date Collected: 03/21/24 13:04

Date Received: 03/22/24 09:30

Ē.

Method: SW846 93	315 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.372		0.113	0.118	1.00	0.0923	pCi/L	03/28/24 09:26	04/22/24 08:58	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.5		30 - 110					03/28/24 09:26	04/22/24 08:58	1

Method: SW846 9320 - Radium-228 (GFPC)

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.498	U	0.458	0.460	1.00	0.734	pCi/L	03/28/24 09:44	04/10/24 12:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.5		30 - 110					03/28/24 09:44	04/10/24 12:03	1
Y Carrier	82.2		30 - 110					03/28/24 09:44	04/10/24 12:03	1

Lab Sample ID: 180-171314-6

Lab Sample ID: 180-171314-7

Matrix: Water

Job ID: 180-171314-2

Matrix: Water

Total

Uncert.

(2**σ**+/-)

0.475

RL

5.00

MDC Unit

0.734 pCi/L

Client Sample ID: BAW-8 Date Collected: 03/21/24 13:04 Date Received: 03/22/24 09:30

Client Sample ID: BAW-9

Date Collected: 03/21/24 14:45

Analyte

226 + 228

Ba Carrier

Y Carrier

Combined Radium

Lab Sample ID: 180-171314-7

Prepared

03/28/24 09:44

03/28/24 09:44

Job ID: 180-171314-2

Analyzed

04/23/24 18:39

Matrix: Water

Lab Sample ID: 180-171314-8 Matrix: Water 9

1

1

Dil Fac

1

Date Received: 03/2	22/24 09:30									
_ Method: SW846 9	315 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.308		0.109	0.112	1.00	0.108	pCi/L	03/28/24 09:26	04/22/24 08:58	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.5		30 _ 110					03/28/24 09:26	04/22/24 08:58	1
_ Method: SW846 9	320 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.716		0.439	0.443	1.00	0.651	pCi/L	03/28/24 09:44	04/10/24 11:55	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

85.5

81.9

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

Result Qualifier

0.870

Count

Uncert.

(2**σ**+/-)

0.472

30 - 110

30 - 110

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.02		0.452	0.457	5.00	0.651	pCi/L		04/23/24 18:39	1
226 + 228										

Client Sample ID: DUP-07

Date Collected: 03/20/24 15:35 Date Received: 03/22/24 09:30

Lab Sample ID: 180-171314-9

04/10/24 11:55

04/10/24 11:55

Matrix: Water

Method: SW846 93	315 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.145		0.0946	0.0955	1.00	0.136	pCi/L	03/28/24 09:26	04/22/24 08:58	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.3		30 - 110					03/28/24 09:26	04/22/24 08:58	1

Client Sample ID: DUP-07 Date Collected: 03/20/24 15:35

Date Received: 03/22/24 09:30

Method: SW846 93	520 - Radium-2	28 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.460	U	0.370	0.373	1.00	0.576	pCi/L	03/28/24 09:44	04/10/24 11:55	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.3		30 - 110					03/28/24 09:44	04/10/24 11:55	1
Y Carrier	79.3		30 - 110					03/28/24 09:44	04/10/24 11:55	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.606		0.382	0.385	5.00	0.576	pCi/L		04/23/24 18:39	1
226 + 228										

Client Sample ID: DUP-08 Date Collected: 03/21/24 10:25

Date Received: 03/22/24 09:30

Method: SW846 93	15 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.260		0.108	0.110	1.00	0.127	pCi/L	03/28/24 09:26	04/22/24 08:58	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.8		30 - 110					03/28/24 09:26	04/22/24 08:58	1

Method: SW846 9320 - Radium-228 (GFPC)

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.436	U	0.357	0.360	1.00	0.558	pCi/L	03/28/24 09:44	04/10/24 11:55	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.8		30 - 110					03/28/24 09:44	04/10/24 11:55	1
Y Carrier	81.5		30 - 110					03/28/24 09:44	04/10/24 11:55	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.697		0.373	0.376	5.00	0.558	pCi/L		04/23/24 18:39	1

Lab Sample ID: 180-171314-9

Lab Sample ID: 180-171314-10

Matrix: Water

Job ID: 180-171314-2

Matrix: Water

5 6

Client Sample ID: FB-03 Date Collected: 03/21/24 08:15

Date Received: 03/22/24 09:30

Method: SW846 93	315 - Radium-2	26 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0875	U	0.0669	0.0674	1.00	0.0961	pCi/L	03/28/24 09:26	04/22/24 08:44	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.3		30 - 110					03/28/24 09:26	04/22/24 08:44	1

Method: SW846 9320 - Radium-228 (GFPC)

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0170	U	0.282	0.282	1.00	0.524	pCi/L	03/28/24 09:44	04/10/24 11:55	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.3		30 - 110					03/28/24 09:44	04/10/24 11:55	1
Y Carrier	81.9		30 - 110					03/28/24 09:44	04/10/24 11:55	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.105	U	0.290	0.290	5.00	0.524	pCi/L		04/23/24 18:39	1
+ 228										

Client Sample ID: EB-03

Date Collected: 03/21/24 08:20

Date Received: 03/22/24 09:30

		Matrix: Water

Method: SW846 9315 - Radium-226 (GFPC)

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.112		0.0675	0.0682	1.00	0.0856	pCi/L	03/28/24 09:26	04/22/24 16:52	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.5		30 - 110					03/28/24 09:26	04/22/24 16:52	1

Method: SW846 9320 - Radium-228 (GFPC)

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0404	U	0.267	0.267	1.00	0.492	pCi/L	03/28/24 09:44	04/10/24 11:55	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.5		30 - 110					03/28/24 09:44	04/10/24 11:55	1
Y Carrier	81.9		30 - 110					03/28/24 09:44	04/10/24 11:55	1

Matrix: Water

Lab Sample ID: 180-171314-11

Lab Sample ID: 180-171314-12

Matrix: Water

9

Lab Sample ID: 180-171314-12

Client Sample ID: EB-03 Date Collected: 03/21/24 08:20 Date Received: 03/22/24 09:30

Method: TAL-STL Ra2	26_Ra228 ·	 Combined 	Radium-226	and Radiun	n-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.152	U	0.275	0.276	5.00	0.492	pCi/L		04/23/24 18:39	1

Method: 9315 - Radium-226 (GFPC)

Analysis Batch: 658078 Count Total MDC Unit Prep Batch Analyte Result Qualifier (2σ+4) (2σ+4) RL MDC Unit Prepared Analyzed Radium-226 0.09513 U 0.0707 0.0713 1.00 0.102 pCi/L 03/28/24/09:26 04/22/24/08:26 Carrier MB MB Limits 200 0.0713 1.00 0.102 pCi/L 03/28/24/09:26 04/22/24/08:26 Carrier %Yreld Qualifier Limits 200 0.100 pCi/L 03/28/24/09:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:26 04/22/24/08:24 04/20 Prepared Analyzed Prep Type: Prep Type: <td< th=""><th>od Blan</th><th>mple ID: Metho</th><th>Client Sar</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-A</th><th>654483/1</th><th>MB 160-</th><th>Lab Sample ID:</th></td<>	od Blan	mple ID: Metho	Client Sar								- A	654483/1	MB 160-	Lab Sample ID:
MB MB MB Uncert. Uncert. MDC Unit Prepared Analyzed Radium-226 0.09513 U 0.0707 0.0713 1.00 0.102 pC/L 03/28/24/09:26 04/22/24/08:57 MB MB MB Limits Down Down Down Difference Analyzed Carrier %Vield Qualifier Limits 0.0713 1.00 0.102 pC/L 03/28/24/09:26 04/22/24/08:57 Lab Sample ID: LCS 160-654483/2-A Client Sample ID: LCS 160-654483/2-A Client Sample ID: Lab Contro Prepared Analyzed Analysis Batch: 658078 Spike LCS LCS Uncert. View Prep Batch Prep Batch Radium-226 11.3 10.86 1.12 1.00 0.114 pC/L 96 75.125 Carrier %Keid Qualifier Limits 1.12 1.00 0.114 pC/L 96 75.125 Carrier %Keid Qualifier Limits 0.3050 1	Total/N	Prep Type: T												Matrix: Water
MB MB Uncert. Uncert. (2α+/-) RL MDC Unit Prepared Analyzed Radium-226 0.09513 U 0.0707 0.0713 1.00 0.102 pC//L 03/28/24 09:26 04/22/24 08:57 MB MB MB MB MB Carrier %Yield Qualifier Limits Carrier Prepared Analyzed Carrier %Yield Qualifier Limits 30 - 110 0.0228/24 09:26 04/22/24 08:57 Carrier %Yield Qualifier Limits 30 - 110 0.011 %Rec Prepared 04/22/24 08:57 Matrix: Water Analyzed 30 - 110 10.86 1.12 1.00 0.114 pC/L %Rec Limits %Rec Limits 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110 30 - 110	: 65448	Prep Batch:											658078	Analysis Batch:
Analyte Result Qualifier (20+4) RL MDC Unit Prepared Analyzed Radium-226 0.09513 U 0.0707 0.0713 1.00 0.102 pC/L 03/28/24 09:26 04/22/24 08:57 MB MB MB Limits 20 20/28/24 09:26 Analyzed Ba Carrier % Yield Qualifier Limits 20/28/24 09:26 03/28/24 09:26 04/22/24 08:57 Lab Sample ID: LCS 160-654483/2-A Limits 03/28/24 09:26 04/22/24 08:57 04/22/24 08:57 Analyte Analyte Ker LCS LCS LCS Uncert. Prepared Analyzed Analyte Added Result Qual (20+/) RL MDC Unit %Rec Limits Prep Batch Radium-226 Added Result Qual (20+/) RL MDC Unit %Rec Limits 75-125 Carrier % Yield Qualifier Limits 30-110 1.00 0.114 pC/L 96 75-125 Lab Sample ID: MB 160-6									Total	Count				-
Radium-226 0.09513 U 0.0707 0.0713 1.00 0.102 pCi/L 03/28/24 09:26 04/22/24 08:57 MB MB MB MB MB Prepared Analyzed 03/28/24 09:26 04/22/24 08:57 Carrier %Yield Qualifier Limits Prepared Analyzed 03/28/24 09:26 04/22/24 08:57 Lab Sample ID: LCS 160-654483/2-A Client Sample ID: Lab Contro Prep Type: Prep Type: Prep Batch Analyte Added Result Qual (2σ+/-) RL MDC Unit %Rec Limits Radium-226 LCS LCS LCS LCS Client Sample ID: Lab Contro %Rec Limits 75 · 125 Carrier %Yield Qualifier Limits 30 · 110 1.12 1.00 0.114 pC//L %Rec Limits Ba Carrier 96.5 30 · 110 Count Total MDC Unit %Rec Prep Type: Prep Type: Prep Type: Prep Type: Prep Type: Prep Type: P									Uncert.	Uncert.	МВ	МВ		
Radium:-228 0.09513 U 0.0707 0.0713 1.00 0.102 pCi/L 03/28/24 09:26 04/22/24 08:57 MB MB MB MB MB Prepared Analyzed Odd/22/24 08:57 Lab Sample ID: LCS 160-654483/2-A Spike LCS LCS LCS LCS MB MB Analyte Added Result Qualifier Limits Total Uncert. MDC Unit %Rec Limits %Rec Analyte Added Result Qual Carrier %Yield Qualifier Limits 75 · 125 %Rec Carrier %Yield Qualifier Limits 30 · 110 1.12 1.00 0.114 pC//L %Rec Limits 75 · 125 %Rec Carrier %Yield Qualifier Limits 30 · 110 1.12 1.00 0.114 pC//L %Rec Limits 75 · 125 %Rec Limits 75 · 125 Prep Type: Prep Type: Prep Type:	Dil Fa	Analyzed	Prepared		Unit	MDC	1	RL	(2 σ+/-)	(2 σ+/-)	Qualifier	Result		Analyte
Carrier %Yield Qualifier Limits Prepared Analyzed Ba Carrier 100 30 - 110 03/28/24 09:26 04/22/24 08:57 Lab Sample ID: LCS 160-654483/2-A Client Sample ID: Lab Contro Prep Type: Analysis Batch: 658078 Total Prepared Analyzed Analyte Added Result Qual (2c+/-) RL MDC Unit %Rec Limits Radium-226 11.3 10.86 1.12 1.00 0.114 pC/L 96 75 - 125 LCS LCS LCS LCS Count Total MDC Unit %Rec Limits Ba Carrier 96.5 30 - 110 1.12 1.00 0.114 pC/L 96 75 - 125 Lab Sample ID: MB 160-654485/1-A Client Sample ID: Methon Prep Type: Prep Type: Prep Type: Analyte Result Qualifier Linett. Uncert. Qualifier Prep Type: Analysis Batch: 656291 Count Total Uncert. MDC Unit Prepared Analyzed Radium-228 <td></td> <td></td> <td>/28/24 09:26</td> <td>03</td> <td>pCi/L</td> <td>.102</td> <td>0</td> <td>1.00</td> <td></td> <td>0.0707</td> <td>U</td> <td>0.09513</td> <td></td> <td>Radium-226</td>			/28/24 09:26	03	pCi/L	.102	0	1.00		0.0707	U	0.09513		Radium-226
Ba Carrier 100 30 - 110 30 - 110 30 - 2024 08:57 Lab Sample ID: LCS 160-654483/2-A Matrix: Water Client Sample ID: Lab Contro Prep Type: Prep Batch Analyte Spike LCS LCS 11.3 Could Could Client Sample ID: Lab Contro Prep Type: Prep Batch Analyte Added Result Qual (20+/-) RL MDC Unit %Rec Radium-226 I11.3 10.86 11.12 1.00 0.114 pC//L 96 75 - 125 Carrier %Yield Qualifier Limits 30 - 110 1.12 1.00 0.114 pC//L 96 75 - 125 Lethod: 9320 - Radium-228 (GFPC) Itab Sample ID: MB 160-654485/1-A Matrix: Water Client Sample ID: Methole Prep Type: Prep Batch Analysis Batch: 656291 Count Total Uncert. Uncert. NDC Unit Prepared Analyzed Radium-228 0.4169 U 0.348 0.350 1.00 0.545 pC//L 03/28//24 09:44 04/10/24 12:02											МВ	МВ		
Lab Sample ID: LCS 160-654483/2-A Client Sample ID: Lab Contro Matrix: Water Analysis Batch: 658078 Prep Type: Analysis Batch: 658078 Total Prep Batch Analyte Added Result Qual (20+/-) RL MDC Unit %Rec Limits Radium-226 11.3 10.86 1.12 1.00 0.114 pCi/L 96 75 - 125 LCS LCS LCS LCS LCS Limits 30 - 110 1.12 1.00 0.114 pCi/L 96 75 - 125 Lab Sample ID: MB 160-654485/1-A Limits 30 - 110 Image: Count Client Sample ID: Method Prep Type: Hethod: 9320 - Radium-228 (GFPC) Count Total Client Sample ID: Method Prep Type: Analyte MB MB Uncert. Uncert. Prep Type: Prep Type: Analyte Result Qualifier (20+/-) RL MDC Unit Prepared Analyzed Matrix: Water 0.4169 0.348 0.350 1.00 0.545 pCi/L 03/28/24 09:44 04/10/	Dil Fa	Analyzed	Prepared							Limits	Qualifier	%Yield		Carrier
Matrix: Water Analysis Batch: 658078 Prep Type: Prep Batch Analyte Radium-226 Spike Added Mailyte LCS ICS ICS ICS ICS ICS ICS ICS ICS ICS I		04/22/24 08:57	/28/24 09:26	03						30 - 110		100		Ba Carrier
Matrix: Water Analysis Batch: 658078 Prep Type: Prep Batch Analyte Radium-226 Spike Added Mailyte LCS ICS ICS ICS ICS ICS ICS ICS ICS ICS I	Samp	D: Lab Control	nt Sample II	Clier							2-A	-654483/	LCS 160	Lab Sample ID:
Prep Batch: 658078 Total Total Total Total Analysis Batch: 658078 Total Total Spike LCS LCS LIMITS Added Result Qual (20+/-) RL MDC Unit %Rec Limits Carrier %Vield Qualifier Limits Ba Carrier MB MB Immits Sa Carrier MIB Count Total List Limits Client Sample ID: Method Sample ID:														
Analyte Spike LCS LCS Uncert. MDC Unit %Rec Analyte Added Result Qual (2σ+/-) RL MDC Unit %Rec Limits 75 - 125 Carrier %Yield Qualifier Limits 30 - 110 11.12 1.00 0.114 pCi/L 96 75 - 125 LCS LCS LCS LCS LCS LCS MID Unit %Rec Limits 75 - 125 Carrier %Yield Qualifier Limits 30 - 110 11.12 1.00 0.114 pCi/L 96 75 - 125 Lethod: 9320 - Radium-228 (GFPC) Limits 30 - 110 Internet Prep Type: Prep Type: Lab Sample ID: MB 160-654485/1-A Client Sample ID: Meth Prep Type: Prep Type: Prep Type: Prep Type: Prep Type: Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed Radium-228 0.4169 U 0.348 0.350 1.00 0.545													658078	
AnalyteSpikeLCSLCSUncert.MDCUnit%RecRadium-22611.310.8611.121.000.114pCi/L9675 - 125Carrier%YieldQualifierLimits96.530 - 11030 - 11010.8611.1210.000.114pCi/L9675 - 125Let S LCSCarrier%YieldQualifierLimits96.530 - 11030 - 11010.8611.1210.000.114pCi/L9675 - 125Lethod: 9320 - Radium-228 (GFPC)Lab Sample ID: MB 160-654485/1-A Matrix: WaterClient Sample ID: Method Prep Type: Prep BatchAnalyteMBMB Uncert.Uncert. Uncert.MDC UnitUnitPrepared PreparedAnalyzedMatiwariaMB UUncert.Uncert. (20+/-)RL (20+/-)MDC ContintUnitPrepared O3/28/24 09:44AnalyzedMB Radium-228MB % YieldQualifier QualifierLimitsLimitsPrepared AnalyzedAnalyzed								Total						
AnalyteAddedResultQual(2σ+/-)RLMDCUnit%RecLimitsRadium-22611.310.861.121.000.114pCi/L9675 - 125Carrier%YieldQualifierLimits96.530 - 11030 - 11010.8610.8610.8610.86Iethod: 9320 - Radium-228 (GFPC)Lab Sample ID: MB 160-654485/1-A Matrix: WaterClient Sample ID: Method Prep Type: Prep BatchAnalyteMB Uncert.Uncert. Uncert.Uncert. Uncert.Client Count Uncert.Total Uncert.MB Radium-228MB Uncert.Uncert. 0.348MDC 0.350UnitPrepared pCi/LAnalyzed 03/28/24 09:44Analyzed 04/10/24 12:02MB MB CarrierMB %YieldMB QualifierLimitsLimitsPrepared LimitsAnalyzed		%Rec							LCS	LCS	Snike			
Radium-226 11.3 10.86 1.12 1.00 0.114 pCi/L 96 75 - 125 LCS LCS LCS LCS Qualifier Limits 30 - 110 Imits 30 - 110 Imits Imits <t< td=""><td></td><td></td><td>%Rec</td><td>Unit</td><td>MDC</td><td>RI</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>∆nalvte</td></t<>			%Rec	Unit	MDC	RI								∆nalvte
LCS LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 96.5 30 - 110 Iethod: 9320 - Radium-228 (GFPC) Client Sample ID: MB 160-654485/1-A Client Sample ID: MB 160-654485/1-A Lab Sample ID: MB 160-654485/1-A Client Sample ID: Method: Prep Type: Matrix: Water Count Total Prep Batch Analyte Result Qualifier (2\sigma+2) RL MDC Unit Prepared Analyzed Radium-228 0.4169 U 0.348 0.350 1.00 0.545 pCi/L 03/28/24 09:44 04/10/24 12:02 MB MB Limits Prepared Analyzed														
Carrier % Yield Qualifier Limits Ba Carrier 96.5 110 lethod: 9320 - Radium-228 (GFPC) Lab Sample ID: MB 160-654485/1-A Client Sample ID: Method: 9320 - Radium-228 (GFPC) Lab Sample ID: MB 160-654485/1-A Client Sample ID: Method: 9320 - Radium-228 (GFPC) Lab Sample ID: MB 160-654485/1-A Client Sample ID: Method: Prep Type: Prep Type: Prep Batch Matrix: Water Count Total Analysis Batch: 656291 0uncert. Uncert. MB MB Uncert. Uncert. Analyte Result Qualifier (2σ+/-) RL MDC Unit Prepared Analyzed Radium-228 0.4169 U 0.348 0.350 1.00 0.545 pCi/L 03/28/24 09:44 04/10/24 12:02 MB MB MB MB Prepared Analyzed Carrier % Yield Qualifier Limits Prepared Analyzed				1										
Ba Carrier 96.5 30 - 110 Iethod: 9320 - Radium-228 (GFPC) Lab Sample ID: MB 160-654485/1-A Client Sample ID: Method: 9320 - Radium-228 (GFPC) Lab Sample ID: MB 160-654485/1-A Client Sample ID: Method: 9320 - Radium-228 (GFPC) Matrix: Water Client Sample ID: Method: Prep Type: Prep Batch Analysis Batch: 656291 Count Total MB MB Uncert. Uncert. Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed Radium-228 0.4169 U 0.348 0.350 1.00 0.545 pCi/L 03/28/24 09:44 04/10/24 12:02 MB MB Limits Prepared Analyzed Carrier % Yield Qualifier Limits Prepared Analyzed											Limits			Carrier
Iethod: 9320 - Radium-228 (GFPC) Lab Sample ID: MB 160-654485/1-A Client Sample ID: Methods Matrix: Water Prep Type: Analysis Batch: 656291 Count Total MB MB Uncert. Uncert. Analyte Result Qualifier (2σ+/-) RL MDC Unit Prepared Analyzed Radium-228 0.4169 U 0.348 0.350 1.00 0.545 pCi/L 03/28/24 09:44 04/10/24 12:02 MB MB Limits Prepared Analyzed														
Lab Sample ID: MB 160-654485/1-A Client Sample ID: Method Matrix: Water Prep Type: Analysis Batch: 656291 Prep Batch MB MB Uncert. Analyte Result Qualifier (2σ+/-) RL MDC Unit Prepared Analyzed Radium-228 0.4169 U 0.348 0.350 1.00 0.545 pCi/L 03/28/24 09:44 04/10/24 12:02 MB MB Limits Prepared Analyzed Carrier % Yield Qualifier Limits Prepared Analyzed														
Matrix: Water Prep Type: Analysis Batch: 656291 Count Total MB MB Uncert. Prep Batch Analysis Batch: 656291 Prep Batch MB MB Uncert. Uncert. Analyzed Analyzed Analyzed MB MB Carrier Meight filter Limits Prepared Analyzed Carrier %Yield Qualifier Limits Prepared Analyzed											(GFPC)	m-228 (- Radiu	lethod: 9320
Matrix: Water Prep Type: Analysis Batch: 656291 Count Total Prep Batch Prep Batch MB MB Uncert. Uncert. MDC Unit Prepared Analyzed Analyte Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed Radium-228 0.4169 U 0.348 0.350 1.00 0.545 pCi/L 03/28/24 09:44 04/10/24 12:02 MB MB Limits Prepared Analyzed	od Blar	mple ID: Metho	Client Sar								-A	654485/1	MB 160-	Lab Sample ID:
Prep Batch: Analysis Batch: 656291 Prep Batch Count Total MB MB Uncert. Uncert. Analyte Result Qualifier (2σ+/-) RL MDC Unit Prepared Analyzed Radium-228 0.4169 U 0.348 0.350 1.00 0.545 pCi/L 03/28/24 09:44 04/10/24 12:02 MB MB Limits Prepared Analyzed	Total/N	Prep Type: T												Matrix: Water
MB MB Uncert. MDc Unit Prepared Analyzed Analyte Result Qualifier (2σ+/-) RL MDC Unit Prepared Analyzed Radium-228 0.4169 U 0.348 0.350 1.00 0.545 pCi/L 03/28/24 09:44 04/10/24 12:02 MB MB Example Limits Example Prepared Analyzed	: 65448	Prep Batch:											656291	Analysis Batch:
AnalyteResultQualifier(2\sigma+/-)(2\sigma+/-)RLMDCUnitPreparedAnalyzedRadium-2280.4169U0.3480.3501.000.545pCi/L03/28/24 09:4404/10/24 12:02MBMBCarrier%YieldQualifierLimitsEmilianPreparedAnalyzed									Total	Count				
MB MB Carrier %Yield Qualifier Limits Prepared Analyzed									Uncert.	Uncert.	МВ	МВ		
MB MB Carrier %Yield Qualifier Limits Prepared Analyzed	Dil Fa	Analyzed	Prepared		Unit	MDC	1	RL	(2 σ+/-)	(2σ+/-)	Qualifier	Result		Analyte
Carrier %Yield Qualifier Limits Prepared Analyzed		-	•		pCi/L	.545	0	1.00	. ,	<u> </u>	U	0.4169		Radium-228
											МВ	МВ		
	Dil Fa	Analyzed	Prepared							Limits	Qualifier	%Yield		Carrier
Ba Carrier 100 30 - 110 03/28/24 09:44 04/10/24 12:02		04/10/24 12:02	/28/24 09:44	03						30 - 110		100		Ba Carrier
Y Carrier 82.2 30 - 110 03/28/24 09:44 04/10/24 12:02		04/10/24 12:02	/28/24 09:44	03						30 - 110		82.2		Y Carrier

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 654485

					Total						
		Spike	LCS	LCS	Uncert.					%Rec	
Analyte		Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Radium-228		9.04	10.42		1.38	1.00	0.463	pCi/L	115	75 - 125	
	LCS LCS										
Carrier	%Yield Qualifier	Limits									

 Ba Carrier
 96.5
 30 - 110

 Y Carrier
 81.1
 30 - 110

Matrix: Water

Analysis Batch: 656291

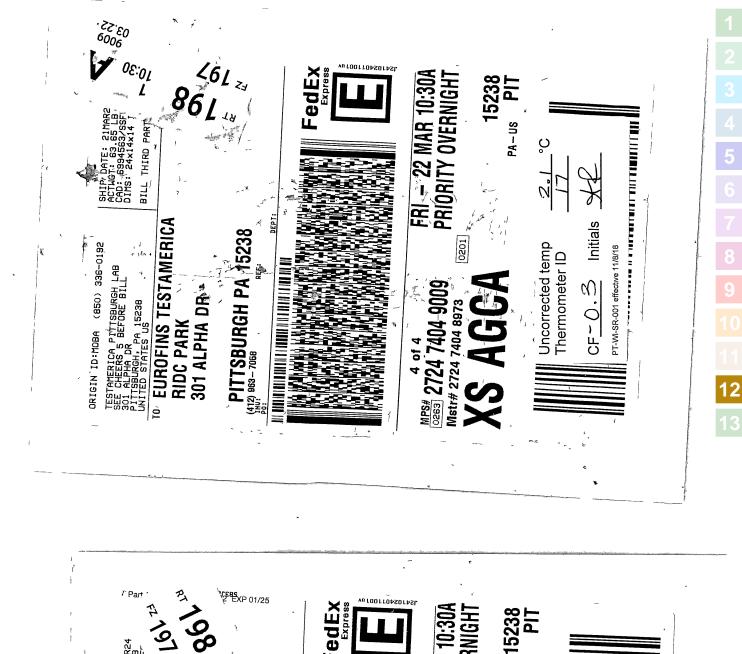
10

Rad

Prep Batch: 654483

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-171314-1	BAW-1	Total/NA	Water	PrecSep-21	
180-171314-2	BAW-2A	Total/NA	Water	PrecSep-21	
180-171314-3	BAW-3	Total/NA	Water	PrecSep-21	
180-171314-4	BAW-4	Total/NA	Water	PrecSep-21	
180-171314-5	BAW-5	Total/NA	Water	PrecSep-21	
180-171314-6	BAW-7	Total/NA	Water	PrecSep-21	
180-171314-7	BAW-8	Total/NA	Water	PrecSep-21	
180-171314-8	BAW-9	Total/NA	Water	PrecSep-21	
180-171314-9	DUP-07	Total/NA	Water	PrecSep-21	
180-171314-10	DUP-08	Total/NA	Water	PrecSep-21	
180-171314-11	FB-03	Total/NA	Water	PrecSep-21	
180-171314-12	EB-03	Total/NA	Water	PrecSep-21	
MB 160-654483/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-654483/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	

Prep Batch: 654485


Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-171314-1	BAW-1	Total/NA	Water	PrecSep_0	
180-171314-2	BAW-2A	Total/NA	Water	PrecSep_0	
180-171314-3	BAW-3	Total/NA	Water	PrecSep_0	
180-171314-4	BAW-4	Total/NA	Water	PrecSep_0	
180-171314-5	BAW-5	Total/NA	Water	PrecSep_0	
180-171314-6	BAW-7	Total/NA	Water	PrecSep_0	
180-171314-7	BAW-8	Total/NA	Water	PrecSep_0	
180-171314-8	BAW-9	Total/NA	Water	PrecSep_0	
180-171314-9	DUP-07	Total/NA	Water	PrecSep_0	
180-171314-10	DUP-08	Total/NA	Water	PrecSep_0	
180-171314-11	FB-03	Total/NA	Water	PrecSep_0	
180-171314-12	EB-03	Total/NA	Water	PrecSep_0	
MB 160-654485/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-654485/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	

our Alpha Dirve Kubo Fairk Pittsburgh, PA 15238 Phone (412) 963-7058 Fax (412) 963-2468	U	Chain of	f Cust	of Custody Record	ord				, , ,	Environment Testurg
Client Information	Sampler RUK (TOCH)	Tocs / x	Krister		Lab PM Brown, Shali		Carrier	Carrier Tracking No(s)	COC No:	No:
Client Contact: SCS Contacts	Photos SSC-3-		7	E-Mail shali brow	/n@eurofins	et.com			Page	122
Company [.] SCS						Analysis	sis Requested	pa	# qor	<i>n</i> +
Address 3535 Colonnade Pkwy Bin S 530 EC	Due Date Requested:	;p			- 8 -19				Pre	
city Birmingham	TAT Requested (days):	iys):								A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip Alabama					10.00					
Phone 205 992.6283	++ Od			(c	34-225				 - 0 I	
Email SCS Contacts	# OM			indefenden v.l.	no portecione					
Project Name Daniel Ash Pond B CCR	Project # ⁻ 18020047			 accession 						
	SSOW#:			CONTRACTOR . 1	Contraction of the International	spiloS			of con	
		Sample ((Sample Type (C≖comp,	Matrix (w-wator, s-setid. O-wasoidi,	rtorn MS/M 20B Custom 70 Mercury	226 Ra 228			nədmuN ist	
Sample Identification	Sample Date	Time			:09	01)neto	<u>"</u>	Special Instructions/Note:
Pauvel	2-22-14	N	2	3	×	X Y X X				
841-1-7 A	47-16-2		, 7	3	: ~	~~			2 0	
	3-21-24	+	5-20		XX	+		314	0	
BAW-4	2-4-24	0	S	<	XX	XXX			9	
B.A S	3-20-24	1726	3	2	XX	XXX			٩	
BAW-7	3-21-24	5211	<i>.</i> .	3	XX	XXX			9	
BAW-8	42-12-5	1307	ۍ	ی برج	X X	X X X			9	
B4W-9	7-12-5	Stati		8 N	x x	オオガ			6	
Dup-07	3-20-24	1535	È	or vo	X X	x x x			9	
DUP-08	3-21-24	1025	5	र २ २	x R	オオイ			9	
F8-03	3-21-24	0815	5		x x	b x b			9	
ssible Hazard Identification			Radiological	<u>v</u> /	Sample Disp	le Disposal (A fee m Betum To Client	nay be assess	assessed if samples	are retained long	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Deliverable Requested 1, II, III, IV, Other (specify)			popopo		pecial Instru	Special Instructions/QC Requirements	quirements			
Empty Kit Relinquished by		Date		Time.	'n		¥.	Method of Shipment:	Ť	
Relinquished by high life	Date/Time	164	0 7 4 1 °	Company ON		Sue		Dated inte	122/24	1092 "EFE
Relinquished by	Date/Time			Company	Received by	- A -		Date/Tfme	The	Company
Relinquished by	Date/Time		0	Company	Received by			Date/Time	me	Company
Custody Seals Intact: Custody Seal No. ^ Yes ^ No					Cooler Tem	Cooler Temperature(s) °C and Other Remarks	I Other Remarks			
										0100/21/10

Eurofins TestAmerica, Pittsburgh 301 Alpha Drve RIDC Park Pittsburgh, PA 15238 Phone (412) 963-7058 Fax (412) 963-2468	Chain e	Chain of Custody Record	scord		🔆 eurofins Environment Testing America
	Sampler	Lab PM Brown	Lab PM Brown, Shali	Carrier Tracking No(s)	COC No:
	Phone	E-Mail Shali t	E-Mail shall brown@eurofinset.com		Page Page 222
Company SCS			Analysis	is Requested	Job #:
s. Colonnade Pkwy Bin S 530 EC	Due Date Requested:				
City Birmingham	TAT Requested (days):		n ¹		A - TOL M - NEXAME B - NaOH N - None C - Zn Apetate O - AsNaO2
State, Zp Alabama					
Phone 205 992 6283	+Od				
Email SCS Contacts	·# OM		(OV) (VI br) fate	S	I - Ice J - DI Water
nd B CCR	Project # 18020047		is III qu ns III qu u2 sbi		K - EDA
	:#MOSS		r Y) d2 qA) Åf a fluor sbilds		Other:
		Matrix (w=water, s=eolid, 0=waate/oil,	eld Filtered : ar256 Ra 228 a b268 Custom 5781 Discolved Mercury 770 Mercury 770 Mercury 7	admin listo	
Sample Identification	Sample Date Time	Preservation Code:	91 6 72 99		Special Instructions/Note:
68-02	- C & L L L C Z		4		
	+	3	<u>\</u> −	×	
Possible Hazard Identification		Radiological	Sample Disposal (A fee m	essed if samples	are retained longer than 1 month)
Deliverable Requested 1, II, III, IV, Other (specify)		malfalanta	Special Instructions/QC Requirements		
linquished by	Date		Time [.]	Method of Shipment:	
Relinquished by Authon And	Date/Time 3-21-24 11	1648 Company	Read of the second	Z/ZZ/E	24 NA 30 000 42
Relinquished by			Received by: ()	Date/Time	Company
Relinquished by	Date/Time	Company	Received by:	Date/Time	Company
Custody Seals Intact Custody Seal No.			Cooler Temperature(s) °C and Other Remarks	Other Remarks	
			12 13	7 8 9 10 11	- Ver: 01/16/2019

AHS 1241024011001 n FedEx E306/8659/27685 # 156297-435 RADB2 EXP 01/25 Ċ PRIORITY OVER ALLERAND PHATE TO A LAND AND A PAP :2500 FRI - 22 MA ×14×14 IN BILL THIRD PARTY -0.3 Initials SHIP D ACTMGT CAD: 6 DIMS: 6 r-WI-SR-001 effective 11/8/18 ncorrected temp 0201 rhermometer ID PITTSBURGH PA 15238 EUROFINS TESTAMERICA 24 7404 8984 (850) 336-0192 TESTAMERICA PITTSBURGH LAB SEE CHERS 5 BEFORE BILL SEE CHERD DR 15238 PITTSBURGH, PA 15238 DITTSBURGH, PA 15238 Ь **301 ALPHA DR** 2 of 4 RIDC PARK 12010 ORIGIN ID: MOBA 2 10 111dveVV \$15171-081 15238 PIT Part # 156297-435 % ARUBE EXP 01/25 VU FOOT FOASO FAS - 22 MAR 10:30A Y OVERNIGHT FedEx 8995 03.22 SHIP DATE: 21MAR24 ACTWGT: 64.05 LB CAD: 6994563/SSFE2500 DIMS: 24x14x14 IN PA-US 10:30 BILL THIRD PARTY THE DATE: THGT: 64 FRI – 2% Priorit кт 198 F2 197 DEPT: CF __ 0, 3 Initials 0201 **EUROFINS TESTAMERICA** PITTSBURGH PA 15238 (412) 963-7068 REF: Uncorrected temp PT-WI-SR-001 effective 11/8/18 Thermometer ID (850) 336-0192 1001 OZES 2724 7404 8995 TESTAMERICA PITTSBURGH LAB SEE CHEERS 5 BEFORE BILL 301 ALPHA DR PITTSBURGH, DR 15238 UNITED STATES US Mstr# 2724 7404 8973 **301 ALPHA DR RIDC PARK** 3 of 4 ORIGIN ID: MOBA 10

4/23/2024

ofins Pittsburgh	pha Drive RIDC Park
Eurofins	301 Alpha D

Pro (Chain of Crietody Do

🎨 eurofins

301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phonor: 410 Res 7058 2014	Cha	in of	Chain of Custody Record	dy Re	cor	-					😴 eurofins	IS Environment Testing
FIIUIE 4 12-303-7030 FAX 412-303-2400	Sampler			I ah DM					Corrigoe Teorolitie	a Madali		
Client Information (Sub Contract Lab)	Janipier.			Brown, Shali	Shali					g No(s):	COC No: 180-510090.1	_
Client Contact Shipping/Receiving	Phone:			E-Mail: Shali.E	rown@	et.eui	E-Mail: Shali.Brown@et.eurofinsus.com	com	State of Origin. Mississippi		Page: Parre 1 nf 2	
Company TestAmerica Laboratories, Inc.				Ă	creditati	ins Rec	Accreditations Required (See note)	e note).			Job # 180-171314_3	
Address 13715 Rider Trail North,	Due Date Requested: 4/4/2024							Analvsis	Analvsis Requested		Preservation Codes	Codes: M - Heveno
City Earth City	TAT Requested (days):			Γ		<u> </u>					A - HCL B - NaOH C - Zn Acetate	N - None O - AsNaO2
State. Zp. MO, 63045	T				•••						D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3 P - Na2SO3
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	:# Od										F - MeOH G - Amchlor H - Ascorhic Acid	
Email:	** OM				(0)							
Project Name Plant Daniel Ash Pond	Project #: 18020047			58716	a or A						tainer L - EDA	vv - pri 4-5 Y - Trizma Z - other (specify)
Site	:#MOSS			lames	v) as		Dd:				of con	
	Sa	0		Matrix (W=water, S=solid, O=wasterioli, eld	M/SM mohe	15_Ra228/Pre 20_Ra228/Pre					tadmuN list	
Sample Identification - Client ID (Lab ID)	Sample Date		G=grab) BT=Tissue, A=A Preservation Code:	3			28	_				Special Instructions/Note:
BAW-1 (180-171314-1)	3/20/24 16	-	5	Water		××	×				2	
BAW-2A (180-171314-2)	3/21/24 13:10 Central	:10 htrai	5	Water		×	×				2	
BAW-3 (180-171314-3)	3/21/24 10:15 Central	15 htrai	5	Water		×	×				2	
BAW-4 (180-171314-4)	3/21/24 16:00 Central	:00 htral	5	Water		××	×				2	
BAW-5 (180-171314-5)	3/20/24 17:26 Central	:26 htral	5	Water		×	×				2	
BAW-7 (180-171314-6)	3/21/24 11:25 Central	:25 htrai	5	Water	Ê	×	×				2	
BAW-8 (180-171314-7)	3/21/24 13:04 Central	:04 htral	5	Water		××	×				2	
BAW-9 (180-171314-8)	3/21/24 14	14:45 Central	5	Water	Ê	×	×				2	
DUP-07 (180-171314-9)	3/20/24 15:35 Central	35 htral	5	Water	Ê	××	×				2	
Note: Since laboratory accreditations are subject to change. Eurofins Pittsburgh places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matix being analyzed, the samples must be shipped back to the Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to accreditations are to date, return the signed Chain of Custody attesting to said compliance to Eurofins Pittsburgh.	places the ownership of methor to being analyzed, the samples the signed Chain of Custody at	od, analyte & must be shipt itesting to said	accreditation co bed back to the d compliance to	ompliance u Eurofins Pit	on our s sburgh li tsburgh.	ubcontraborato	act labora	tories. This se instructions w	mple shipment is forw ill be provided. Any c	rarded under chain-	of-custody. If the labo	ratory does not currently prought to Eurofins Pittsburgh
Possible Hazard Identification					Samp	le Dis	posal (A fee may	be assessed if s	amples are ret	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month)
Deliverable Requested: I. II. IV. Other (specify)	Primary Deliverable R	Rank: 2				Retur	Return To Client	Return To Client Dis	Disposal By Lab		Archive For	Months
		4			5000							
Empty Kit Relinquished by:	Date:				Time:					Method of Shipment:		
Keinquishayy	Date/Time:	1706	C ECINEDANY	The F	Re	Rice	hard	Received by Richard Thornley	Velu	Date/Time: 6	2024 1000	Company ETH 57C
Reinquished by:	Date/Time:		Company	ny	Re	Received by	, Ag			Date/Time:		Company
Relinquished by:	Date/Time:		Company	Aue	Re	Received by	оў:			Date/Time		Company

Custody Seal No.:

Custody Seals Intact: Δ Yes Δ No

Ver: 06/08/2021 12

Cooler Temperature(s) °C and Other Remarks

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468	U	hain o	of Cust	Chain of Custody Record	ecord	-						🔅 eu	🔅 eurofins	Environment Testing	0.0
Client Information (Sub Contract Lab)	Sampler:			Lab PM Brown	Lab PM: Brown, Shali				Carrier	Carrier Tracking No(s)	s):	COC No: 180-510090	o: 10090.2		
Client Contact Shipping/Receiving	Phone:		i	E-Mail: Shali.	E-Mail: Shali. Brown@et.eurofinsus.com	et.eurofi	nsus.coi		State of Origin: Mississippi	Origin: sippi	1	Page Page 2 of 2			T
Company TestAmerica Laboratories, Inc.					Accreditations Required (See note)	ns Requin	ed (See no	te):		:		Job #: 180-17	Job #. 180_171314_2		T
Address 13715 Rider Trail North,	Due Date Requested 4/4/2024						¥	Analysis	Requested	0		Presen	ŏ	9S: M - Hevane	T
City: Earth City	TAT Requested (days):	s):						-				A - HCL B - NaOI		N - None O - AsNaO2	
State: Zip MO, 63045					15							C - Zn A D - Nitri E - NaH	C - Zn Acetate D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2S03 P N1252203	
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	#04										-	F - MeO G - Amo		N - Nac3203 S - H2SO4 T - TSP Dodecahydrate	
Emait	#OM				(0)	-					_			U - Acetone V - MCAA	
Project Name Plant Daniel Ash Pond	Project #: 18020047				a so se							tainer tainer L - EDA		vv - pri 4-5 Y - Trizma Z - other (specify)	
Site	SSOW#				or) as	, dəSa	ьс					other:			
				1	ield Filtered 5 erform MS/M 320_Ra228/Pre	315_Ra226/Pre	a226Ra228_GF) nədmul i lata			
	Sample Date		Preservation Code:	3		6	ы	_					Special In:	Special Instructions/Note:	1
DUP-08 (180-171314-10)	3/21/24	10:25 Central		Water	×	×	×	-				5			T
FB-03 (180-171314-11)	3/21/24	08:15 Central		Water	×	×	×					2			T
EB-03 (180-171314-12)	3/21/24	08:20 Central		Water	×	×	×					2			T -
								-						,	
															ŀ
															T
Note: Since laboratory accreditations are subject to change. Eurofins Pittsburgh places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Pittsburgh attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Pittsburgh.	r places the ownership of ix being analyzed, the sam the signed Chain of Cust	method, analyt ples must be s ody attesting to	e & accreditati shipped back to said complian	on compliance i o the Eurofins P ice to Eurofins f	upon our su ittsburgh la ittsburgh.	ibcontract boratory c	laboratorio or other ins	s. This s tructions v	ample shipment //il be provided.	is forwardeo Any change	d under chair es to accredit	1-of-custody. If tation status sho	f the laborator iould be broug	y does not currently ht to Eurofins Pittsburgh	
Possible Hazard Identification Unconfirmed					Samp	le Dispo Return	le Disposal (A 1 Return To Client	ee may	be assessed if san	d if samp By Lah	les are re	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	jer than 1	nonth) Months	
Deliverable Requested: I, II, II, IV, Other (specify)	Primary Deliverable Rank:	ole Rank: 2			Specia	l Instruc	Special Instructions/QC Requirements	Requir	ements:					2	—
Empty Kit Relinquished by:		Date:			Time:				We	Method of Shipment	ment:				
Relinquis apy, Relinquis fed by	Date/Time: Sar	1	002	CENTRY MAN	Por Rec	Ric by	hard	1 H	Received by Richard Thomley		. C 4	6 2024	000)	Company ETA STC-	
			<u>i</u>	company	1	הואבת הא				2	Uate/ I ime:			Company	
1	Date/Time:		<u>ŏ</u>	Company	Rec	Received by:				Dat	Date/Time:			Company	r—
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					Š	oler Temp	erature(s)	C and Ot	Cooler Temperature(s) °C and Other Remarks						

Ver: 06/08/202

12

Login Sample Receipt Checklist

Client: Southern Company

Login Number: 171314 List Number: 1

Creator: Abernathy, Eric L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 180-171314-2

List Source: Eurofins Pittsburgh

Login Sample Receipt Checklist

Client: Southern Company

Login Number: 171314 List Number: 2

Creator: Thornley, Richard W

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins St. Louis

List Creation: 03/26/24 01:42 PM

Test Date / Time: 10/2/2024 12:24:53 PM Project: Daniel CCR BAW-1 Operator Name: Todd Voreis

Location Name: Daniel CCR BAW-1	Pump Type: BP	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: Pe	Serial Number: 800306	
Casing Type: PVC	Pump Intake From TOC: 58.1 ft		
Screen Length: 5 ft	Estimated Total Volume Pumped:		
Top of Screen: 55.6 ft	8000 ml		
Total Depth: 60.6 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 24.45 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0 ft		

Test Notes:

Weather Conditions:

Fair, 88 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
10/2/2024 12:24 PM	00:00	5.01 pH	24.70 °C	37.46 µS/cm	5.31 mg/L		137.2 mV	24.45 ft	400.00 ml/min
10/2/2024 12:29 PM	05:00	4.84 pH	22.39 °C	39.36 µS/cm	5.37 mg/L	0.96 NTU	214.4 mV	24.45 ft	400.00 ml/min
10/2/2024 12:34 PM	10:00	4.88 pH	22.34 °C	39.49 µS/cm	5.38 mg/L	0.65 NTU	130.9 mV	24.45 ft	400.00 ml/min
10/2/2024 12:39 PM	15:00	4.92 pH	22.34 °C	39.69 µS/cm	5.38 mg/L	0.66 NTU	128.6 mV	24.45 ft	400.00 ml/min
10/2/2024 12:44 PM	20:00	4.94 pH	22.30 °C	39.76 µS/cm	5.41 mg/L	0.65 NTU	128.9 mV	24.45 ft	400.00 ml/min

Samples

Sample ID:	Description:
BAW-1	Sample time 1250

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 10/2/2024 9:52:34 AM Project: Daniel CCR BAW-2A Operator Name: Todd Voreis

Location Name: Daniel CCR BAW-2A	Pump Type: BP	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: Pe	Serial Number: 800306	
Casing Type: PVC	Pump Intake From TOC: 62.2 ft		
Screen Length: 10 ft	Estimated Total Volume Pumped:		
Top of Screen: 57.2 ft	32000 ml		
Total Depth: 67.2 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 33.75 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0.01 ft		

Test Notes:

Weather Conditions:

Sunny, 82 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
10/2/2024 9:52 AM	00:00	4.92 pH	24.31 °C	63.83 µS/cm	3.99 mg/L		136.6 mV	33.75 ft	400.00 ml/min
10/2/2024 9:57 AM	05:00	4.87 pH	23.18 °C	66.25 µS/cm	2.96 mg/L	3.02 NTU	103.2 mV	33.76 ft	400.00 ml/min
10/2/2024 10:02 AM	10:00	4.88 pH	23.04 °C	66.30 µS/cm	3.32 mg/L	2.49 NTU	102.7 mV	33.76 ft	400.00 ml/min
10/2/2024 10:07 AM	15:00	4.88 pH	23.05 °C	66.33 µS/cm	3.23 mg/L	1.95 NTU	170.5 mV	33.76 ft	400.00 ml/min
10/2/2024 10:12 AM	20:00	4.85 pH	23.98 °C	66.36 µS/cm	2.97 mg/L	2.16 NTU	103.8 mV	33.76 ft	400.00 ml/min
10/2/2024 10:17 AM	25:00	4.90 pH	23.18 °C	65.61 µS/cm	3.25 mg/L	1.37 NTU	173.4 mV	33.76 ft	400.00 ml/min
10/2/2024 10:22 AM	30:00	4.92 pH	23.05 °C	65.54 µS/cm	3.09 mg/L	1.47 NTU	178.1 mV	33.76 ft	400.00 ml/min
10/2/2024 10:27 AM	35:00	4.91 pH	23.08 °C	65.54 µS/cm	3.11 mg/L	0.98 NTU	106.2 mV	33.76 ft	400.00 ml/min
10/2/2024 10:32 AM	40:00	4.92 pH	23.06 °C	65.86 µS/cm	3.18 mg/L	0.86 NTU	179.7 mV	33.76 ft	400.00 ml/min
10/2/2024 10:37 AM	45:00	4.93 pH	23.09 °C	65.67 µS/cm	3.13 mg/L	0.56 NTU	108.4 mV	33.76 ft	400.00 ml/min
10/2/2024 10:42 AM	50:00	4.93 pH	23.08 °C	65.82 µS/cm	3.16 mg/L	0.51 NTU	185.9 mV	33.76 ft	400.00 ml/min
10/2/2024 10:47 AM	55:00	4.93 pH	23.09 °C	65.70 µS/cm	3.18 mg/L	0.61 NTU	111.7 mV	33.76 ft	400.00 ml/min
10/2/2024 10:52 AM	01:00:00	4.94 pH	23.05 °C	65.47 µS/cm	3.22 mg/L	0.62 NTU	190.5 mV	33.76 ft	400.00 ml/min

10/2/2024	01:05:00	4.94 pH	23.10 °C	65.20 µS/cm	3.15 mg/L	0.69 NTU	112.5 mV	33.76 ft	400.00 ml/min
10:57 AM	01.05.00	4.94 pn	23.10 C	05.20 µ5/cm	5.15 mg/L	0.09 11 0	112.5111	55.70 II	400.00 111/11111
10/2/2024	01:10:00	4.94 pH	23.13 °C	65.49 µS/cm	3.22 mg/L	0.49 NTU	192.6 mV	33.76 ft	400.00 ml/min
11:02 AM	01.10.00	4.94 pm	25.15 0	00.49 µ0/cm	5.22 mg/L	0.43 1110	192.0 111	55.70 h	400.00 mi/min
10/2/2024	01:15:00	4.95 pH	23.11 °C	65.75 µS/cm	3.22 mg/L	0.54 NTU	198.5 mV	33.76 ft	400.00 ml/min
11:07 AM	01.13.00	4.90 pm	25.11 0	00.70 µ0/cm	5.22 mg/L	0.54 1010	190.5 111	55.70 h	400.00 111/11111
10/2/2024	01:20:00	4.95 pH	23.16 °C	65.50 µS/cm	3.19 mg/L	0.52 NTU	200.2 mV	33.76 ft	400.00 ml/min
11:12 AM	01.20.00	4.00 pm	20.10 0	00.00 µ0/cm	0.10 mg/L	0.02 1110	200.2 111	55.70 ft	400.00 111/11111

Samples

Sample ID:	Description:
BAW-2A	Sample time 1115
FB-03	Sample time 1130

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 10/2/2024 8:08:55 AM Project: Daniel CCR BAW-3 Operator Name: Todd Voreis

Location Name: Daniel CCR BAW-3	Pump Type: BP	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: Pe	Serial Number: 800306	
Casing Type: PVC	Pump Intake From TOC: 58.1 ft		
Screen Length: 10 ft	Estimated Total Volume Pumped:		
Top of Screen: 58.4 ft	18000 ml		
Total Depth: 68.4 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 33.27 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0.01 ft		

Test Notes:

Weather Conditions:

Sunny, 73 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
10/2/2024 8:08 AM	00:00	4.49 pH	21.74 °C	48.06 µS/cm	0.67 mg/L		161.6 mV	33.27 ft	400.00 ml/min
10/2/2024 8:13 AM	05:00	4.50 pH	21.64 °C	48.25 µS/cm	0.70 mg/L	5.01 NTU	230.5 mV	33.27 ft	400.00 ml/min
10/2/2024 8:18 AM	10:00	4.50 pH	21.67 °C	48.10 µS/cm	0.67 mg/L	3.82 NTU	135.8 mV	33.27 ft	400.00 ml/min
10/2/2024 8:23 AM	15:00	4.50 pH	21.71 °C	47.97 µS/cm	0.65 mg/L	2.96 NTU	124.4 mV	33.28 ft	400.00 ml/min
10/2/2024 8:28 AM	20:00	4.50 pH	21.71 °C	47.83 µS/cm	0.62 mg/L	2.71 NTU	119.2 mV	33.28 ft	400.00 ml/min
10/2/2024 8:33 AM	25:00	4.50 pH	21.73 °C	47.60 µS/cm	0.61 mg/L	1.58 NTU	117.7 mV	33.28 ft	400.00 ml/min
10/2/2024 8:38 AM	30:00	4.51 pH	21.79 °C	47.46 µS/cm	0.60 mg/L	1.53 NTU	113.0 mV	33.28 ft	400.00 ml/min
10/2/2024 8:43 AM	35:00	4.51 pH	21.84 °C	47.43 µS/cm	0.59 mg/L	1.42 NTU	110.8 mV	33.28 ft	400.00 ml/min
10/2/2024 8:48 AM	40:00	4.51 pH	21.85 °C	47.42 µS/cm	0.58 mg/L	1.31 NTU	109.0 mV	33.28 ft	400.00 ml/min
10/2/2024 8:53 AM	45:00	4.52 pH	21.89 °C	47.38 µS/cm	0.58 mg/L	1.10 NTU	109.2 mV	33.28 ft	400.00 ml/min

Samples

Sample ID:

Description:

BAW-3	Sample time 0859
DUP-05	Fake sample time 0759

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 10/2/2024 7:51:37 AM Project: Daniel CCR BAW-4 Operator Name: Keith Krisman

Location Name: Daniel CCR BAW-4	Pump Type: QED	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: PE	Serial Number: 1055720	
Casing Type: PVC	Pump Intake From TOC: 64.9 ft		
Screen Length: 10 ft	Estimated Total Volume Pumped:		
Top of Screen: 59.9 ft	34000 ml		
Total Depth: 69.9 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 30.92 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0.03 ft		

Test Notes:

Weather Conditions:

Sunny 72 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
10/2/2024 7:51 AM	00:00	5.94 pH	23.19 °C	90.90 µS/cm	0.22 mg/L		50.9 mV	30.92 ft	400.00 ml/min
10/2/2024 7:56 AM	05:00	5.88 pH	23.21 °C	84.05 µS/cm	0.17 mg/L	62.40 NTU	48.5 mV	30.95 ft	400.00 ml/min
10/2/2024 8:01 AM	10:00	5.81 pH	23.24 °C	78.96 µS/cm	0.17 mg/L	32.30 NTU	51.2 mV	30.95 ft	400.00 ml/min
10/2/2024 8:06 AM	15:00	5.77 pH	23.28 °C	76.18 µS/cm	0.17 mg/L	15.10 NTU	49.9 mV	30.95 ft	400.00 ml/min
10/2/2024 8:11 AM	20:00	5.72 pH	23.30 °C	73.58 µS/cm	0.19 mg/L	21.30 NTU	48.6 mV	30.95 ft	400.00 ml/min
10/2/2024 8:16 AM	25:00	5.66 pH	23.29 °C	69.75 µS/cm	0.19 mg/L	8.25 NTU	48.0 mV	30.95 ft	400.00 ml/min
10/2/2024 8:21 AM	30:00	5.62 pH	23.31 °C	67.00 µS/cm	0.20 mg/L	4.61 NTU	46.7 mV	30.95 ft	400.00 ml/min
10/2/2024 8:26 AM	35:00	5.59 pH	23.35 °C	65.60 µS/cm	0.20 mg/L	4.14 NTU	46.1 mV	30.95 ft	400.00 ml/min
10/2/2024 8:31 AM	40:00	5.56 pH	23.37 °C	63.99 µS/cm	0.20 mg/L	3.95 NTU	45.3 mV	30.95 ft	400.00 ml/min
10/2/2024 8:36 AM	45:00	5.54 pH	23.43 °C	63.13 µS/cm	0.20 mg/L	3.05 NTU	44.2 mV	30.95 ft	400.00 ml/min
10/2/2024 8:41 AM	50:00	5.53 pH	23.47 °C	62.82 µS/cm	0.20 mg/L	3.17 NTU	43.3 mV	30.95 ft	400.00 ml/min
10/2/2024 8:46 AM	55:00	5.52 pH	23.51 °C	62.24 µS/cm	0.20 mg/L	3.61 NTU	42.2 mV	30.95 ft	400.00 ml/min
10/2/2024 8:51 AM	01:00:00	5.52 pH	23.53 °C	62.05 µS/cm	0.20 mg/L	2.08 NTU	41.4 mV	30.95 ft	400.00 ml/min

10/2/2024	01:05:00	5.51 pH	23.58 °C	61.61 µS/cm	0.20 mg/L	2.41 NTU	40.7 mV	30.95 ft	400.00 ml/min
8:56 AM	01.05.00	5.51 pH	23.30 0	01.01 µ0/cm	0.20 mg/L	2.411110	40.7 111	50.55 h	400.00 111/11111
10/2/2024	01:10:00		23.61 °C	61.46 µS/cm	0.20 mg/L	2.03 NTU	39.9 mV	30.95 ft	400.00 ml/min
9:01 AM	01.10.00	5.51 pH	23.01 C	01.40 µ3/cm	0.20 mg/L	2.03 NTO	39.9 111	30.95 H	400.00 111/11111
10/2/2024	01.15.00		23.65 °C	61.20 v C/am	0.20 mg/l		20.0 m\/	20.05.4	400.00 ml/min
9:06 AM	01:15:00	5.51 pH	23.05 C	61.39 µS/cm	0.20 mg/L	2.26 NTU	39.0 mV	30.95 ft	400.00 ml/min
10/2/2024	01:20:00		23.70 °C	61.19 µS/cm	0.20 mg/L	2.17 NTU	37.9 mV	30.95 ft	400.00 ml/min
9:11 AM	01.20.00	5.51 pH	23.70 C	61.19 µ3/cm	0.20 mg/L	2.17 1110	37.9 111	30.95 H	400.00 111/11111
10/2/2024	01:25:00	5.51 pH	23.75 °C	61.51 µS/cm	0.20 mg/L	1.93 NTU	36.9 mV	30.95 ft	400.00 ml/min
9:16 AM	01.25.00	5.51 pH	23.75 C	01.51 μ3/cm	0.20 mg/L	1.93 NTO	30.9 111	30.95 H	400.00 111/11111

Samples

Sample ID:	Description:
BAW-4	Sample time 0918

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 10/2/2024 2:46:18 PM Project: Daniel CCR BAW-5 Operator Name: Keith Krisman

Location Name: Daniel CCR BAW-5	Pump Type: QED	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: PE	Serial Number: 1055720	
Casing Type: PVC	Pump Intake From TOC: 64.1 ft		
Screen Length: 10 ft	Estimated Total Volume Pumped:		
Top of Screen: 59.1 ft	16000 ml		
Total Depth: 69.1 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 34.5 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0.06 ft		

Test Notes:

Weather Conditions:

Sunny 88 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
10/2/2024 2:46 PM	00:00	6.19 pH	26.26 °C	283.82 µS/cm	2.16 mg/L		42.2 mV	34.50 ft	400.00 ml/min
10/2/2024 2:51 PM	05:00	6.11 pH	24.35 °C	300.73 µS/cm	0.73 mg/L	0.60 NTU	33.9 mV	34.56 ft	400.00 ml/min
10/2/2024 2:56 PM	10:00	6.12 pH	24.15 °C	303.48 µS/cm	0.57 mg/L	0.53 NTU	26.8 mV	34.56 ft	400.00 ml/min
10/2/2024 3:01 PM	15:00	6.12 pH	24.19 °C	310.08 µS/cm	0.50 mg/L	0.34 NTU	21.4 mV	34.56 ft	400.00 ml/min
10/2/2024 3:06 PM	20:00	6.12 pH	24.15 °C	314.69 µS/cm	0.44 mg/L	0.49 NTU	16.8 mV	34.56 ft	400.00 ml/min
10/2/2024 3:11 PM	25:00	6.12 pH	24.06 °C	317.97 µS/cm	0.38 mg/L	0.52 NTU	13.6 mV	34.56 ft	400.00 ml/min
10/2/2024 3:16 PM	30:00	6.12 pH	24.06 °C	319.97 µS/cm	0.34 mg/L	0.72 NTU	10.2 mV	34.56 ft	400.00 ml/min
10/2/2024 3:21 PM	35:00	6.13 pH	24.11 °C	321.74 µS/cm	0.30 mg/L	0.66 NTU	6.8 mV	34.56 ft	400.00 ml/min
10/2/2024 3:26 PM	40:00	6.14 pH	24.09 °C	321.20 µS/cm	0.28 mg/L	0.66 NTU	4.2 mV	34.56 ft	400.00 ml/min

Samples

Sample ID:	Description:
BAW-5	Sample time 1530

Test Date / Time: 10/2/2024 2:03:29 PM Project: Daniel CCR BAW-7 Operator Name: Todd Voreis

Location Name: Daniel CCR BAW-7	Pump Type: BP	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: Pe	Serial Number: 800306	
Casing Type: PVC	Pump Intake From TOC: 58.8 ft		
Screen Length: 10 ft	Estimated Total Volume Pumped:		
Top of Screen: 53.8 ft	76000 ml		
Total Depth: 63.8 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 28.47 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0 ft		

Test Notes:

Weather Conditions:

Partly cloudy, 90 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth to Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
10/2/2024 2:03 PM	00:00	4.91 pH	28.53 °C	42.07 µS/cm	5.49 mg/L		134.7 mV	28.47 ft	400.00 ml/min
10/2/2024 2:08 PM	05:00	4.91 pH	22.54 °C	42.10 µS/cm	5.51 mg/L	28.60 NTU	121.6 mV	28.47 ft	400.00 ml/min
10/2/2024 2:13 PM	10:00	4.89 pH	22.38 °C	42.00 µS/cm	5.70 mg/L	28.10 NTU	206.2 mV	28.47 ft	400.00 ml/min
10/2/2024 2:18 PM	15:00	4.89 pH	22.58 °C	41.86 µS/cm	5.95 mg/L	25.40 NTU	219.4 mV	28.47 ft	400.00 ml/min
10/2/2024 2:23 PM	20:00	4.86 pH	22.06 °C	42.15 µS/cm	6.01 mg/L	16.30 NTU	129.4 mV	28.47 ft	400.00 ml/min
10/2/2024 2:28 PM	25:00	4.86 pH	22.11 °C	41.98 µS/cm	6.14 mg/L	11.80 NTU	221.3 mV	28.47 ft	400.00 ml/min
10/2/2024 2:33 PM	30:00	4.86 pH	22.20 °C	42.49 µS/cm	6.39 mg/L	8.03 NTU	234.4 mV	28.47 ft	400.00 ml/min
10/2/2024 2:38 PM	35:00	4.85 pH	22.38 °C	42.39 µS/cm	6.28 mg/L	7.56 NTU	252.9 mV	28.47 ft	400.00 ml/min
10/2/2024 2:43 PM	40:00	4.86 pH	22.19 °C	42.49 µS/cm	6.31 mg/L	5.23 NTU	274.6 mV	28.47 ft	400.00 ml/min
10/2/2024 2:48 PM	45:00	4.85 pH	22.05 °C	42.40 µS/cm	6.38 mg/L	4.89 NTU	286.1 mV	28.47 ft	400.00 ml/min
10/2/2024 2:53 PM	50:00	4.86 pH	21.90 °C	42.56 µS/cm	6.39 mg/L	4.35 NTU	282.5 mV	28.47 ft	400.00 ml/min
10/2/2024 2:58 PM	55:00	4.86 pH	21.98 °C	42.67 µS/cm	6.42 mg/L	3.86 NTU	270.3 mV	28.47 ft	400.00 ml/min
10/2/2024 3:03 PM	01:00:00	4.86 pH	22.12 °C	42.47 µS/cm	6.17 mg/L	3.25 NTU	265.3 mV	28.47 ft	400.00 ml/min

			1						
10/2/2024 3:08 PM	01:05:00	4.86 pH	22.02 °C	42.90 µS/cm	6.46 mg/L	2.51 NTU	273.7 mV	28.47 ft	400.00 ml/min
10/2/2024 3:13 PM	01:10:00	4.86 pH	22.19 °C	42.58 µS/cm	6.39 mg/L	2.90 NTU	287.3 mV	28.47 ft	400.00 ml/min
10/2/2024 3:18 PM	01:15:00	4.85 pH	22.20 °C	42.90 µS/cm	6.46 mg/L	2.16 NTU	328.6 mV	28.47 ft	400.00 ml/min
10/2/2024 3:23 PM	01:20:00	4.85 pH	22.35 °C	43.07 µS/cm	6.49 mg/L	1.39 NTU	452.3 mV	28.47 ft	400.00 ml/min
10/2/2024 3:28 PM	01:25:00	4.87 pH	22.29 °C	42.93 µS/cm	6.52 mg/L	1.85 NTU	583.4 mV	28.47 ft	400.00 ml/min
10/2/2024 3:33 PM	01:30:00	4.87 pH	22.36 °C	42.81 µS/cm	6.39 mg/L	2.55 NTU	685.0 mV	28.47 ft	400.00 ml/min
10/2/2024 3:38 PM	01:35:00	4.86 pH	22.29 °C	42.86 µS/cm	6.32 mg/L	1.89 NTU	764.2 mV	28.47 ft	400.00 ml/min
10/2/2024 3:43 PM	01:40:00	4.86 pH	22.29 °C	43.10 µS/cm	6.46 mg/L	1.72 NTU	681.4 mV	28.47 ft	400.00 ml/min
10/2/2024	01:45:00	4.87 pH	22.25 °C	43.25 µS/cm	6.45 mg/L	2.15 NTU	873.7 mV	28.47 ft	400.00 ml/min
3:48 PM 10/2/2024	01:50:00	4.87 pH	22.13 °C	43.05 µS/cm	6.49 mg/L	2.08 NTU	890.8 mV	28.47 ft	400.00 ml/min
10/2/2024	3:53 PM 0/2/2024 0/2/2024 01:55:00 3:58 PM 01:55:00 0/2/2024 02:00:00 0/2/2024 02:00:00		22.18 °C	43.13 µS/cm	6.41 mg/L	2.00 NTU	761.1 mV	28.47 ft	400.00 ml/min
10/2/2024			43.21 µS/cm	6.52 mg/L 1.41 NTU		788.1 mV	28.47 ft	400.00 ml/min	
4:03 PM 10/2/2024	02:05:00			43.10 µS/cm	6.47 mg/L	2.08 NTU	767.8 mV	28.47 ft	400.00 ml/min
4:08 PM 10/2/2024	02:10:00	4.86 pH	22.29 °C	43.34 µS/cm	6.64 mg/L	1.92 NTU	677.6 mV	28.47 ft	400.00 ml/min
4:13 PM 10/2/2024	02:15:00	4.86 pH	22.25 °C	43.47 µS/cm	6.36 mg/L	1.68 NTU	714.0 mV	28.47 ft	400.00 ml/min
4:18 PM 10/2/2024	02:20:00	4.86 pH	22.11 °C	43.44 µS/cm	6.50 mg/L	2.88 NTU	681.1 mV	28.47 ft	400.00 ml/min
4:23 PM 10/2/2024	02:25:00	4.87 pH	22.02 °C	43.25 µS/cm	6.68 mg/L	1.49 NTU	659.5 mV	28.47 ft	400.00 ml/min
4:28 PM 10/2/2024									
4:33 PM 10/2/2024	02:30:00	4.87 pH	21.98 °C	43.44 µS/cm	6.56 mg/L	1.33 NTU	639.2 mV	28.47 ft	400.00 ml/min
4:38 PM 10/2/2024	02:35:00	4.87 pH	21.98 °C	43.39 µS/cm	6.57 mg/L	1.26 NTU	621.0 mV	28.47 ft	400.00 ml/min
4:43 PM 10/2/2024	02:40:00	4.87 pH	21.91 °C	43.52 µS/cm	6.52 mg/L	1.08 NTU	537.0 mV	28.47 ft	400.00 ml/min
4:48 PM 10/2/2024	02:45:00	4.87 pH	21.93 °C	43.48 µS/cm	6.69 mg/L	1.06 NTU	571.1 mV	28.47 ft	400.00 ml/min
4:53 PM	02:50:00	4.86 pH	21.98 °C	43.51 µS/cm	6.53 mg/L	0.95 NTU	545.9 mV	28.47 ft	400.00 ml/min
10/2/2024 4:58 PM	02:55:00	4.86 pH	21.93 °C	43.59 µS/cm	6.56 mg/L	1.23 NTU	522.9 mV	28.47 ft	400.00 ml/min
10/2/2024 5:03 PM	03:00:00	4.88 pH	21.75 °C	43.51 µS/cm	6.49 mg/L	1.87 NTU	509.0 mV	28.47 ft	400.00 ml/min
10/2/2024 5:08 PM	03:05:00	4.87 pH	21.83 °C	43.59 µS/cm	6.66 mg/L	1.41 NTU	498.6 mV	28.47 ft	400.00 ml/min
10/2/2024 5:13 PM	03:10:00	4.87 pH	21.84 °C	43.57 µS/cm	6.51 mg/L	1.06 NTU	492.5 mV	28.47 ft	400.00 ml/min

Samples

Sample ID:

BAW-7 Sample time 1720

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 10/2/2024 10:12:05 AM Project: Daniel CCR PZ-8 Operator Name: Keith Krisman

			1
Location Name: Daniel CCR PZ-8	Pump Type: BP	Instrument Used: Aqua TROLL 400	
Well Diameter: 2 in	Tubing Type: PE	Serial Number: 1055720	
Casing Type: PVC	Pump Intake From TOC: 63.7 ft		
Screen Length: 10 ft	Estimated Total Volume Pumped:		
Top of Screen: 58.7 ft	38000 ml		
Total Depth: 68.7 ft	Flow Cell Volume: 90 ml		
Initial Depth to Water: 34.36 ft	Final Flow Rate: 400 ml/min		
	Final Draw Down: 0.08 ft		

Test Notes:

Weather Conditions:

Sunny 82 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	Elapsed Time pH Temperature Specific Conductivity +/- 0.2 +/- 0.2 +/- 5 %			RDO Concentration	Turbidity	ORP	Depth to Water	Flow
				+/- 5 %	+/- 0.2	+/- 10	+/- 20	+/- 0.3	
10/2/2024 10:12 AM	00:00	5.99 pH	23.74 °C	179.27 µS/cm	0.44 mg/L		50.7 mV	34.36 ft	400.00 ml/min
10/2/2024 10:17 AM	05:00	5.99 pH	23.61 °C	177.51 µS/cm	0.41 mg/L	10.60 NTU	50.2 mV	34.44 ft	400.00 ml/min
10/2/2024 10:22 AM	10:00	6.01 pH	23.62 °C	178.40 µS/cm	0.39 mg/L	8.99 NTU	46.4 mV	34.44 ft	400.00 ml/min
10/2/2024 10:27 AM	15:00	6.00 pH	23.56 °C	178.57 µS/cm	0.42 mg/L	7.55 NTU	45.7 mV	34.44 ft	400.00 ml/min
10/2/2024 10:32 AM	20:00	6.00 pH	23.55 °C	177.90 µS/cm	0.41 mg/L	5.88 NTU	44.8 mV	34.44 ft	400.00 ml/min
10/2/2024 10:37 AM	25:00	6.00 pH	23.59 °C	177.71 µS/cm	0.49 mg/L	7.22 NTU	43.8 mV	34.44 ft	400.00 ml/min
10/2/2024 10:42 AM	30:00	6.00 pH	23.56 °C	177.54 µS/cm	0.48 mg/L	5.29 NTU	44.2 mV	34.44 ft	400.00 ml/min
10/2/2024 10:47 AM	35:00	6.01 pH	23.58 °C	178.65 µS/cm	0.46 mg/L	4.38 NTU	41.8 mV	34.44 ft	400.00 ml/min
10/2/2024 10:52 AM	40:00	6.01 pH	23.57 °C	178.74 µS/cm	0.46 mg/L	3.66 NTU	41.2 mV	34.44 ft	400.00 ml/min
10/2/2024 10:57 AM	45:00	6.01 pH	23.55 °C	179.08 µS/cm	0.49 mg/L	3.93 NTU	40.5 mV	34.44 ft	400.00 ml/min
10/2/2024 11:02 AM	50:00	6.01 pH	23.58 °C	178.70 µS/cm	0.54 mg/L	3.88 NTU	40.9 mV	34.44 ft	400.00 ml/min
10/2/2024 11:07 AM	55:00	6.00 pH	23.61 °C	179.80 µS/cm	0.50 mg/L	3.95 NTU	41.3 mV	34.44 ft	400.00 ml/min
10/2/2024 11:12 AM	01:00:00	6.02 pH	23.61 °C	178.81 µS/cm	0.45 mg/L	2.97 NTU	38.6 mV	34.44 ft	400.00 ml/min

10/2/2024	01:05:00	6.02 pH	23.61 °C	178.47 µS/cm	0.48 mg/L	3.00 NTU	38.1 mV	34.44 ft	400.00 ml/min	
11:17 AM	01.03.00	0.02 pm	23.01 0	170.47 µ0/cm	0.40 mg/L	3.00 1110	50.1 mV	54.44 II	400.00 111/1111	
10/2/2024	01:10:00 6.02 pH		23.61 °C	179.44 µS/cm	0.49 mg/L	3.65 NTU	37.5 mV	34.44 ft	400.00 ml/min	
11:22 AM	01.10.00	0.02 pm	23.01 C	179.44 µ3/cm	0.49 mg/L	3.03 NTO	57.5 mv	34.44 II	400.00 111/1111	
10/2/2024	01:15:00	6.01 pH	23.61 °C	178.63 µS/cm	0.46 mg/L	2.57 NTU	37.0 mV	34.44 ft	400.00 ml/min	
11:27 AM	01.15.00	0.01 pH	23.01 C	178.03 µ5/cm	0.40 mg/L	2.57 1110	57.0 111	34.44 II	400.00 111/1111	
10/2/2024	01:20:00	6.00 pH	23.61 °C	179.97 µS/cm	0.42 mg/L	2.77 NTU	37.1 mV	34.44 ft	400.00 ml/min	
11:32 AM	01.20.00	0.00 pm	23.01 0	179.97 µ0/cm	0.42 mg/L	2.77 1110	57.1111	54.44 II	400.00 111/1111	
10/2/2024	01:25:00	0 6.02 pH	23.65 °C	178.87 µS/cm	0.47 mg/L	2.69 NTU	35.6 mV	34.44 ft	400.00 ml/min	
11:37 AM	01.25.00	0.02 pm	23.05 0		0.47 mg/L	2.03 1110	55.0 mv	54.44 10		
10/2/2024	01:30:00	6.03 pH	23.66 °C	179.43 µS/cm	0.47 mg/L	2.65 NTU	35.0 mV	34.44 ft	400.00 ml/min	
11:42 AM	01.30.00	0.03 PH	23.00 C	179.43 µ3/011	0.47 Mg/L	2.00 NTU	55.0 mv	34.44 II	400.00 mi/min	
10/2/2024	01:35:00	6.02 pH	23.66 °C	179.32 µS/cm	0.45 mg/L	2.24 NTU	34.6 mV	34.44 ft	400.00 ml/min	
11:47 AM	01.35.00	0.02 μΗ	23.00 C	179.52 µ3/cm	0.45 Mg/L	2.24 NTU	54.0 1110	54.44 II	400.00 mi/min	

Samples

Sample ID:	Description:
PZ-8	Sample time 1150

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 10/2/2024 12:44:40 PM Project: Daniel CCR PZ-9 Operator Name: Keith Krisman

Location Name: Daniel CCR PZ-9Pump Type: BPIWell Diameter: 2 inTubing Type: PETubing Type: PECasing Type: PVCPump Intake From TOC: 58.1 ftScreen Length: 10 ftEstimated Total Volume Pumped:Top of Screen: 53.1 ft14000 mlTotal Depth: 63.1 ftFlow Cell Volume: 90 mlInitial Depth to Water: 33.67 ftFinal Flow Rate: 400 ml/minFinal Draw Down: 0.1 ftFinal Draw Down: 0.1 ft	Instrument Used: Aqua TROLL 400 Serial Number: 1055720
--	---

Test Notes:

Weather Conditions:

Sunny 87 degrees F

Low-Flow Readings:

Date Time	Elapsed Time	lapsed Time pH Temperature Specific Conductivity C		RDO Concentration	Turbidity	ORP	Depth to Water	Flow	
		+/- 0.2 +/- 0.2 +/- 5 %		+/- 0.2	+/- 10	+/- 20	+/- 0.3		
10/2/2024 12:44 PM	00:00	6.19 pH	27.02 °C	208.22 µS/cm	3.10 mg/L		43.5 mV	33.67 ft	400.00 ml/min
10/2/2024 12:49 PM	05:00	6.11 pH	24.42 °C	218.58 µS/cm	0.47 mg/L	1.21 NTU	42.5 mV	33.77 ft	400.00 ml/min
10/2/2024 12:54 PM	10:00	6.13 pH	24.09 °C	217.76 µS/cm	0.34 mg/L	2.11 NTU	40.0 mV	33.77 ft	400.00 ml/min
10/2/2024 12:59 PM	15:00	6.13 pH	24.06 °C	218.18 µS/cm	0.26 mg/L	1.69 NTU	37.4 mV	33.77 ft	400.00 ml/min
10/2/2024 1:04 PM	20:00	6.13 pH	24.01 °C	217.68 µS/cm	0.19 mg/L	1.79 NTU	35.2 mV	33.77 ft	400.00 ml/min
10/2/2024 1:09 PM	25:00	6.14 pH	23.98 °C	217.43 µS/cm	0.16 mg/L	1.78 NTU	33.6 mV	33.77 ft	400.00 ml/min
10/2/2024 1:14 PM	30:00	6.13 pH	24.01 °C	218.11 µS/cm	0.14 mg/L	1.50 NTU	32.3 mV	33.77 ft	400.00 ml/min
10/2/2024 1:19 PM	35:00	6.14 pH	23.97 °C	218.13 µS/cm	0.13 mg/L	0.97 NTU	31.0 mV	33.77 ft	400.00 ml/min

Samples

Sample ID:	Description:
PZ-9	Sample time 1322
EB-03	Sample time 1345

Nater Quality Mete	r~ Model/Sen	al #. Aqua Tr	oll 400/ Seria	n# 10	55720	> .	Turbidimeter - N	AodaVSaria	# Hach 2100Q/S	erial # 180	8010	1687
D issolved Oxygen	DEP 30P FT 1500	Date	Time	Temp (°C)	Saturation (mg/L) ¹	Reading (mg/L)	Reading (%)	Pass or Fail	8.1 - 10 NTU Std / 0 NTU	DATE/TIME	Reading (NTU)	
AL KV CCV	=	1212/24 1012/24 1012/24	0717	23.2	8.546 8.19 8.19	8.54 8.54 	99.83 99.83 99.87 99.87 99.86	PF PF F	CAL KOP COVI	Accopt 10/41-4/0702 11/1-4/0703 11/1-4/045	9.74 9.74 9.72	
Specific Conductance	DEP SOP FT 1200	Date	Time	Standard (uS/cm)	Standard Lot #	Standard Exp. Date	Reading (uS/cm)	Pass or Fail	11 - 40 NTU StdNTU	DATE/TIME	Reading (NTU)	Pass or Fail
CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV		(+/2/24 +0/2/24 +0/2/24 +0/2/24	0711	1413	4 661194 4 661194 4 661194	3-104-5 3-104-5 3-100-5	cceptance Grite тч (1 1ч(3) 1ч(3) 1ч(3)	P F F F F F F F F F F F F F F F F F F F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV		stance Griter	P F P F P F P F P F P F
рH	DEP SOP FT 1100	Date	Time	Standard (SU)	Standard Lot #	Standard Exp. Date	Reading (SU)	Pass or Fall	41 - 100 NTU StdNTU	DATE/TIME	Reading (NTU)	Pass or Fail
CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV		(012124) 10/2/24 10/2/24 10/2/24 10/2/24 10/2/24 10/2/24	0653 0657 0657 0657 0657 10557 10557	4.00 7.00 7.00 4.00 4.00 7.00	4 60076 460576 460576 460076 460076 460076	Acc 4-20+6 7-1++6 5-2+6 4-20+6 4-20+6 3-60-6	4.1)3 6.97 7.00 4.00 3.45 6.99	*/-0.2 SU 999999-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV		ance Criteria	P F P F P F P F P F P F
ORP	SOP N/A	Date	Time	Std. mV @ Temp *C	Standard Lot #	Standard Exp. Date	Reading (mV)	Pass or Fail	>100 NTU StdNTU	DATE/TIME	Reading (NTU)	Pass of Fail
CAL KY CCV CAL KY CCV CAL KY CCV		10/2/24 10/2/24 10/2/24	10701 0706 2033	814 218 248	24006903	id side	128	P F	CAL ICY CCY CAL ICY CCY CAL ICY CCY CAL ICY CCY		ptance Crite	Hattas PF PF PF

CAL - Initial Calibration

ICV - Initial Calibration Varification

CCV - Continuing Calibration Vertication

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable). Calibrate pH using at least two standards (typ. pH 4 and 7) that bracket the range of expected sample readings; silvays start with pH 7; add a third calibration point if needed (i.e. pH > 7).

Comments.

If parameter fails to calibrate within SOP acceptance ontena then append sample results with a "J" qualifier

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

5 6

Attn: Robert (Trey) Singleton Southern Company 3535 Colonnade Parkway Bin S 530 EC Birmingham, Alabama 35243 Generated 10/30/2024 7:51:04 PM Revision 1

JOB DESCRIPTION

Plant Daniel Ash Pond B

JOB NUMBER

180-180875-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Authorized for release by Shali Brown, Project Manager II Shali.Brown@et.eurofinsus.com (615)301-5031 Generated 10/30/2024 7:51:04 PM Revision 1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Certification Summary	6
Sample Summary	8
Method Summary	9
Lab Chronicle	10
Client Sample Results	15
QC Sample Results	23
QC Association Summary	29
Chain of Custody	33
Receipt Checklists	42

Job ID: 180-180875-1

Eurofins Pittsburgh

Job Narrative 180-180875-1

103024 Revised report to include field pH at client request. This report replaces the report previously issued on 101724

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/4/2024 9:00 AM and 10/5/2024 9:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.3°C, 1.6°C, 1.7°C and 2.2°C.

Receipt Exceptions

Lab received three out of the four coolers shipped. The following two samples BAW-4 and PZ-8. .BAW-4 (180-180875-10) and PZ-8 (180-180875-11) Samples received 10/5/24 at 0945. Analysis added and receipt date/time updated.

The Chain of Custody was received without any analyses selected.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Pittsburgh

Qualifiers

HPLC/IC Qualifier	Qualifier Description								
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.								
Metals			5						
Qualifier	Qualifier Description								
В	Compound was found in the blank and sample.								
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.								
Glossary									
Abbreviation	These commonly used abbreviations may or may not be present in this report								

Abbreviation						
☆	Listed under the "D" column to designate that the result is reported on a dry weight basis					
%R	Percent Recovery					
CFL	Contains Free Liquid					
CFU	Colony Forming Unit					
CNF	Contains No Free Liquid					
DER	Duplicate Error Ratio (normalized absolute difference)					
Dil Fac	Dilution Factor					
DL	Detection Limit (DoD/DOE)					
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample					
DLC	Decision Level Concentration (Radiochemistry)					
EDL	Estimated Detection Limit (Dioxin)					
LOD	Limit of Detection (DoD/DOE)					
LOQ	Limit of Quantitation (DoD/DOE)					
MCL	EPA recommended "Maximum Contaminant Level"					
MDA	Minimum Detectable Activity (Radiochemistry)					
MDC	Minimum Detectable Concentration (Radiochemistry)					
MDL	Method Detection Limit					
ML	Minimum Level (Dioxin)					
MPN	Most Probable Number					
MQL	Method Quantitation Limit					
NC	Not Calculated					
ND	Not Detected at the reporting limit (or MDL or EDL if shown)					
NEG	Negative / Absent					
POS	Positive / Present					
PQL	Practical Quantitation Limit					
PRES	Presumptive					
QC	Quality Control					
RER	Relative Error Ratio (Radiochemistry)					
RL	Reporting Limit or Requested Limit (Radiochemistry)					
RPD	Relative Percent Difference, a measure of the relative difference between two points					
TEF	Toxicity Equivalent Factor (Dioxin)					
TEQ	Toxicity Equivalent Quotient (Dioxin)					
TNTC	Too Numerous To Count					

5

Laboratory: Eurofins Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-28-25
California	State	2891	04-30-24 *
Connecticut	State	PH-0688	09-30-24 *
Florida	NELAP	E871008	06-30-25
Georgia	State	PA 02-00416	04-30-25
Illinois	NELAP	004375	07-31-25
Kansas	NELAP	E-10350	01-31-25
Kentucky (UST)	State	162013	04-30-25
Kentucky (WW)	State	KY98043	12-31-24
Louisiana	NELAP	04041	06-30-22 *
Louisiana (All)	NELAP	04041	06-30-25
Maine	State	PA00164	03-06-26
Minnesota	NELAP	042-999-482	12-31-24
New Hampshire	NELAP	2030	04-04-25
New Jersey	NELAP	PA005	06-30-25
New York	NELAP	11182	04-01-25
North Carolina (WW/SW)	State	434	12-31-24
North Dakota	State	R-227	04-30-24 *
Oregon	NELAP	PA-2151	02-06-25
Pennsylvania	NELAP	02-00416	04-30-25
Rhode Island	State	LAO00362	01-01-25
South Carolina	State	89014	04-30-25
Texas	NELAP	T104704528	03-31-25
US Fish & Wildlife	US Federal Programs	058448	04-30-25
JSDA	US Federal Programs	P330-16-00211	04-11-26
Utah	NELAP	PA001462024-14	05-31-25
Virginia	NELAP	10043	07-14-24 *
West Virginia DEP	State	142	01-31-25
Wisconsin	State	998027800	08-31-25

Laboratory: Eurofins Savannah

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
	AFCEE	SAVLAB	
Alabama	State	41450	06-30-25
ANAB	Dept. of Defense ELAP	L2463	09-22-26
Arkansas (DW)	State	GA00006	06-30-25
Arkansas DEQ	State	88-00692	02-01-25
Florida	NELAP	E87052	06-30-25
Georgia	State	E87052	06-30-25
Georgia (DW)	State	803	06-30-25
Guam	State	24-05R	04-17-25
Hawaii	State	<cert no.=""></cert>	06-30-25
Illinois	NELAP	200022	11-30-24
lowa	State	353	07-01-25
Kentucky (UST)	State	108138	06-30-24 *
Louisiana (All)	NELAP	30690	06-30-25
Louisiana (DW)	State	LA009	12-31-24
Maryland	State	250	12-31-24

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins Pittsburgh

Client: Southern Company Project/Site: Plant Daniel Ash Pond B

Job ID: 180-180875-1

5

Laboratory: Eurofins Savannah (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Michigan	State	9925	03-05-25
Mississippi	State	<cert no.=""></cert>	06-30-25
Nebraska	State	NE-OS-7-04	06-30-25
New Mexico	State	GA00006	06-30-25
North Carolina (DW)	State	13701	07-31-25
North Carolina (WW/SW)	State	269	12-31-24
Puerto Rico	State	GA00006	01-01-25
South Carolina	State	98001	06-30-24 *
Tennessee	State	TN02961	06-30-25
Texas	NELAP	T1047004185	11-30-24
Texas	TCEQ Water Supply	T104704185	06-30-24 *
USDA	US Federal Programs	P330-18-00313	04-04-27
Virginia	NELAP	460161	06-14-25
Wyoming	State	8TMS-L	06-30-25

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Sample Summary

Client: Southern Company Project/Site: Plant Daniel Ash Pond B

Job ID: 180-180875-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-180875-1	- FB-03	Water	10/02/24 11:30	10/04/24 09:00
180-180875-2	BAW-1	Water	10/02/24 12:50	10/04/24 09:00
180-180875-3	BAW-7	Water	10/02/24 17:20	10/04/24 09:00
180-180875-4	BAW-2A	Water	10/02/24 11:15	10/04/24 09:00
180-180875-5	BAW-3	Water	10/02/24 08:59	10/04/24 09:00
180-180875-6	DUP-05	Water	10/02/24 07:59	10/04/24 09:00
180-180875-7	EB-03	Water	10/02/24 13:45	10/04/24 09:00
180-180875-8	BAW-5	Water	10/02/24 15:30	10/04/24 09:00
180-180875-9	PZ-9	Water	10/02/24 13:22	10/04/24 09:00
180-180875-10	BAW-4	Water	10/02/24 09:18	10/05/24 09:45
180-180875-11	PZ-8	Water	10/02/24 11:50	10/05/24 09:45

Method Summary

Client: Southern Company Project/Site: Plant Daniel Ash Pond B

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	EET PIT
6020B	Metals (ICP/MS)	SW846	EET SAV
7470A	Mercury (CVAA)	SW846	EET SAV
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET PIT
ield Sampling	Field Sampling	EPA	EET PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Matrix: Water

Lab Sample ID: 180-180875-1

Client Sample ID: FB-03 Date Collected: 10/02/24 11:30 Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1 mL	481230	10/08/24 21:18	M1D	EET PIT
	Instrumen	t ID: INTEGRION								
Total Recoverable	Prep	3005A			25 mL	125 mL	858765	10/10/24 07:42	RR	EET SAV
Total Recoverable	Analysis	6020B		1			859028	10/10/24 19:02	BWR	EET SAV
	Instrumen	t ID: ICPMSC								
Total/NA	Prep	7470A			50 mL	50 mL	859033	10/11/24 10:19	MG	EET SAV
Total/NA	Analysis	7470A		1			859296	10/11/24 17:16	BCB	EET SAV
	Instrumen	t ID: QuickTrace3								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	481171	10/07/24 11:36	EBA	EET PIT
	Instrumen	t ID: NOEQUIP								

Client Sample ID: BAW-1 Date Collected: 10/02/24 12:50 Date Received: 10/04/24 09:00

Lab Sample ID: 180-180875-2 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA 9056A at ID: INTEGRION		1	1 mL	1 mL	481230	10/08/24 21:36	M1D	EET PIT
Total Recoverable	Prep	3005A			25 mL	125 mL	858765	10/10/24 07:42	RR	EET SAV
Total Recoverable	Analysis Instrumer	6020B at ID: ICPMSC		1			859028	10/10/24 19:07	BWR	EET SAV
Total/NA	Prep	7470A			50 mL	50 mL	859033	10/11/24 10:19	MG	EET SAV
Total/NA	Analysis Instrumer	7470A at ID: QuickTrace3		1			859296	10/11/24 17:44	BCB	EET SAV
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	481171	10/07/24 11:36	EBA	EET PIT
Total/NA	Analysis Instrumer	Field Sampling t ID: NOEQUIP		1			483190	10/02/24 13:50	FDS	EET PIT

Client Sample ID: BAW-7 Date Collected: 10/02/24 17:20 Date Received: 10/04/24 09:00

Lab Sample ID: 180-180875-3 Matrix: Water

Dil Initial Batch Batch Final Batch Prepared Method Prep Type Туре Factor Amount Number or Analyzed Run Amount Analyst Lab Total/NA Analysis EPA 9056A 481230 10/09/24 00:04 M1D EET PIT 1 1 mL 1 mL Instrument ID: INTEGRION Total Recoverable Prep 3005A 25 mL 125 mL 858765 10/10/24 07:42 RR EET SAV 10/10/24 19:11 BWR Total Recoverable Analysis 6020B 1 859028 EET SAV Instrument ID: ICPMSC Total/NA 7470A EET SAV Prep 50 mL 50 mL 859033 10/11/24 10:19 MG Total/NA 7470A Analysis 1 859296 10/11/24 17:35 BCB EET SAV Instrument ID: QuickTrace3 Total/NA SM 2540C EET PIT Analysis 100 mL 100 mL 481171 10/07/24 11:36 EBA 1 Instrument ID: NOEQUIP

Eurofins Pittsburgh

8

Job ID: 180-180875-1

Matrix: Water

Matrix: Water

Lab Sample ID: 180-180875-3

Lab Sample ID: 180-180875-4

Client Sample ID: BAW-7 Date Collected: 10/02/24 17:20 Date Received: 10/04/24 09:00

Prep TypeBatchBatchTotal/NATypeMethodField Sampling	Dil Initial <u>Run Factor</u> Amount 1	FinalBatchtAmountNumber483190	Prepared or Analyzed 10/02/24 18:20 FDS	Lab EET PIT
---	--	-------------------------------	---	----------------

Client Sample ID: BAW-2A Date Collected: 10/02/24 11:15 Date Received: 10/04/24 09:00

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: INTEGRION		1	1 mL	1 mL	481230	10/09/24 00:22	M1D	EET PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A 6020B t ID: ICPMSC		1	25 mL	125 mL	858767 859079	10/10/24 07:42 10/10/24 21:45		EET SAV EET SAV
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A 6020B t ID: ICPMSC		1	25 mL	125 mL	858764 859028	10/10/24 07:42 10/10/24 23:35		EET SAV EET SAV
Total/NA Total/NA	Prep Analysis Instrumen	7470A 7470A t ID: QuickTrace3		1	50 mL	50 mL	859033 859296	10/11/24 10:19 10/11/24 17:39		EET SAV EET SAV
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	481171	10/07/24 11:36	EBA	EET PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			483190	10/02/24 12:15	FDS	EET PIT

Client Sample ID: BAW-3 Date Collected: 10/02/24 08:59 Date Received: 10/04/24 09:00

Lab Sample ID: 180-180875-5 Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: INTEGRION		1	1 mL	1 mL	481230	10/09/24 03:27	M1D	EET PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A 6020B t ID: ICPMSC		1	25 mL	125 mL	858767 859079	10/10/24 07:42 10/10/24 22:46	RR BWR	EET SAV EET SAV
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A 6020B t ID: ICPMSC		1	25 mL	125 mL	858764 859028	10/10/24 07:42 10/10/24 23:19		EET SAV EET SAV
Total/NA Total/NA	Prep Analysis Instrumen	7470A 7470A t ID: QuickTrace3		1	50 mL	50 mL	859033 859296	10/11/24 10:19 10/11/24 16:35	MG BCB	EET SAV EET SAV
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	481171	10/07/24 11:36	EBA	EET PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			483190	10/02/24 09:59	FDS	EET PIT

Eurofins Pittsburgh

Dil

1

1

1

1

1

Factor

Run

Batch

Туре

Prep

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Batch

Instrument ID: INTEGRION

Instrument ID: ICPMSC

Instrument ID: ICPMSC

3005A

6020B

3005A

6020B

7470A

7470A

SM 2540C

Instrument ID: QuickTrace3

Instrument ID: NOEQUIP

Method

EPA 9056A

Client Sample ID: DUP-05

Date Collected: 10/02/24 07:59

Date Received: 10/04/24 09:00

Prep Type

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total/NA

Total/NA

Total/NA

Total/NA

Job ID: 180-180875-1

Matrix: Water

Lab

EET PIT

EET SAV

EET SAV

EET SAV

EET SAV

EET SAV

EET SAV

EET PIT

Matrix: Water

Lab Sample ID: 180-180875-6

Analyst

M1D

Prepared

or Analyzed

10/08/24 23:09

10/10/24 07:42 RR

10/10/24 07:42 RR

10/11/24 10:19 MG

10/11/24 17:26 BCB

10/07/24 11:36 EBA

Lab Sample ID: 180-180875-7

Lab Sample ID: 180-180875-8

10/10/24 23:23 BWR

10/10/24 22:14 BWR

8
9

Client Sample ID: EB-03 Date Collected: 10/02/24 13:45 Date Received: 10/04/24 09:00

Duese Trues	Batch	Batch	Dura	Dil	Initial	Final	Batch	Prepared	Amalunat	Lah
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA 9056A nt ID: INTEGRION		1	1 mL	1 mL	481230	10/09/24 03:46	M1D	EET PIT
Total Recoverable	Prep	3005A			25 mL	125 mL	858767	10/10/24 07:42	RR	EET SAV
Total Recoverable	Analysis Instrumer	6020B nt ID: ICPMSC		1			859079	10/10/24 21:58	BWR	EET SAV
Total Recoverable	Prep	3005A			25 mL	125 mL	858764	10/10/24 07:42	RR	EET SAV
Total Recoverable	Analysis Instrumer	6020B nt ID: ICPMSC		1			859028	10/10/24 23:11	BWR	EET SAV
Total/NA	Prep	7470A			50 mL	50 mL	859033	10/11/24 10:19	MG	EET SAV
Total/NA	Analysis Instrumer	7470A nt ID: QuickTrace3		1			859296	10/11/24 17:37	BCB	EET SAV
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	481171	10/07/24 11:36	EBA	EET PIT

Client Sample ID: BAW-5 Date Collected: 10/02/24 15:30

Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1 mL	481230	10/09/24 04:04	M1D	EET PIT
	Instrumer	t ID: INTEGRION								
Total Recoverable	Prep	3005A			25 mL	125 mL	858767	10/10/24 07:42	RR	EET SAV
Total Recoverable	Analysis	6020B		1			859079	10/10/24 21:54	BWR	EET SAV
	Instrumer	t ID: ICPMSC								
Total Recoverable	Prep	3005A			25 mL	125 mL	858764	10/10/24 07:42	RR	EET SAV
Total Recoverable	Analysis	6020B		1			859028	10/10/24 23:27	BWR	EET SAV
	Instrumer	t ID: ICPMSC								

Eurofins Pittsburgh

Matrix: Water

Initial

Amount

1 mL

25 mL

25 mL

50 mL

100 mL

Batch

Number

481230

858767

859079

858764

859028

859033

859296

481171

Final

Amount

1 mL

125 mL

125 mL

50 mL

100 mL

Page 12 of 43

Matrix: Water

Client Sample ID: BAW-5 Date Collected: 10/02/24 15:30 Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			50 mL	50 mL	859033	10/11/24 10:19	MG	EET SAV
Total/NA	Analysis Instrumen	7470A at ID: QuickTrace3		1			859296	10/11/24 17:33	BCB	EET SAV
Total/NA	Analysis Instrumen	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	481171	10/07/24 11:36	EBA	EET PIT
Total/NA	Analysis Instrumen	Field Sampling at ID: NOEQUIP		1			483190	10/02/24 16:30	FDS	EET PIT

Client Sample ID: PZ-9 Date Collected: 10/02/24 13:22 Date Received: 10/04/24 09:00

Batch Batch Dil Initial Batch Final Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis EPA 9056A 1 1 mL 1 mL 481230 10/09/24 06:32 M1D EET PIT Instrument ID: INTEGRION Total Recoverable Prep 3005A 25 mL 125 mL 858767 10/10/24 07:42 RR EET SAV Total Recoverable Analysis 6020B 859079 10/10/24 22:10 BWR 1 EET SAV Instrument ID: ICPMSC **Total Recoverable** 3005A 10/10/24 07:42 RR Prep 25 mL 125 mL 858764 EET SAV **Total Recoverable** Analysis 6020B 859028 10/10/24 23:15 BWR EET SAV 1 Instrument ID: ICPMSC 7470A Total/NA Prep 50 mL 50 mL 859033 10/11/24 10:19 MG EET SAV Total/NA 859296 Analysis 7470A 1 10/11/24 17:31 BCB EET SAV Instrument ID: QuickTrace3 Total/NA Analysis SM 2540C 1 100 mL 100 mL 481171 10/07/24 11:36 EBA EET PIT Instrument ID: NOEQUIP Total/NA Analysis **Field Sampling** 483190 10/02/24 14:22 FDS EET PIT 1 Instrument ID: NOEQUIP

Client Sample ID: BAW-4 Date Collected: 10/02/24 09:18 Date Received: 10/05/24 09:45

Lab Sample ID: 180-180875-10 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1 mL	481230	10/09/24 06:51	M1D	EET PIT
	Instrumer	t ID: INTEGRION								
Total Recoverable	Prep	3005A			25 mL	125 mL	858765	10/10/24 07:42	RR	EET SAV
Total Recoverable	Analysis	6020B		1			859028	10/10/24 18:30	BWR	EET SAV
	Instrumer	t ID: ICPMSC								
Total/NA	Prep	7470A			50 mL	50 mL	859498	10/15/24 11:03	MG	EET SAV
Total/NA	Analysis	7470A		1			859714	10/16/24 09:46	BJB	EET SAV
	Instrumer	t ID: QuickTrace3								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	481171	10/07/24 11:36	EBA	EET PIT
	Instrumer	It ID: NOEQUIP								

Eurofins Pittsburgh

Lab Sample ID: 180-180875-9 Matrix: Water

Lab Sample ID: 180-180875-8

Lab Sample ID: 180-180875-10 Matrix: Water

Date Collected: 10/02/24 09:18 Date Received: 10/05/24 09:45

Client Sample ID: BAW-4

Prep Type Total/NA	Batch Type Analysis	Batch Method Field Sampling	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 483190	Prepared or Analyzed 10/02/24 10:18	Analyst FDS	EET PIT
Client Sam	ple ID: PZ-	8					Lab	Sample ID	: 180-1	80875-11
Date Collecte	d: 10/02/24 1	1:50						-	Ма	trix: Water
Date Receive	d: 10/05/24 0	9:45								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab

Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1 mL	481230	10/09/24 07:09	M1D	EET PIT
	Instrumen	t ID: INTEGRION								
Total Recoverable	Prep	3005A			25 mL	125 mL	858767	10/10/24 07:42	RR	EET SAV
Total Recoverable	Analysis	6020B		1			859079	10/10/24 22:18	BWR	EET SAV
	Instrumen	t ID: ICPMSC								
Total Recoverable	Prep	3005A			25 mL	125 mL	858764	10/10/24 07:42	RR	EET SAV
Total Recoverable	Analysis	6020B		1			859028	10/10/24 23:31	BWR	EET SAV
	Instrumen	t ID: ICPMSC								
Total/NA	Prep	7470A			50 mL	50 mL	859033	10/11/24 10:19	MG	EET SAV
Total/NA	Analysis	7470A		1			859296	10/11/24 17:29	BCB	EET SAV
	Instrumen	t ID: QuickTrace3								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	481171	10/07/24 11:36	EBA	EET PIT
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	Field Sampling		1			483190	10/02/24 12:50	FDS	EET PIT
	Instrumen	t ID: NOEQUIP								

Laboratory References:

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Analyst References:

Lab: EET PIT Batch Type: Analysis EBA = Elizabeth Arbster FDS = Sampler Field M1D = Maureen Donlin Lab: EET SAV Batch Type: Prep MG = Michael Griffin RR = Robert Rancourt Batch Type: Analysis BCB = Brian Bland

BJB = Brian Boyuk BWR = Bryn Robertson

Eurofins Pittsburgh

Client Sample ID: FB-03 Date Collected: 10/02/24 11:30 Date Received: 10/04/24 09:00

Lead

Lab Sample ID: 180-180875-1 Matrix: Water

: Water

lethod: SW846 EPA 9056A -		Qualifier		MDI	Unit	~	Dropered	Analyzed	Dil Fac
nalyte nloride	Kesult <0.713	Qualifier		0.713		<u>D</u>	Prepared	Analyzed 10/08/24 21:18	1
uoride	<0.713		0.100	0.0260	-			10/08/24 21:18	1
ulfate	<0.0200		1.00	0.0200	-			10/08/24 21:18	1
unate	<0.750		1.00	0.750	mg/∟			10/00/24 21.10	I
lethod: SW846 6020B - Meta						_			
nalyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
ntimony	<0.000340		0.00200	0.000340	-		10/10/24 07:42	10/10/24 19:02	1
rsenic	<0.000860		0.00100	0.000860	-			10/10/24 19:02	1
arium	<0.000890		0.0100	0.000890	7			10/10/24 19:02	1
eryllium	0.000760	J	0.00100	0.000200	-			10/10/24 19:02	1
oron	<0.0220		0.0800	0.0220	-			10/10/24 19:02	1
admium	<0.0000780		0.00100	0.0000780				10/10/24 19:02	1
alcium	<0.140		0.500	0.140	-			10/10/24 19:02	1
hromium	0.00167	J	0.00200	0.00120	-			10/10/24 19:02	1
obalt	<0.000220		0.000500	0.000220	0			10/10/24 19:02	1
ead	0.000340	JB	0.00100	0.000210	-			10/10/24 19:02	1
ithium	<0.00200		0.00500	0.00200	-			10/10/24 19:02	1
lolybdenum	<0.000860		0.00500	0.000860				10/10/24 19:02	1
elenium	<0.000990		0.00500	0.000990	-			10/10/24 19:02	1
hallium	<0.000260		0.00100	0.000260	mg/L		10/10/24 07:42	10/10/24 19:02	1
Nethod: SW846 7470A - Merc									
nalyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1ercury	<0.0000800		0.000200	0.0000800			10/11/24 10:19	10/11/24 17:16	1
									-
Seneral Chemistry									
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal Dissolved Solids (SM 2540C)	<10.0	,	10.0	10.0	mg/L			10/07/24 11:36	1
ient Sample ID: BAW-1						1.2	h Samplo	ID: 180-180	875_2
-						La	in Sample		
ate Collected: 10/02/24 12:50 ate Received: 10/04/24 09:00								Matrix	water
10/04/24 03.00	<u> </u>								
lethod: SW846 EPA 9056A -						_			
nalyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
hloride	6.38		1.00	0.713	-			10/08/24 21:36	1
luoride	<0.0260		0.100	0.0260	-			10/08/24 21:36	1
								10/00/01 01.00	1
Sulfate	1.79		1.00	0.756	mg/L			10/08/24 21:36	1
oulfate Aethod: SW846 6020B - Meta		- Total Rec	1.00	0.756	mg/L			10/06/24 21.30	1
lethod: SW846 6020B - Meta	als (ICP/MS)	- Total Rec Qualifier	1.00	0.756 MDL		D	Prepared	Analyzed	Dil Fac
lethod: SW846 6020B - Meta nalyte	als (ICP/MS)		1.00	MDL	Unit	D	Prepared 10/10/24 07:42	Analyzed	
lethod: SW846 6020B - Meta nalyte ntimony	als (ICP/MS) Result		1.00 overable RL	MDL 0.000340	Unit mg/L	D	10/10/24 07:42	Analyzed	Dil Fac
lethod: SW846 6020B - Meta nalyte ntimony rsenic	als (ICP/MS) Result <0.000340 <0.000860		1.00 coverable RL 0.00200 0.00100	MDL 0.000340 0.000860	Unit mg/L mg/L	D	10/10/24 07:42 10/10/24 07:42	Analyzed 10/10/24 19:07	Dil Fac
lethod: SW846 6020B - Meta nalyte ntimony rsenic arium	als (ICP/MS) 		1.00 coverable RL 0.00200 0.00100 0.0100	MDL 0.000340 0.000860 0.000890	Unit mg/L mg/L mg/L	<u>D</u>	10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07	Dil Fac 1 1
lethod: SW846 6020B - Meta nalyte ntimony rsenic arium eryllium	als (ICP/MS) Result <0.000340 <0.000860 0.0399 <0.000200		1.00 coverable RL 0.00200 0.00100 0.0100 0.00100	MDL 0.000340 0.000860 0.000890 0.000200	Unit mg/L mg/L mg/L mg/L	<u>D</u>	10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07	Dil Fac 1 1 1 1
lethod: SW846 6020B - Meta nalyte ntimony rsenic arium eryllium oron	als (ICP/MS) Result <0.000340 <0.000860 0.0399 <0.000200 <0.0220		1.00 coverable RL 0.00200 0.00100 0.0100 0.00100 0.0800	MDL 0.000340 0.000860 0.000890 0.000200 0.0220	Unit mg/L mg/L mg/L mg/L mg/L	<u>D</u>	10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07	Dil Fac 1 1 1 1 1 1
ethod: SW846 6020B - Meta nalyte ntimony senic arium eryllium oron admium	als (ICP/MS) Result <0.000340 <0.000860 0.0399 <0.000200 <0.0220 <0.000780		1.00 coverable RL 0.00200 0.00100 0.00100 0.0800 0.00100	MDL 0.000340 0.000860 0.000890 0.000200 0.0220 0.002780	Unit mg/L mg/L mg/L mg/L mg/L	<u>D</u>	10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07	Dil Fac 1 1 1 1 1 1
lethod: SW846 6020B - Meta nalyte ntimony rsenic carium eryllium oron admium alcium	als (ICP/MS) Result <0.000340 <0.000860 0.0399 <0.000200 <0.00220 <0.000780 1.24		1.00 coverable RL 0.00200 0.00100 0.00100 0.0800 0.00100 0.00100 0.0500	MDL 0.000340 0.000860 0.000890 0.000200 0.00220 0.0000780 0.140	Unit mg/L mg/L mg/L mg/L mg/L mg/L	<u> </u>	10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07	Dil Fac 1 1 1 1 1 1 1 1
Auffate Aethod: SW846 6020B - Meta Intimony Irsenic Barium Ieryllium Ieron Cadmium Calcium Chromium Cobalt	als (ICP/MS) Result <0.000340 <0.000860 0.0399 <0.000200 <0.0220 <0.000780		1.00 coverable RL 0.00200 0.00100 0.00100 0.0800 0.00100	MDL 0.000340 0.000860 0.000890 0.000200 0.0220 0.002780	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u> </u>	10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07 10/10/24 19:07	Dil Fac 1 1 1 1 1 1

Eurofins Pittsburgh

1

10/10/24 07:42 10/10/24 19:07

0.00100 0.000210 mg/L

0.000350 JB

Lab Sample ID: 180-180875-2 Matrix: Water

Client Sample ID: BAW-1 Date Collected: 10/02/24 12:50 Date Received: 10/04/24 09:00

Analyte	Is (ICP/MS) Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Lithium	<0.00200		0.00500	0.00200			10/10/24 07:42	10/10/24 19:07	
Molybdenum	<0.000860		0.00500	0.000860	-		10/10/24 07:42	10/10/24 19:07	1
Selenium	<0.000990		0.00500	0.000990	•		10/10/24 07:42	10/10/24 19:07	1
Thallium	<0.000260		0.00100	0.000260	-		10/10/24 07:42	10/10/24 19:07	1
Method: SW846 7470A - Merc	ury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.0000800		0.000200	0.0000800	mg/L		10/11/24 10:19	10/11/24 17:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	28.0		10.0	10.0	mg/L			10/07/24 11:36	1
Method: EPA Field Sampling	- Field Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Field pH	4.94				SU			10/02/24 13:50	
lient Sample ID: BAW-7						La	b Sample	ID: 180-180	875-3
ate Collected: 10/02/24 17:20								Matrix	
								matrix	····
)ate Received: 10/04/24 09:00									
ate Received: 10/04/24 09:00									
	Anions, Ion	Chromato	graphy						
Method: SW846 EPA 9056A - /		Chromato Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Method: SW846 EPA 9056A - / Analyte						D	Prepared	Analyzed 10/09/24 00:04	
Method: SW846 EPA 9056A - / Analyte Chloride	Result		RL		mg/L	D	Prepared		
Method: SW846 EPA 9056A - / Analyte Chloride Fluoride	Result 7.43		RL 1.00	0.713	mg/L mg/L	<u>D</u>	Prepared	10/09/24 00:04	Dil Fac
Method: SW846 EPA 9056A - / Analyte Chloride Fluoride Sulfate	Result 7.43 <0.0260 1.61	Qualifier	RL 1.00 0.100 1.00	0.713	mg/L mg/L	<u>D</u>	Prepared	10/09/24 00:04 10/09/24 00:04	· · · · ·
Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Meta	Result 7.43 <0.0260 1.61 Is (ICP/MS)	Qualifier	RL 1.00 0.100 1.00	0.713 0.0260 0.756	mg/L mg/L	D	Prepared Prepared	10/09/24 00:04 10/09/24 00:04	1
Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Meta Analyte	Result 7.43 <0.0260 1.61 Is (ICP/MS)	Qualifier	RL 1.00 0.100 1.00	0.713 0.0260 0.756	mg/L mg/L mg/L Unit			10/09/24 00:04 10/09/24 00:04 10/09/24 00:04	Dil Fac
Method: SW846 EPA 9056A - Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Antimony	Result 7.43 <0.0260 1.61 Is (ICP/MS) Result	Qualifier	RL 1.00 0.100 1.00 coverable RL	0.713 0.0260 0.756 MDL	mg/L mg/L mg/L Unit mg/L		Prepared 10/10/24 07:42	10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 Analyzed	Dil Fac
Method: SW846 EPA 9056A - Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Antimony Arsenic	Result 7.43 <0.0260	Qualifier	RL 1.00 0.100 1.00 coverable RL 0.00200	0.713 0.0260 0.756 MDL 0.000340	mg/L mg/L mg/L Unit mg/L mg/L		Prepared 10/10/24 07:42	10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 Analyzed 10/10/24 19:11 10/10/24 19:11	Dil Fac
Method: SW846 EPA 9056A - / Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Antimony Arsenic Barium	Result 7.43 <0.0260	Qualifier	RL 1.00 0.100 1.00 0.000 0.00200 0.00100	0.713 0.0260 0.756 MDL 0.000340 0.000860	mg/L mg/L mg/L Unit mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42	10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 Analyzed 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11	 Dil Fac
Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Antimony Arsenic Barium Beryllium	Result 7.43 <0.0260	Qualifier	RL 1.00 0.100 1.00 0.000 0.00200 0.00100 0.0100	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 Analyzed 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11	Dil Fac
Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Antimony Arsenic Barium Beryllium Boron	Result 7.43 <0.0260	Qualifier	RL 1.00 0.100 1.00 0.000 0.00200 0.00100 0.00100	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 Analyzed 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11	Dil Fa
Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Antimony Arsenic Barium Beryllium Boron Cadmium	Result 7.43 <0.0260	Qualifier	RL 1.00 0.100 1.00 0.000 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00800	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200 0.00220	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	I0/09/24 00:04 10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 Analyzed 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11	Dil Fac
Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium	Result 7.43 <0.0260	Qualifier - Total Rec Qualifier	RL 1.00 0.100 1.00 0.000 0.00200 0.00100 0.00100 0.00800 0.00100 0.00100	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000890 0.000200 0.0220 0.0000780	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	I0/09/24 00:04 10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 Analyzed 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11	_Dil Fac
Method: SW846 EPA 9056A - Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium	Result 7.43 <0.0260	Qualifier - Total Rec Qualifier	RL 1.00 0.100 1.00 0.100 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200 0.00220 0.0000780 0.140	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 Analyzed 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11	<u>Dil Fa</u>
Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt	Result 7.43 <0.0260	Qualifier - Total Rec Qualifier	RL 1.00 0.100 1.00 0.100 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200 0.000200 0.00220 0.0000780 0.140 0.0120	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 10/10/24 00:04 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11	<u>Dil Fa</u>
Method: SW846 EPA 9056A - A Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Lead	Result 7.43 <0.0260	Qualifier - Total Rec Qualifier	RL 1.00 0.100 1.00 0.100 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.00200 0.000500	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200 0.00220 0.0000780 0.140 0.00120 0.000220	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 Analyzed 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11	Dil Fac
Method: SW846 EPA 9056A - / Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Lead Lithium	Result 7.43 <0.0260	Qualifier - Total Rec Qualifier	RL 1.00 0.100 1.00 0.000 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00100 0.00200 0.00100 0.500 0.00200 0.00200 0.00200 0.00100	0.713 0.0260 0.756 MDL 0.000340 0.000890 0.000200 0.000200 0.000780 0.140 0.00120 0.000220 0.000220	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 Analyzed 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11 10/10/24 19:11	1
Analyte Chloride Fluoride Sulfate Method: SW846 6020B - Metal Analyte Analyte Analyte Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Cobalt Lead Lithium Molybdenum Selenium	Result 7.43 <0.0260	Qualifier - Total Rec Qualifier	RL 1.00 0.100 1.00 0.100 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.00200 0.000500 0.00500	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000200 0.000200 0.000200 0.140 0.00120 0.000220 0.000220 0.000210 0.000210 0.000200	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	I0/09/24 00:04 10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 10/09/24 00:04 10/10/24 00:04 10/10/24 19:11	Dil Fae

Method: SW846 7470A - Mercu	iry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.0000800		0.000200	0.0000800	mg/L		10/11/24 10:19	10/11/24 17:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	33.0		10.0	10.0	mg/L			10/07/24 11:36	1

Eurofins Pittsburgh

9

Client Sample Results

Client: Southern Company Project/Site: Plant Daniel Ash Pond B

Client Sample ID: BAW-7 pate Collected: 10/02/24 17:20 pate Received: 10/04/24 09:00						La	b Sample	ID: 180-180 Matrix	
Method: EPA Field Sampling -		-	-			_	_		
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Field pH	4.87				SU			10/02/24 18:20	
lient Sample ID: BAW-2A						la	b Sample	ID: 180-180	875-
ate Collected: 10/02/24 11:15	•						o oumpro	Matrix	
ate Received: 10/04/24 09:00								inder i A	· · · · · ·
Method: SW846 EPA 9056A - A									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	10.7		1.00	0.713	-			10/09/24 00:22	
Fluoride	0.0284	J	0.100	0.0260	0			10/09/24 00:22	
Sulfate	6.73		1.00	0.756	mg/L			10/09/24 00:22	
Method: SW846 6020B - Metal		Total Bac	overeble						
Analyte		Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	<0.000340	Quaimer	0.00200	0.000340		<u></u>	10/10/24 07:42	10/10/24 21:45	
Arsenic	<0.000340		0.00200	0.000340	-			10/10/24 21:45	
Barium	<0.000000 0.0322		0.0100	0.000890	-			10/10/24 23:35	
Beryllium	<0.000200		0.00100	0.000200				10/10/24 23:35	
•	<0.000200 0.0647		0.0800	0.00200	0			10/10/24 21:45	
Boron				0.0000780	Ũ			10/10/24 21:45	
Cadmium	0.000850	J	0.00100 0.500	0.000780				10/10/24 21:45	
Calcium	0.681				-			10/10/24 21:45	
Chromium	0.00173	J	0.00200	0.00120	-				
Cobalt	0.000845		0.000500	0.000220	.			10/10/24 21:45	
	0.000320		0.00100	0.000210	Ũ			10/10/24 21:45	
Lithium	0.00485	J	0.00500	0.00200	0			10/10/24 21:45	
Molybdenum	<0.000860		0.00500	0.000860				10/10/24 21:45	
Selenium	< 0.000990		0.00500	0.000990	-			10/10/24 21:45	
Thallium	<0.000260		0.00100	0.000260	mg/L		10/10/24 07:42	10/10/24 21:45	
Method: SW846 7470A - Merci									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.0000800		0.000200	0.0000800			10/11/24 10:19	10/11/24 17:39	
					Ū				
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids (SM 2540C)	49.0		10.0	10.0	mg/L			10/07/24 11:36	
Method: EPA Field Sampling -	Field Same	aling							
		Qualifier	RL	MDI	Unit	D	Broparod	Analyzod	Dil Fa
Analyte Field pH	4.95	Quaimer	KL		SU		Prepared	Analyzed 10/02/24 12:15	
	4.30							10/02/24 12:13	
Client Sample ID: BAW-3						La	b Sample	ID: 180-180	875-
ate Collected: 10/02/24 08:59								Matrix	
ate Received: 10/04/24 09:00									

Method: SW846 EPA 9056A - A	nions, Ion	Chromatog	jraphy						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.35		1.00	0.713	mg/L			10/09/24 03:27	1
Fluoride	0.0260	J	0.100	0.0260	mg/L			10/09/24 03:27	1
Sulfate	7.63		1.00	0.756	mg/L			10/09/24 03:27	1

Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable

Client Sample ID: BAW-3 Date Collected: 10/02/24 08:59 Date Received: 10/04/24 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.000340		0.00200	0.000340	mg/L		10/10/24 07:42	10/10/24 22:46	1
Arsenic	<0.000860		0.00100	0.000860	mg/L		10/10/24 07:42	10/10/24 22:46	1
Barium	0.0407		0.0100	0.000890	mg/L		10/10/24 07:42	10/10/24 23:19	1
Beryllium	0.000235	J	0.00100	0.000200	mg/L		10/10/24 07:42	10/10/24 22:46	1
Boron	<0.0220		0.0800	0.0220	mg/L		10/10/24 07:42	10/10/24 22:46	1
Cadmium	0.000605	J	0.00100	0.0000780	mg/L		10/10/24 07:42	10/10/24 22:46	1
Calcium	0.781		0.500	0.140	mg/L		10/10/24 07:42	10/10/24 22:46	1
Chromium	0.00133	J	0.00200	0.00120	mg/L		10/10/24 07:42	10/10/24 22:46	1
Cobalt	0.0105		0.000500	0.000220	mg/L		10/10/24 07:42	10/10/24 22:46	1
Lead	0.000425	JB	0.00100	0.000210	mg/L		10/10/24 07:42	10/10/24 22:46	1
Lithium	0.00575		0.00500	0.00200	mg/L		10/10/24 07:42	10/10/24 22:46	1
Molybdenum	<0.000860		0.00500	0.000860	mg/L		10/10/24 07:42	10/10/24 22:46	1
Selenium	<0.000990		0.00500	0.000990	mg/L		10/10/24 07:42	10/10/24 22:46	1
Thallium	<0.000260		0.00100	0.000260	mg/L		10/10/24 07:42	10/10/24 22:46	1
	A - Mercury (CVAA)								

wethod: Sw846 /4/UA - wercu	Iry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.0000800		0.000200	0.0000800	mg/L		10/11/24 10:19	10/11/24 16:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	30.0		10.0	10.0	mg/L			10/07/24 11:36	1
Method: EPA Field Sampling -	Field Sam	oling							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	4.52				SU			10/02/24 09:59	1

Client Sample ID: DUP-05

Date Collected: 10/02/24 07:59 Date Received: 10/04/24 09:00

Method: SW846 EPA	9056A - Anions, Ion	Chromato	graphy						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.29		1.00	0.713	mg/L			10/08/24 23:09	1
Fluoride	0.0282	J	0.100	0.0260	mg/L			10/08/24 23:09	1
Sulfate	7.44		1.00	0.756	mg/L			10/08/24 23:09	1
	DB - Metals (ICP/MS)	- Total Rec	overable						
- Mathadi, 014040,000			a varabla						
Method: SW846 6020 Analyte		- Total Rec Qualifier	overable _{RL}	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte			RL			<u>D</u>	Prepared 10/10/24 07:42		Dil Fac
	Result			0.000340	mg/L	<u>D</u>		10/10/24 22:14	Dil Fac
Analyte Antimony	Result <0.000340		RL 0.00200	0.000340	mg/L mg/L	<u>D</u>	10/10/24 07:42 10/10/24 07:42	10/10/24 22:14 10/10/24 22:14	Dil Fac 1 1 1
Analyte Antimony Arsenic	Result <0.000340	Qualifier	RL 0.00200 0.00100	0.000340	mg/L mg/L mg/L	<u>D</u>	10/10/24 07:42 10/10/24 07:42	10/10/24 22:14 10/10/24 22:14 10/10/24 23:23	Dil Fac 1 1 1 1

	Boron	<0.0220		0.0800	0.0220	mg/L	10/10/24 07:42	10/10/24 22:14	1
	Cadmium	0.000505	J	0.00100	0.0000780	mg/L	10/10/24 07:42	10/10/24 22:14	1
	Calcium	0.800		0.500	0.140	mg/L	10/10/24 07:42	10/10/24 22:14	1
	Chromium	0.00145	J	0.00200	0.00120	mg/L	10/10/24 07:42	10/10/24 22:14	1
	Cobalt	0.0107		0.000500	0.000220	mg/L	10/10/24 07:42	10/10/24 22:14	1
	Lead	0.000390	JB	0.00100	0.000210	mg/L	10/10/24 07:42	10/10/24 22:14	1
	Lithium	0.00441	J	0.00500	0.00200	mg/L	10/10/24 07:42	10/10/24 22:14	1
	Molybdenum	<0.000860		0.00500	0.000860	mg/L	10/10/24 07:42	10/10/24 22:14	1
ľ									

Eurofins Pittsburgh

Job ID: 180-180875-1

Lab Sample ID: 180-180875-5 **Matrix: Water**

Lab Sample ID: 180-180875-6

Matrix: Water

9

Client Sample Results

Client: Southern Company Project/Site: Plant Daniel Ash Pond B

Lab Sample ID: 180-180875-6 Matrix: Water

Matrix: Water

9

Selenium <0.000990	Dil Fa	Analyzed	Prepared	D	Únit D	LI	MDL	RL	Qualifier		Method: SW846 6020B - Metals Analyte	
Method: SW846 7470A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit D Prepared 10/11/24 10:19 Analyzed 10/11/24 10:19 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 10/07/24 11:36 Cital Dissolved Solids (SM 2540C) 42.0 10.0 10.0 mg/L D Prepared Analyzed 10/07/24 11:36 Cital Dissolved Solids (SM 2540C) 42.0 10.0 10.0 mg/L D Prepared Analyzed 10/07/24 11:36 Cital Dissolved Solids (SM 2540C) 42.0 10.0 0.0 mg/L D Prepared Analyzed 10/07/24 11:36 Cital Dissolved Solids (SM 2540C) 42.0 0 0.0 0.0 Mg/L D Prepared Analyzed 10/07/24 11:36 Cital Dissolved Solids (SM 2540C) 43.0 Choride 8.0 Mg/L D Prepared Analyzed 10/09/24 03:46 Choride <0.713 mg/L 1.00 0.0280 mg/L D Prepared 10/01/24 07:42 Analyzed 10/01/24 07:42	4	10/10/24 22:14	0/10/24 07:42		mg/L	90 r	0.000990	0.00500		<0.000990	-	
Analyte Mercury Result Qualifier 0.0000800 RL 0.000200 MDL 0.0000800 Unit mg/L D 10/11/24 10:19 Propared 10/11/24 10:29 Analyzed 10/11/24 10:29 General Chemistry Analyte Result 20.000200 Qualifier 10.0 RL 10.0 MDL 10.0 Unit mg/L D 10/11/24 10:19 Propared 10/07/24 11:36 Analyzed 10/07/24 11:36 Client Sample ID: EB-03 rate Collected: 10/02/24 13:45 rate Received: 10/04/24 09:00 Result Qualifier Qualifier RL MDL 10:0 Unit mg/L D 10:0 Prepared 0:09/24 03:46 Analyzed 10/09/24 03:46 Chionide <0.713 1:00 0.713 mg/L D 10:00 Prepared 0:09/24 03:46 Analyzed 10/09/24 03:46 Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable Analyte MDL 0.000860 Unit 0.000800 D 10/10/24 07:42 Prepared 10/10/24 07:42 Analyzed 10/10/24 07:42 Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable Analyte MDL 0.000860 MDL 0.000860 Unit 0.000860 D Prepared 10/10/24 07:42 Analyzed 10/10/24 07:42 I0/10/24 21:58 I0/10/24 07:42 I0/10/	4	10/10/24 22:14	0/10/24 07:42		mg/L	60 r	0.000260	0.00100		<0.000260	Thallium	
Analyte Result Qualifier RL MDL Unit D Propared Analyzed General Chemistry Analyte Result Qualifier RL MDL Unit D Propared Analyzed Total Dissolved Solids (SM 2540C) 42.0 10.0 10.0 mg/L D Prepared Analyzed Total Dissolved Solids (SM 2540C) 42.0 10.0 10.0 mg/L D Prepared Analyzed Analyzed 10.0 10.0 mg/L D Prepared Analyzed Analyzed 10.0 0.0 mg/L D Prepared Analyzed Analyzed 10.0 0.010 0.0260 mg/L D Prepared Analyzed Chioride <0.0260										ury (CVAA)	Method: SW846 7470A - Mercı	
General Chemistry Analyte Result 2010 Qualifier 42.0 RL 10.0 MDL 10.0 Unit mg/L D Prepared 10/07/24 11:36 Chiend Dissolved Solids (SM 2540C) 42.0 10.0 10.0 10.0 mg/L D Prepared 10/07/24 11:36 Chiend Sample ID: EB-03 tate Collected: 10/04/24 09:00 Lab Sample ID: 180-180 Mathy Matrix Method: SW846 EPA 9056A - Anions, Ion Chromatography Analyte No 0.713 mg/L D Prepared Analyzed 10/09/24 03:46 Chioride <0.756	Dil Fa	Analyzed	Prepared	D	Unit D	LI	MDL	RL	Qualifier	• •		
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Total Dissolved Solids (SM 2540C) 42.0 10.0 10.0 mg/L D Prepared Analyzed Cilient Sample ID: EB-03 tate Collected: 10/02/24 13:45 Lab Sample ID: 180-180 Matrix Matrix Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Mate Cocloced: 10/02/24 13:45 Result Qualifier RL MDL Unit D Prepared Analyzed Mate Cocloced: 0.0260 0.100 0.0260 0.100 0.0260 mg/L 10/09/24 03:46 Sulfate <0.756	6	10/11/24 17:26	0/11/24 10:19		mg/L	00 r	0.0000800	0.000200		<0.0000800	Mercury	
Mathematical Dissolved Solids (SM 2540C) 42.0 10.0 10.0 mg/L 1007724 11:36 Chient Sample ID: EB-03 ate Collected: 10/02/24 13:45 ate Received: 10/04/24 09:00 Lab Sample ID: 180-180 Matrix Matrix Method: SW846 EPA 9056A - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Choride <0.713											General Chemistry	
Lab Sample ID: EB-03 Nate Collected: 10/02/24 13:45 Nate Received: 10/04/24 09:00 Method: SW846 EPA 9056A - Anions, Ion Chromatography Analyte Mol Unit D Prepared Analyzed 10/09/24 03:46 Mothod: SW846 EPA 9056A - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Chioride <0.0260	Dil Fa	Analyzed	Prepared	D	Unit [MDL	RL	Qualifier	Result		
Matrix Matrix <th colspa<="" td=""><td>6</td><td>10/07/24 11:36</td><td></td><td></td><td>mg/L</td><td>.0 r</td><td>10.0</td><td>10.0</td><td></td><td>42.0</td><td>Total Dissolved Solids (SM 2540C)</td></th>	<td>6</td> <td>10/07/24 11:36</td> <td></td> <td></td> <td>mg/L</td> <td>.0 r</td> <td>10.0</td> <td>10.0</td> <td></td> <td>42.0</td> <td>Total Dissolved Solids (SM 2540C)</td>	6	10/07/24 11:36			mg/L	.0 r	10.0	10.0		42.0	Total Dissolved Solids (SM 2540C)
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Chloride <0.713 1.00 0.713 mg/L 0.010 10/09/24 03:46 Fluoride <0.0260 0.100 0.0260 mg/L 10/09/24 03:46 Sulfate <0.756 1.00 0.756 mg/L 10/09/24 03:46 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Antimony <0.000340 0.00200 0.000800 mg/L 10/10/24 07:42 10/10/24 21:58 Arsenic <0.000860 0.00100 0.000800 mg/L 10/10/24 07:42 10/10/24 21:58 Barium <0.000200 0.00100 0.000200 mg/L 10/10/24 07:42 10/10/24 21:58 Barium <0.000200 0.00100 0.000200 mg/L 10/10/24 07:42 10/10/24 21:58 Cadmium <0.00020 0.00100 0.000200 mg/L 10/10/24 07:42 10/10/24 21:58 <t< th=""><th>30875- ix: Wate</th><th></th><th>o Sample I</th><th>La</th><th>L</th><th></th><th></th><th></th><th></th><th></th><th>ate Collected: 10/02/24 13:45 ate Received: 10/04/24 09:00</th></t<>	30875- ix: Wate		o Sample I	La	L						ate Collected: 10/02/24 13:45 ate Received: 10/04/24 09:00	
Chloride <0.713 1.00 0.713 mg/L 10/09/24 03:46 Fluoride <0.0260	Dil Fa	Analyzed	Prepared	р	Unit r		MDI		•			
Fluoride <0.0260 0.100 0.0260 mg/L 10/09/24 03:46 Sulfate <0.756												
Sulfate <0.756 1.00 0.756 mg/L 10/09/24 03:46 Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Animony <0.000360 0.00100 0.000340 mg/L 10/10/24 07:42 10/10/24 21:58 Barium <0.000200 0.00100 0.000200 mg/L 10/10/24 07:42 10/10/24 21:58 Barium <0.000200 0.00100 0.000200 mg/L 10/10/24 07:42 10/10/24 21:58 Barium <0.000200 0.00100 0.000200 mg/L 10/10/24 07:42 10/10/24 21:58 Barium <0.000200 0.00100 0.0000780 mg/L 10/10/24 07:42 10/10/24 21:58 Barium <0.0000780 0.00100 0.0000780 mg/L 10/10/24 07:42 10/10/24 21:58 Cadmium <0.000200 0.00100					•							
Method: SW846 6020B - Metals (ICP/MS) - Total Recoverable Analyte MDL Unit D Prepared 10/10/24 07:42 Analyzed 10/10/24 17:82 Antimony <0.000340	-				0							
Arsenic <0.000860 0.00100 0.000860 mg/L 10/10/24 07:42 10/10/24 21:58 Barium <0.000890 0.0100 0.000890 mg/L 10/10/24 07:42 10/10/24 21:58 Baryllium <0.000200 0.00100 0.000200 mg/L 10/10/24 07:42 10/10/24 21:58 Boron <0.0220 0.0800 0.0220 mg/L 10/10/24 07:42 10/10/24 21:58 Cadmium <0.0000780 0.00100 0.0000780 mg/L 10/10/24 07:42 10/10/24 21:58 Cadmium <0.0000780 0.00100 0.0000780 mg/L 10/10/24 07:42 10/10/24 21:58 Caditum <0.140 0.500 0.0410 mg/L 10/10/24 07:42 10/10/24 21:58 Calcium <0.00163 J 0.000200 mg/L 10/10/24 07:42 10/10/24 21:58 Cobalt <0.000220 0.000500 0.000200 mg/L 10/10/24 07:42 10/10/24 21:58 Lead <0.000200 0.00500 0.000200 mg/L 10/10/24 07:42 10/10/24 21:58 Molybdenum <0.000260 0.00500	Bil Fa		•	<u>D</u>					Qualifier			
Barium <0.000890 0.0100 0.000890 mg/L 10/10/24 07:42 10/10/24 23:11 Beryllium <0.00200					0							
Beryllium <0.000200 0.00100 0.000200 mg/L 10/10/24 07:42 10/10/24 21:58 Boron <0.0220					0							
Boron <0.0220 0.0800 0.0220 mg/L 10/10/24 07:42 10/10/24 21:58 Cadmium <0.0000780					· · · • • • • • • • • • • • • • • • • •							
Cadmium <0.0000780 0.00100 0.0000780 mg/L 10/10/24 07:42 10/10/24 21:58 Calcium <0.140					0							
Calcium <0.140 0.500 0.140 mg/L 10/10/24 07:42 10/10/24 21:58 Chromium 0.00163 J 0.00200 0.00120 mg/L 10/10/24 07:42 10/10/24 21:58 Cobalt <0.000220 0.000500 0.00020 mg/L 10/10/24 07:42 10/10/24 21:58 Lead 0.000315 J B 0.00100 0.00200 mg/L 10/10/24 07:42 10/10/24 21:58 Lithium <0.00200 0.00500 0.00200 mg/L 10/10/24 07:42 10/10/24 21:58 Molybdenum <0.00200 0.00500 0.00200 mg/L 10/10/24 07:42 10/10/24 21:58 Selenium <0.000860 0.00500 0.00200 mg/L 10/10/24 07:42 10/10/24 21:58 Selenium <0.000860 0.00500 0.000990 mg/L 10/10/24 07:42 10/10/24 21:58 Method: SW846 7470A - Mercury (CVAA) Result MDL Unit D Prepared Analyzed Mercury <0.0000800 0.000200 0.0000800 m					0							
Chromium 0.00163 J 0.00200 0.00120 mg/L 10/10/24 07:42 10/10/24 21:58 Cobalt <0.000315 J B 0.00100 0.000210 mg/L 10/10/24 07:42 10/10/24 21:58 Lead 0.000315 J B 0.00100 0.00200 mg/L 10/10/24 07:42 10/10/24 21:58 Lithium <0.00200 0.00500 0.00200 mg/L 10/10/24 07:42 10/10/24 21:58 Molybdenum <0.00200 0.00500 0.00200 mg/L 10/10/24 07:42 10/10/24 21:58 Selenium <0.000860 0.00500 0.00090 mg/L 10/10/24 07:42 10/10/24 21:58 Selenium <0.000990 0.00500 0.000990 mg/L 10/10/24 07:42 10/10/24 21:58 Method: SW846 7470A - Mercury (CVAA) Mercury Qualifier RL MDL Unit D Prepared Analyzed Mercury <0.0000800 0.000200 0.0000800 mg/L 0.0000800 mg/L 10/11/24 10:19 10/11/24 17:37												
Cobalt <0.000220					-							
Lead 0.000315 J B 0.00100 0.000210 mg/L 10/10/24 07:42 10/10/24 21:58 Lithium <0.00200					0				J			
Lithium <0.00200												
Molybdenum <0.000860 0.00500 0.000860 mg/L 10/10/24 07:42 10/10/24 21:58 Selenium <0.000990					0				JB			
Selenium <0.000990 0.00500 0.000990 mg/L 10/10/24 07:42 10/10/24 21:58 Thallium <0.000260					-							
Thallium <0.000260												
Method: SW846 7470A Mercury (CVAA) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Mercury <0.0000800					0							
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Mercury <0.0000800	8	10/10/24 21:58	0/10/24 07:42		mg/L	50 r	0.000260	0.00100		<0.000260	Ihallium	
Mercury <0.0000800 0.000200 0.0000800 mg/L 10/11/24 10:19 10/11/24 17:37 General Chemistry			_ .	_					o			
General Chemistry	D '' -	A	Prepared	<u> </u>					Qualitier		-	
			0/44/04 40 10		ma/l)U 1	0.0000800	0.000200		<0.0000800	Mercury	
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed			0/11/24 10:19		ilig/L							
Total Dissolved Solids (SM 2540C) <10.0 10.0 mg/L 10/07/24 11:36	Dil Fa	10/11/24 17:37			-						-	

Client Sample ID: BAW-5 Date Collected: 10/02/24 15:30 Date Received: 10/04/24 09:00

Boron

Cadmium

Lab Sample ID: 180-180875-8 Matrix: Water

Water

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10.7		1.00	0.713	mg/L			10/09/24 04:04	1
Fluoride	0.0865	J	0.100	0.0260	mg/L			10/09/24 04:04	1
Sulfate	40.1		1.00	0.756	mg/L			10/09/24 04:04	1
Method: SW846 6020B - Metal	s (ICP/MS)	- Total Red	coverable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.000340		0.00200	0.000340	mg/L		10/10/24 07:42	10/10/24 21:54	1
Arsenic	0.00414		0.00100	0.000860	mg/L		10/10/24 07:42	10/10/24 21:54	1
Barium	0.110		0.0100	0.000890	mg/L		10/10/24 07:42	10/10/24 23:27	
Beryllium	<0.000200		0.00100	0.000200	mg/L		10/10/24 07:42	10/10/24 21:54	1
Boron	0.751		0.0800	0.0220	mg/L		10/10/24 07:42	10/10/24 21:54	1
Cadmium	<0.0000780		0.00100	0.0000780	mg/L		10/10/24 07:42	10/10/24 21:54	
Calcium	30.5		0.500	0.140	mg/L		10/10/24 07:42	10/10/24 21:54	
Chromium	0.00175	J	0.00200	0.00120	mg/L		10/10/24 07:42	10/10/24 21:54	
Cobalt	0.00176		0.000500	0.000220	mg/L		10/10/24 07:42	10/10/24 21:54	
Lead	0.000320	JB	0.00100	0.000210	mg/L		10/10/24 07:42	10/10/24 21:54	
Lithium	0.0774		0.00500	0.00200	mg/L		10/10/24 07:42	10/10/24 21:54	1
Molybdenum	0.00335	J	0.00500	0.000860	mg/L		10/10/24 07:42	10/10/24 21:54	
Selenium	<0.000990		0.00500	0.000990	mg/L		10/10/24 07:42	10/10/24 21:54	1
Thallium	<0.000260		0.00100	0.000260	mg/L		10/10/24 07:42	10/10/24 21:54	1
Method: SW846 7470A - Merci	Jrv (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.0000800		0.000200	0.0000800	mg/L		10/11/24 10:19	10/11/24 17:33	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	195		10.0	10.0	mg/L			10/07/24 11:36	1
Method: EPA Field Sampling -	Field Sam	nlina							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	6.14				SU			10/02/24 16:30	1
lient Sample ID: PZ-9						La	b Sample	ID: 180-180	875-9
ate Collected: 10/02/24 13:22								Matrix	
ate Received: 10/04/24 09:00									
Method: SW846 EPA 9056A - /									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	9.97		1.00	0.713	-			10/09/24 06:32	
Fluoride	0.0861	J	0.100	0.0260	-			10/09/24 06:32	-
Sulfate	24.6		1.00	0.756	mg/L			10/09/24 06:32	
Method: SW846 6020B - Metal			coverable						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Antimony	<0.000340		0.00200		0			10/10/24 22:10	
Arsenic	0.0173		0.00100	0.000860	-			10/10/24 22:10	1
Barium	0.0563		0.0100	0.000890	mg/L		10/10/24 07:42	10/10/24 23:15	1
<mark>Barium</mark> Beryllium	0.0563 <0.000200		0.0100 0.00100	0.000890 0.000200				10/10/24 23:15 10/10/24 22:10	1 1

Eurofins Pittsburgh

1

1

10/10/24 07:42 10/10/24 22:10

10/10/24 07:42 10/10/24 22:10

0.0800

0.0220 mg/L

0.00100 0.0000780 mg/L

0.477

< 0.0000780

Lab Sample ID: 180-180875-9 Matrix: Water

Client Sample ID: PZ-9 Date Collected: 10/02/24 13:22 Date Received: 10/04/24 09:00

Method: SW846 6020B - Metals (I						_	- ·		
Analyte		Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Calcium	12.1		0.500	0.140			10/10/24 07:42	10/10/24 22:10	
Chromium	0.00154	J	0.00200	0.00120	-		10/10/24 07:42	10/10/24 22:10	
Cobalt	0.00307		0.000500	0.000220	mg/L		10/10/24 07:42	10/10/24 22:10	
ead	0.000350	JB	0.00100	0.000210	mg/L		10/10/24 07:42	10/10/24 22:10	
lithium	0.0320		0.00500	0.00200	mg/L		10/10/24 07:42	10/10/24 22:10	
Molybdenum	0.0115		0.00500	0.000860	mg/L		10/10/24 07:42	10/10/24 22:10	
Selenium	<0.000990		0.00500	0.000990	mg/L		10/10/24 07:42	10/10/24 22:10	
Thallium .	<0.000260		0.00100	0.000260	mg/L		10/10/24 07:42	10/10/24 22:10	
Method: SW846 7470A - Mercury	· · · · ·								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Aercury <	0.0000800		0.000200	0.0000800	mg/L		10/11/24 10:19	10/11/24 17:31	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
otal Dissolved Solids (SM 2540C)	137		10.0	10.0	mg/L			10/07/24 11:36	
Method: EPA Field Sampling - Field Sampl		p <mark>ling</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Field pH	6.14				SU			10/02/24 14:22	
te Received: 10/05/24 09:45	ons. Ion	Chromato	graphy					Matrix	
te Received: 10/05/24 09:45 lethod: SW846 EPA 9056A - Anio				MDL	Unit	D	Prepared		Dil F
ate Received: 10/05/24 09:45 Nethod: SW846 EPA 9056A - Anio Analyte	Result	Chromato Qualifier	graphy RL 1.00		Unit ma/L	<u>D</u>	Prepared	Analyzed	Dil F
ate Received: 10/05/24 09:45 Method: SW846 EPA 9056A - Anio Analyte Chloride	Result 6.42	Qualifier	RL 1.00	0.713	mg/L	<u>D</u>	Prepared	Analyzed 10/09/24 06:51	Dil F
ate Received: 10/05/24 09:45 Method: SW846 EPA 9056A - Anio Analyte Chloride Fluoride	Result	Qualifier	RL		mg/L mg/L	<u>D</u>	Prepared	Analyzed	Dil F
ate Received: 10/05/24 09:45 Method: SW846 EPA 9056A - Anio nalyte Chloride Chloride Sulfate	Result 6.42 0.0400 5.89	Qualifier J	RL 1.00 0.100 1.00	0.713	mg/L mg/L	<u>D</u>	Prepared	Analyzed 10/09/24 06:51 10/09/24 06:51	Dil F
te Received: 10/05/24 09:45 Method: SW846 EPA 9056A - Anio Inalyte Schloride Iuoride Julfate Method: SW846 6020B - Metals (I	Result 6.42 0.0400 5.89	Qualifier J	RL 1.00 0.100 1.00 coverable RL	0.713 0.0260 0.756 MDL	mg/L mg/L mg/L Unit	<u>D</u>	Prepared Prepared	Analyzed 10/09/24 06:51 10/09/24 06:51	
Ite Received: 10/05/24 09:45 Iethod: SW846 EPA 9056A - Anio nalyte hloride luoride ulfate Iethod: SW846 6020B - Metals (I nalyte	Result 6.42 0.0400 5.89	Qualifier J - Total Rec	RL 1.00 0.100 1.00	0.713 0.0260 0.756 MDL	mg/L mg/L mg/L Unit			Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed	
Ite Received: 10/05/24 09:45 Iethod: SW846 EPA 9056A - Anie nalyte hloride luoride ulfate Iethod: SW846 6020B - Metals (I nalyte ntimony	Result 6.42 0.0400 5.89 ICP/MS) Result	Qualifier J - Total Rec	RL 1.00 0.100 1.00 coverable RL	0.713 0.0260 0.756 MDL	mg/L mg/L mg/L Unit mg/L		Prepared 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed	
Ite Received: 10/05/24 09:45 Iethod: SW846 EPA 9056A - Anie nalyte hloride luoride ulfate Iethod: SW846 6020B - Metals (I nalyte ntimony rsenic	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340	Qualifier J - Total Rec	RL 1.00 0.100 1.00 coverable RL 0.00200	0.713 0.0260 0.756 MDL 0.000340	mg/L mg/L mg/L Unit mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed 10/10/24 18:30	
Ite Received: 10/05/24 09:45 Iethod: SW846 EPA 9056A - Anionalyte hloride luoride ulfate Iethod: SW846 6020B - Metals (Inalyte ntimony rsenic arium	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340 0.00105	Qualifier J - Total Rec	RL 1.00 0.100 1.00 coverable RL 0.00200 0.00100	0.713 0.0260 0.756 MDL 0.000340 0.000860	mg/L mg/L mg/L <u>Unit</u> mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed 10/10/24 18:30 10/10/24 18:30	
te Received: 10/05/24 09:45	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340 0.00105 0.0174	Qualifier J - Total Rec Qualifier	RL 1.00 0.100 1.00 0.000 0.00200 0.00100 0.0100	0.713 0.0260 0.756 MDL 0.000340 0.000890 0.000890 0.000200 0.0220	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30	
te Received: 10/05/24 09:45	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340 0.00105 0.0174 <0.000200	Qualifier J - Total Rec Qualifier	RL 1.00 0.100 1.00 0.000 0.00200 0.00100 0.00100	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 10/10/24 06:51 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30	
te Received: 10/05/24 09:45	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340 0.00105 0.0174 <0.000200 0.0389	Qualifier J - Total Rec Qualifier	RL 1.00 0.100 1.00 0.000 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00800	0.713 0.0260 0.756 MDL 0.000340 0.000890 0.000890 0.000200 0.0220	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 10/10/24 06:51 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30	
te Received: 10/05/24 09:45	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340	Qualifier J - Total Rec Qualifier	RL 1.00 0.100 1.00 0.100 0.000 0.00200 0.00100 0.00100 0.0800 0.00100	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200 0.0220 0.0000780	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 10/10/24 06:51 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30	
te Received: 10/05/24 09:45	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340 0.00105 0.0174 <0.000200 0.0389 0.0000780 5.03	Qualifier J - Total Rec Qualifier	RL 1.00 0.100 1.00 0.100 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200 0.00220 0.0000780 0.140	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30	
te Received: 10/05/24 09:45 Iethod: SW846 EPA 9056A - Anie nalyte hloride luoride ulfate Iethod: SW846 6020B - Metals (I nalyte ntimony rsenic arium eryllium oron admium <	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340 0.00105 0.0174 <0.000200 0.0389 0.0000780 5.03 0.00204	Qualifier J - Total Rec Qualifier	RL 1.00 0.100 1.00 0.100 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200 0.000200 0.00220 0.0000780 0.140 0.0120	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30	
Ite Received: 10/05/24 09:45 Iethod: SW846 EPA 9056A - Anio nalyte hloride luoride ulfate Iethod: SW846 6020B - Metals (I nalyte ntimony rsenic arium eryllium foron admium coron admium cobalt ead	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340	Qualifier J - Total Rec Qualifier	RL 1.00 0.100 1.00 0.100 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.00200 0.000500	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200 0.000200 0.000200 0.000780 0.140 0.00120 0.000220	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30	
Ite Received: 10/05/24 09:45 Iethod: SW846 EPA 9056A - Anio nalyte hloride luoride ulfate Iethod: SW846 6020B - Metals (I nalyte ntimony rsenic arium eryllium foron admium admium ibromium fobalt ead ithium	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340 0.00105 0.0174 <0.000200 0.0389 0.0000780 5.03 0.00204 0.00163 0.00163	Qualifier J - Total Rec Qualifier J J	RL 1.00 0.100 1.00 0.100 1.00 coverable RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.500 0.00200 0.00200 0.00100 0.500 0.00200 0.00200 0.00100	0.713 0.0260 0.756 MDL 0.000340 0.000890 0.000200 0.000200 0.000200 0.000780 0.140 0.00120 0.000220 0.000210	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30	
Ate Received: 10/05/24 09:45 Aethod: SW846 EPA 9056A - Anio analyte chloride luoride sulfate Aethod: SW846 6020B - Metals (I analyte ntimony arsenic carium eryllium coron cadmium < calcium chromium cobalt ead ithium lolybdenum	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340 0.00105 0.0174 <0.000200 0.0389 0.0000780 5.03 0.00204 0.00163 0.00163 0.00163	Qualifier J - Total Rec Qualifier J J	RL 1.00 0.100 1.00 0.100 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00100 0.00200 0.00200 0.000500 0.00100 0.00500	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000200 0.00220 0.0000780 0.140 0.00120 0.000220 0.000220 0.000210 0.00220 0.000260	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 10/10/24 18:30 10/10/24 18:30	
te Received: 10/05/24 09:45	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340	Qualifier J - Total Rec Qualifier J J	RL 1.00 0.100 1.00 0.100 1.00 coverable RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.000500 0.00500 0.00500 0.00500	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000200 0.000200 0.000200 0.000780 0.140 0.00120 0.000210 0.000210 0.000210	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30 10/10/24 18:30	
ate Received: 10/05/24 09:45 Method: SW846 EPA 9056A - Anio Analyte Chloride Sulfate Method: SW846 6020B - Metals (I Analyte Analyte Analyte Analyte Arsenic Barium Boron Cadmium Cobalt Jead Jithium Aolybdenum Selenium Thallium	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340	Qualifier J - Total Rec Qualifier J J	RL 1.00 0.100 1.00 0.100 1.00 coverable RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.00200 0.00500 0.00500 0.00500 0.00500 0.00500	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200 0.00220 0.000780 0.140 0.00120 0.000220 0.000220 0.000210 0.000200 0.000200 0.000860 0.000990	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed 10/10/24 18:30 10/10/24 18:30	
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Lead Lithium Molybdenum Selenium	Result 6.42 0.0400 5.89 ICP/MS) Result <0.000340	Qualifier J - Total Rec Qualifier J J	RL 1.00 0.100 1.00 0.100 1.00 coverable RL 0.00200 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00200 0.00200 0.00200 0.00500 0.00500 0.00500 0.00500 0.00500	0.713 0.0260 0.756 MDL 0.000340 0.000860 0.000890 0.000200 0.000220 0.000780 0.140 0.00120 0.000220 0.000220 0.000210 0.000220 0.000220 0.000260	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 10/10/24 07:42 10/10/24 07:42	Analyzed 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 10/09/24 06:51 Analyzed 10/10/24 18:30 10/10/24 18:30	Dil F

Eurofins Pittsburgh

9

Client Sample Results

		Client	Sample	e Resul	ts				
lient: Southern Company roject/Site: Plant Daniel Ash Po	ond B		-				·	Job ID: 180-18	0875-1
lient Sample ID: BAW-4						Lab	Sample II	D: 180-1808	
Date Collected: 10/02/24 09:18 Date Received: 10/05/24 09:45								Matrix	: Water
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	40.0		10.0	10.0	mg/L			10/07/24 11:36	1
Method: EPA Field Sampling -	- Field Sam	olina							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	5.51				SU			10/02/24 10:18	1
							- Octobelle II	D- 400 4000	75 44
Client Sample ID: PZ-8						Lau) Sample II	D: 180-1808	
Date Collected: 10/02/24 11:50 Date Received: 10/05/24 09:45								Matrix	: Water
Method: SW846 EPA 9056A - A	Anions, Ion	Chromato	graphy						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.83		1.00	0.713	0			10/09/24 07:09	1
Fluoride	0.0642	J	0.100	0.0260	mg/L			10/09/24 07:09	1
Sulfate	19.0		1.00	0.756	mg/L			10/09/24 07:09	1
Method: SW846 6020B - Metals Analyte	Result	- Total Rec Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Antimony	< 0.000340		0.00200	0.000340 0.000860	-		10/10/24 07:42	10/10/24 22:18 10/10/24 22:18	1
Arsenic	0.00353 0.0511		0.00100 0.0100	0.000860	•			10/10/24 22:18 10/10/24 23:31	1
Barium Beryllium	0.0511 <0.000200		0.0100	0.000890				10/10/24 23:31 10/10/24 22:18	1
Boron	<0.000200 0.421		0.00100	0.000200	0			10/10/24 22:18	1
Boron Cadmium	0.421 <0.0000780		0.0800	0.0220	-			10/10/24 22:18	1
Calcium	<0.0000780 13.7		0.500	0.0000780				10/10/24 22:18	
Chromium	0.00160	1	0.00200	0.00120	-			10/10/24 22:18	1
Cobalt	0.00256	5	0.000500	0.000220	-			10/10/24 22:18	1
Lead	0.000355		0.00100	0.000220				10/10/24 22:18	1
Lithium	0.0589	• -	0.00500	0.00200	0			10/10/24 22:18	1
Molybdenum	0.00213	J	0.00500	0.000860	-			10/10/24 22:18	1
Selenium	<0.000990		0.00500	0.000990				10/10/24 22:18	1
Thallium	<0.000260		0.00100	0.000260	-			10/10/24 22:18	1
ຼ Method: SW846 7470A - Mercu	ury (CVAA)								
Analyte	· · · · · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.0000800		0.000200	0.0000800			10/11/24 10:19	10/11/24 17:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	108		10.0	10.0	mg/L			10/07/24 11:36	1
Method: EPA Field Sampling -		· ·				_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Field pH	6.02				SU			10/02/24 12:50	1

Lab Sample ID: MB 180-481230/42

Lab Sample ID: MB 180-481230/6

Matrix: Water

Matrix: Water

Matrix: Water

Analyte

Chloride

Fluoride

Sulfate

Analyte

Chloride

Fluoride

Sulfate

Analysis Batch: 481230

Analysis Batch: 481230

Method: EPA 9056A - Anions, Ion Chromatography

MB MB

MB MB

Result Qualifier

<0.713

<0.0260

<0.756

< 0.713

<0.756

< 0.0260

Result Qualifier

RL

1.00

0.100

1.00

RL

1.00

0.100

1.00

MDL Unit

0.713 mg/L

0.0260 mg/L

0.756 mg/L

MDL Unit

0.713 mg/L

0.0260 mg/L

0.756 mg/L

Prep Type: Total/NA

Dil Fac

Client Sample ID: Method Blank

Analyzed

10/08/24 22:32

10/08/24 22:32

10/08/24 22:32

Analyzed

10/08/24 10:46

10/08/24 10:46

10/08/24 10:46

Prep Type: Total/NA

Client Sample ID: DUP-05

Client Sample ID: DUP-05

Prep Type: Total/NA

Prep Type: Total/NA

Prepared

Prepared

D

D

1 1 1 **Client Sample ID: Method Blank** Prep Type: Total/NA Dil Fac 10 1 1 1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Analysis Batch: 481230								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	47.27		mg/L		95	80 - 120	
Fluoride	2.50	2.407		mg/L		96	80 - 120	
Sulfate	50.0	47.33		mg/L		95	80 - 120	

Lab Sample ID: LCS 180-481230/7

Lab Sample ID: LCS 180-481230/43

.....

Matrix: Water Analysis Batch: 481230

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	46.72		mg/L		93	80 - 120	
Fluoride	2.50	2.388		mg/L		96	80 - 120	
Sulfate	50.0	46.72		mg/L		93	80 - 120	

Lab Sample ID: 180-180875-6 MS **Matrix: Water**

Analysis Batch: 481230

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	5.29	. <u> </u>	50.0	53.42		mg/L		96	80 - 120	
Fluoride	0.0282	J	2.50	2.490		mg/L		98	80 - 120	
Sulfate	7.44		50.0	56.21		mg/L		98	80 - 120	

Lab Sample ID: 180-180875-6 MSD **Matrix: Water**

Analysis Batch: 481230

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	5.29		50.0	53.45		mg/L		96	80 - 120	0	15
Fluoride	0.0282	J	2.50	2.485		mg/L		98	80 - 120	0	15
Sulfate	7.44		50.0	55.80		mg/L		97	80 - 120	1	15

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 680-858764/1-A Matrix: Water Analysis Batch: 859028

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.000340		0.00200	0.000340	mg/L		10/10/24 07:42	10/10/24 22:59	1
Arsenic	<0.000860		0.00100	0.000860	mg/L		10/10/24 07:42	10/10/24 22:59	1
Barium	<0.000890		0.0100	0.000890	mg/L		10/10/24 07:42	10/10/24 22:59	1
Beryllium	<0.000200		0.00100	0.000200	mg/L		10/10/24 07:42	10/10/24 22:59	1
Boron	<0.0220		0.0800	0.0220	mg/L		10/10/24 07:42	10/10/24 22:59	1
Cadmium	<0.0000780		0.00100	0.0000780	mg/L		10/10/24 07:42	10/10/24 22:59	1
Calcium	<0.140		0.500	0.140	mg/L		10/10/24 07:42	10/10/24 22:59	1
Chromium	<0.00120		0.00200	0.00120	mg/L		10/10/24 07:42	10/10/24 22:59	1
Cobalt	<0.000220		0.000500	0.000220	mg/L		10/10/24 07:42	10/10/24 22:59	1
Lead	0.0003500	J	0.00100	0.000210	mg/L		10/10/24 07:42	10/10/24 22:59	1
Lithium	0.002125	J	0.00500	0.00200	mg/L		10/10/24 07:42	10/10/24 22:59	1
Molybdenum	<0.000860		0.00500	0.000860	mg/L		10/10/24 07:42	10/10/24 22:59	1
Selenium	<0.000990		0.00500	0.000990	mg/L		10/10/24 07:42	10/10/24 22:59	1
Thallium	<0.000260		0.00100	0.000260	mg/L		10/10/24 07:42	10/10/24 22:59	1

Lab Sample ID: LCS 680-858764/2-A Matrix: Water Analysis Batch: 859028

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.0500	0.05436		mg/L		109	80 - 120
Arsenic	0.100	0.1067		mg/L		107	80 - 120
Barium	0.100	0.1073		mg/L		107	80 - 120
Beryllium	0.0500	0.05413		mg/L		108	80 - 120
Boron	0.400	0.4173		mg/L		104	80 - 120
Cadmium	0.0500	0.05399		mg/L		108	80 - 120
Calcium	5.00	4.998		mg/L		100	80 - 120
Chromium	0.100	0.1137		mg/L		114	80 - 120
Cobalt	0.0500	0.05659		mg/L		113	80 - 120
Lead	0.500	0.5352		mg/L		107	80 - 120
Lithium	0.500	0.5164		mg/L		103	80 - 120
Molybdenum	0.100	0.1116		mg/L		112	80 - 120
Selenium	0.100	0.1053		mg/L		105	80 - 120
Thallium	0.0500	0.05313		mg/L		106	80 - 120

Lab Sample ID: LCSD 680-858764/3-A Matrix: Water Analysis Batch: 859028

Client Sample ID: Lab Control Sample Dup Prep Type: Total Recoverable Prep Batch: 858764

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 858764

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.0500	0.05386		mg/L		108	80 - 120	1	20
Arsenic	0.100	0.1058		mg/L		106	80 - 120	1	20
Barium	0.100	0.1064		mg/L		106	80 - 120	1	20
Beryllium	0.0500	0.05378		mg/L		108	80 - 120	1	20
Boron	0.400	0.4138		mg/L		103	80 - 120	1	20
Cadmium	0.0500	0.05476		mg/L		110	80 - 120	1	20
Calcium	5.00	5.245		mg/L		105	80 - 120	5	20
Chromium	0.100	0.1147		mg/L		115	80 - 120	1	20
Cobalt	0.0500	0.05661		mg/L		113	80 - 120	0	20

Eurofins Pittsburgh

5 6

10

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 858764

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 680-858764/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total Recoverable Analysis Batch: 859028 **Prep Batch: 858764** LCSD LCSD RPD Spike %Rec Analyte Added **Result Qualifier** Unit D %Rec Limits RPD Limit Lead 0.500 0.5321 mg/L 106 80 - 120 20 1 Lithium 0.500 0.5070 mg/L 101 80 - 120 2 20 0.100 20 Molybdenum 0.1102 mg/L 110 80 - 120 1 Selenium 0.100 0.1066 mg/L 107 80 - 120 20 1 Thallium 0.0500 0.05310 106 80 - 120 20 mg/L 0

Lab Sample ID: MB 680-858765/1-A

Matrix: Water Analysis Batch: 859028

MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac < 0.000340 0.00200 0.000340 mg/L 10/10/24 07:42 10/10/24 17:25 Antimony 1 Arsenic <0.000860 0.00100 0.000860 mg/L 10/10/24 07:42 10/10/24 17:25 1 Barium < 0.000890 0.0100 0.000890 mg/L 10/10/24 07:42 10/10/24 17:25 1 Beryllium < 0.000200 0.00100 0.000200 mg/L 10/10/24 07:42 10/10/24 17:25 1 10/10/24 07:42 10/10/24 17:25 Boron < 0.0220 0.0800 0.0220 mg/L 1 Cadmium <0.0000780 0.00100 0.0000780 mg/L 10/10/24 07:42 10/10/24 17:25 1 Calcium 10/10/24 07:42 10/10/24 17:25 < 0.140 0.500 0.140 mg/L 1 Chromium < 0.00120 0.00200 0.00120 mg/L 10/10/24 07:42 10/10/24 17:25 1 Cobalt < 0.000220 0.000500 0.000220 mg/L 10/10/24 07:42 10/10/24 17:25 1 0.000210 mg/L 10/10/24 07:42 10/10/24 17:25 Lead 0.0002100 0.00100 0.00200 mg/L Lithium < 0.00200 0.00500 10/10/24 07:42 10/10/24 17:25 1 Molybdenum < 0.000860 0.00500 0.000860 mg/L 10/10/24 07:42 10/10/24 17:25 1 Selenium 0.00500 0.000990 mg/L 10/10/24 07:42 10/10/24 17:25 < 0.000990 1 0.000260 mg/L Thallium < 0.000260 0.00100 10/10/24 07:42 10/10/24 17:25 1

Lab Sample ID: LCS 680-858765/2-A Matrix: Water Analysis Batch: 859028

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.0500	0.05439		mg/L		109	80 - 120
Arsenic	0.100	0.1068		mg/L		107	80 - 120
Barium	0.100	0.1061		mg/L		106	80 - 120
Beryllium	0.0500	0.05317		mg/L		106	80 - 120
Boron	0.400	0.3907		mg/L		98	80 - 120
Cadmium	0.0500	0.05477		mg/L		110	80 - 120
Calcium	5.00	5.422		mg/L		108	80 - 120
Chromium	0.100	0.1178		mg/L		118	80 - 120
Cobalt	0.0500	0.05817		mg/L		116	80 - 120
Lead	0.500	0.5395		mg/L		108	80 - 120
Lithium	0.500	0.5257		mg/L		105	80 - 120
Molybdenum	0.100	0.1127		mg/L		113	80 - 120
Selenium	0.100	0.1055		mg/L		105	80 - 120
Thallium	0.0500	0.05279		mg/L		106	80 - 120

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 858765

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable **Prep Batch: 858765**

10

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 680-858765/3-A **Matrix: Water**

Analysis Batch: 859028							Prep Ba	atch: 8	58765
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	0.0500	0.05489		mg/L		110	80 - 120	1	20
Arsenic	0.100	0.1078		mg/L		108	80 - 120	1	20
Barium	0.100	0.1068		mg/L		107	80 - 120	1	20
Beryllium	0.0500	0.05087		mg/L		102	80 - 120	4	20
Boron	0.400	0.3790		mg/L		95	80 - 120	3	20
Cadmium	0.0500	0.05586		mg/L		112	80 - 120	2	20
Calcium	5.00	5.335		mg/L		107	80 - 120	2	20
Chromium	0.100	0.1176		mg/L		118	80 - 120	0	20
Cobalt	0.0500	0.05850		mg/L		117	80 - 120	1	20
Lead	0.500	0.5408		mg/L		108	80 - 120	0	20
Lithium	0.500	0.4836		mg/L		97	80 - 120	8	20
Molybdenum	0.100	0.1138		mg/L		114	80 - 120	1	20
Selenium	0.100	0.1045		mg/L		105	80 - 120	1	20
Thallium	0.0500	0.05318		mg/L		106	80 - 120	1	20

Lab Sample ID: MB 680-858767/1-A Matrix: Water Analysis Batch: 859079

								The Batom	
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.000340		0.00200	0.000340	mg/L		10/10/24 07:42	10/10/24 20:57	1
Arsenic	<0.000860		0.00100	0.000860	mg/L		10/10/24 07:42	10/10/24 20:57	1
Barium	<0.000890		0.0100	0.000890	mg/L		10/10/24 07:42	10/10/24 20:57	1
Beryllium	<0.000200		0.00100	0.000200	mg/L		10/10/24 07:42	10/10/24 20:57	1
Boron	<0.0220		0.0800	0.0220	mg/L		10/10/24 07:42	10/10/24 20:57	1
Cadmium	<0.0000780		0.00100	0.0000780	mg/L		10/10/24 07:42	10/10/24 20:57	1
Calcium	<0.140		0.500	0.140	mg/L		10/10/24 07:42	10/10/24 20:57	1
Chromium	<0.00120		0.00200	0.00120	mg/L		10/10/24 07:42	10/10/24 20:57	1
Cobalt	<0.000220		0.000500	0.000220	mg/L		10/10/24 07:42	10/10/24 20:57	1
Lead	0.0002800	J	0.00100	0.000210	mg/L		10/10/24 07:42	10/10/24 20:57	1
Lithium	<0.00200		0.00500	0.00200	mg/L		10/10/24 07:42	10/10/24 20:57	1
Molybdenum	<0.000860		0.00500	0.000860	mg/L		10/10/24 07:42	10/10/24 20:57	1
Selenium	<0.000990		0.00500	0.000990	mg/L		10/10/24 07:42	10/10/24 20:57	1
Thallium	<0.000260		0.00100	0.000260	mg/L		10/10/24 07:42	10/10/24 20:57	1

Lab Sample ID: LCS 680-858767/2-A Matrix: Water Analysis Batch: 859079

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 858767

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	0.0500	0.05192		mg/L		104	80 - 120	
Arsenic	0.100	0.1012		mg/L		101	80 - 120	
Barium	0.100	0.1044		mg/L		104	80 - 120	
Beryllium	0.0500	0.05056		mg/L		101	80 - 120	
Boron	0.400	0.3959		mg/L		99	80 - 120	
Cadmium	0.0500	0.05317		mg/L		106	80 - 120	
Calcium	5.00	4.994		mg/L		100	80 - 120	
Chromium	0.100	0.1090		mg/L		109	80 - 120	
Cobalt	0.0500	0.05315		mg/L		106	80 - 120	

Eurofins Pittsburgh

5 6

10

Client Sample ID: Lab Control Sample Dup

Prep Type: Total Recoverable

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 858767

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680- Matrix: Water Analysis Batch: 859079	858767/2-A					Clie			Lab Contro e: Total Re Prep Batc	cove	rable
Analysis Baten. 000075			Spike	LCS	LCS				%Rec		
Analyte			Added		Qualifier	Unit	П	%Rec	Limits		
Lead			0.500	0.5212		mg/L		104	80 - 120		
Lithium			0.500	0.4857		mg/L		97	80 - 120		
Molybdenum			0.100	0.1054		mg/L		105	80 - 120		
Selenium			0.100	0.09767		mg/L		98	80 - 120		
Thallium			0.0500	0.05273		mg/L		105	80 - 120		
lethod: 7470A - Merc	ury (CVAA)									
Lab Sample ID: MB 680-8	59033/1-A						Clie	ent Sam	ple ID: Metl	nod E	Blank
Matrix: Water									Prep Type	: Tot	al/N/
Analysis Batch: 859296									Prep Batc	h: 85	5903
		MB MB									
Analyte	Re	sult Qualifie	r	RL	MDL Unit			repared	Analyzed	I	Dil Fa
Mercury	<0.000	0800	0.000	0.000	0800 mg/L		10/1	1/24 10:19	10/11/24 17:	11	
Lab Sample ID: LCS 680-	859033/2-A					Clie	ent Sai	nple ID:	Lab Contro	ol Sa	mple
Matrix: Water									Prep Type		
Analysis Batch: 859296									Prep Batc	h: 85	5903:
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lab Sample ID: 180-1808 Matrix: Water Analysis Batch: 859296	75-1 MS							Clie	ent Sample Prep Type Prep Batc	: Tot	al/N/
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	<0.0000800		0.00100	0.0009617		mg/L		96	80 - 120		
Lab Sample ID: 180-1808 Matrix: Water	75-1 MSD							Clie	ent Sample Prep Type		
Analysis Batch: 859296									Prep Batc	h: 85	5903
-	Sample	Sample	Spike	MSD	MSD				%Rec		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Mercury	<0.0000800		0.00100	0.0009831		mg/L		98	80 - 120	2	20
Lab Sample ID: MB 680-8	59498/1-A						Clie	ent Sam	ple ID: Metl		
-									Prep Type Prep Batc		
Matrix: Water Analysis Batch: 859714									Trop Date		
Matrix: Water Analysis Batch: 859714		MB MB									Dil Fac
Analysis Batch: 859714	Re	MB MB esult Qualifie	r	RL	MDL Unit		D P	repared	Analyzed	I	רווע רווע
	Re <0.0000	esult Qualifie	r 0.000		MDL Unit			repared 5/24 11:03	Analyzed		
Analysis Batch: 859714 Analyte	<0.000	esult Qualifie				Clie	10/1	5/24 11:03	10/16/24 09:	13 ol Sa	mple
Analysis Batch: 859714 Analyte Mercury	<0.000	esult Qualifie				Clie	10/1	5/24 11:03	10/16/24 09:	13 ol Sa	mple
Analysis Batch: 859714 Analyte Mercury Lab Sample ID: LCS 680-	<0.000	esult Qualifie				Clie	10/1	5/24 11:03	10/16/24 09:	13 ol Sa : Tot	mple al/NA
Analysis Batch: 859714 Analyte Mercury Lab Sample ID: LCS 680- Matrix: Water	<0.000	esult Qualifie		0.000		Clie	10/1	5/24 11:03	Lab Contro Prep Type	13 ol Sa : Tot	imple al/NA

QC Sample Results

Job ID: 180-180875-1

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-48117 Matrix: Water	71/1								Clie	ent San	nple ID: Method Prep Type: To	
Analysis Batch: 481171		MB MB										
Analista	De	MB MB						-			A walk was d	
Analyte		Sult Qualifier		RL		MDL Un	-	<u>D</u>	P	repared	Analyzed	Dil Fac
Total Dissolved Solids	<	10.0		10.0		10.0 mg	/L				10/07/24 11:36	1
Lab Sample ID: LCS 180-4811 Matrix: Water	71/2						C	lient	Sai	nple ID): Lab Control S	
											Prep Type: To	nai/inA
Analysis Batch: 481171			Spike		~~	LCS					%Rec	
Analyta			Added		-	Qualifie	r Unit		D	%Rec	Limits	
Analyte Total Dissolved Solids			721)2.0	Quaime				97		
Total Dissolved Solids			121	70	JZ.U		mg/L	•		97	00 - 110	
Lab Sample ID: 180-180875-1	DU									CI	ient Sample ID:	FB-03
Matrix: Water											Prep Type: To	
Analysis Batch: 481171												
·····,	Sample	Sample			DU	DU						RPD
Analyte	•	Qualifier		Res	sult	Qualifie	r Unit		D		RPD	Limit
Total Dissolved Solids	<10.0			<1	10.0		mg/L				NC	10
Lab Sample ID: 180-180875-7	DU									CI	ient Sample ID:	EB-03
Matrix: Water											Prep Type: To	
Analysis Batch: 481171												
	Sample	Sample			DU	DU						RPD
Analyte	•	Qualifier		Res	sult	Qualifie	r Unit		D		RPD	Limit
Total Dissolved Solids	<10.0				10.0		mg/L				<u></u> NC	

HPLC/IC

Analysis Batch: 481230

_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
80-180875-1	FB-03	Total/NA	Water	EPA 9056A	
180-180875-2	BAW-1	Total/NA	Water	EPA 9056A	
180-180875-3	BAW-7	Total/NA	Water	EPA 9056A	
180-180875-4	BAW-2A	Total/NA	Water	EPA 9056A	
180-180875-5	BAW-3	Total/NA	Water	EPA 9056A	
180-180875-6	DUP-05	Total/NA	Water	EPA 9056A	
180-180875-7	EB-03	Total/NA	Water	EPA 9056A	
180-180875-8	BAW-5	Total/NA	Water	EPA 9056A	
180-180875-9	PZ-9	Total/NA	Water	EPA 9056A	
180-180875-10	BAW-4	Total/NA	Water	EPA 9056A	
180-180875-11	PZ-8	Total/NA	Water	EPA 9056A	
MB 180-481230/42	Method Blank	Total/NA	Water	EPA 9056A	
MB 180-481230/6	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-481230/43	Lab Control Sample	Total/NA	Water	EPA 9056A	
LCS 180-481230/7	Lab Control Sample	Total/NA	Water	EPA 9056A	
180-180875-6 MS	DUP-05	Total/NA	Water	EPA 9056A	
180-180875-6 MSD	DUP-05	Total/NA	Water	EPA 9056A	

Prep Batch: 858764

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-180875-4	BAW-2A	Total Recoverable	Water	3005A	
180-180875-5	BAW-3	Total Recoverable	Water	3005A	
180-180875-6	DUP-05	Total Recoverable	Water	3005A	
180-180875-7	EB-03	Total Recoverable	Water	3005A	
180-180875-8	BAW-5	Total Recoverable	Water	3005A	
180-180875-9	PZ-9	Total Recoverable	Water	3005A	
180-180875-11	PZ-8	Total Recoverable	Water	3005A	
MB 680-858764/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-858764/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCSD 680-858764/3-A	Lab Control Sample Dup	Total Recoverable	Water	3005A	

Prep Batch: 858765

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-180875-1	FB-03	Total Recoverable	Water	3005A	
180-180875-2	BAW-1	Total Recoverable	Water	3005A	
180-180875-3	BAW-7	Total Recoverable	Water	3005A	
180-180875-10	BAW-4	Total Recoverable	Water	3005A	
MB 680-858765/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-858765/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCSD 680-858765/3-A	Lab Control Sample Dup	Total Recoverable	Water	3005A	

Prep Batch: 858767

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-180875-4	BAW-2A	Total Recoverable	Water	3005A	
180-180875-5	BAW-3	Total Recoverable	Water	3005A	
180-180875-6	DUP-05	Total Recoverable	Water	3005A	
180-180875-7	EB-03	Total Recoverable	Water	3005A	
180-180875-8	BAW-5	Total Recoverable	Water	3005A	
180-180875-9	PZ-9	Total Recoverable	Water	3005A	

QC Association Summary

Metals (Continued)

Prep Batch: 858767 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-180875-11	PZ-8	Total Recoverable	Water	3005A	
MB 680-858767/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-858767/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 859028

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
180-180875-1	FB-03	Total Recoverable	Water	6020B	858765	
180-180875-2	BAW-1	Total Recoverable	Water	6020B	858765	
180-180875-3	BAW-7	Total Recoverable	Water	6020B	858765	
180-180875-4	BAW-2A	Total Recoverable	Water	6020B	858764	
180-180875-5	BAW-3	Total Recoverable	Water	6020B	858764	
180-180875-6	DUP-05	Total Recoverable	Water	6020B	858764	
180-180875-7	EB-03	Total Recoverable	Water	6020B	858764	
180-180875-8	BAW-5	Total Recoverable	Water	6020B	858764	
180-180875-9	PZ-9	Total Recoverable	Water	6020B	858764	
180-180875-10	BAW-4	Total Recoverable	Water	6020B	858765	
180-180875-11	PZ-8	Total Recoverable	Water	6020B	858764	
MB 680-858764/1-A	Method Blank	Total Recoverable	Water	6020B	858764	
MB 680-858765/1-A	Method Blank	Total Recoverable	Water	6020B	858765	
LCS 680-858764/2-A	Lab Control Sample	Total Recoverable	Water	6020B	858764	
LCS 680-858765/2-A	Lab Control Sample	Total Recoverable	Water	6020B	858765	
LCSD 680-858764/3-A	Lab Control Sample Dup	Total Recoverable	Water	6020B	858764	
LCSD 680-858765/3-A	Lab Control Sample Dup	Total Recoverable	Water	6020B	858765	

Prep Batch: 859033

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-180875-1	FB-03	Total/NA	Water	7470A	
180-180875-2	BAW-1	Total/NA	Water	7470A	
180-180875-3	BAW-7	Total/NA	Water	7470A	
180-180875-4	BAW-2A	Total/NA	Water	7470A	
180-180875-5	BAW-3	Total/NA	Water	7470A	
180-180875-6	DUP-05	Total/NA	Water	7470A	
180-180875-7	EB-03	Total/NA	Water	7470A	
180-180875-8	BAW-5	Total/NA	Water	7470A	
180-180875-9	PZ-9	Total/NA	Water	7470A	
180-180875-11	PZ-8	Total/NA	Water	7470A	
MB 680-859033/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-859033/2-A	Lab Control Sample	Total/NA	Water	7470A	
180-180875-1 MS	FB-03	Total/NA	Water	7470A	
180-180875-1 MSD	FB-03	Total/NA	Water	7470A	

Analysis Batch: 859079

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-180875-4	BAW-2A	Total Recoverable	Water	6020B	858767
180-180875-5	BAW-3	Total Recoverable	Water	6020B	858767
180-180875-6	DUP-05	Total Recoverable	Water	6020B	858767
180-180875-7	EB-03	Total Recoverable	Water	6020B	858767
180-180875-8	BAW-5	Total Recoverable	Water	6020B	858767
180-180875-9	PZ-9	Total Recoverable	Water	6020B	858767
180-180875-11	PZ-8	Total Recoverable	Water	6020B	858767
MB 680-858767/1-A	Method Blank	Total Recoverable	Water	6020B	858767

QC Association Summary

Client: Southern Company Project/Site: Plant Daniel Ash Pond B

Metals (Continued)

Analysis Batch: 859079 (Continued)

Lab Sample ID LCS 680-858767/2-A	Client Sample ID Lab Control Sample	Prep Type Total Recoverable	Matrix Water	Method 6020B	Prep Batch 858767	
Analysis Batch: 85020						

Analysis Batch: 859296

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-180875-1	FB-03	Total/NA	Water	7470A	859033
180-180875-2	BAW-1	Total/NA	Water	7470A	859033
180-180875-3	BAW-7	Total/NA	Water	7470A	859033
180-180875-4	BAW-2A	Total/NA	Water	7470A	859033
180-180875-5	BAW-3	Total/NA	Water	7470A	859033
180-180875-6	DUP-05	Total/NA	Water	7470A	859033
180-180875-7	EB-03	Total/NA	Water	7470A	859033
180-180875-8	BAW-5	Total/NA	Water	7470A	859033
180-180875-9	PZ-9	Total/NA	Water	7470A	859033
180-180875-11	PZ-8	Total/NA	Water	7470A	859033
MB 680-859033/1-A	Method Blank	Total/NA	Water	7470A	859033
LCS 680-859033/2-A	Lab Control Sample	Total/NA	Water	7470A	859033
180-180875-1 MS	FB-03	Total/NA	Water	7470A	859033
180-180875-1 MSD	FB-03	Total/NA	Water	7470A	859033

Prep Batch: 859498

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-180875-10	BAW-4	Total/NA	Water	7470A	
MB 680-859498/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-859498/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 859714

Lab Sample ID 180-180875-10	Client Sample ID BAW-4	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch 859498
MB 680-859498/1-A	Method Blank	Total/NA	Water	7470A	859498
LCS 680-859498/2-A	Lab Control Sample	Total/NA	Water	7470A	859498

General Chemistry

Analysis Batch: 481171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-180875-1	FB-03	Total/NA	Water	SM 2540C	
180-180875-2	BAW-1	Total/NA	Water	SM 2540C	
180-180875-3	BAW-7	Total/NA	Water	SM 2540C	
180-180875-4	BAW-2A	Total/NA	Water	SM 2540C	
180-180875-5	BAW-3	Total/NA	Water	SM 2540C	
180-180875-6	DUP-05	Total/NA	Water	SM 2540C	
180-180875-7	EB-03	Total/NA	Water	SM 2540C	
180-180875-8	BAW-5	Total/NA	Water	SM 2540C	
180-180875-9	PZ-9	Total/NA	Water	SM 2540C	
180-180875-10	BAW-4	Total/NA	Water	SM 2540C	
180-180875-11	PZ-8	Total/NA	Water	SM 2540C	
MB 180-481171/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-481171/2	Lab Control Sample	Total/NA	Water	SM 2540C	
180-180875-1 DU	FB-03	Total/NA	Water	SM 2540C	
180-180875-7 DU	EB-03	Total/NA	Water	SM 2540C	

QC Association Summary

Field Service / Mobile Lab

Analysis Batch: 483190

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-180875-2	BAW-1	Total/NA	Water	Field Sampling	
180-180875-3	BAW-7	Total/NA	Water	Field Sampling	
180-180875-4	BAW-2A	Total/NA	Water	Field Sampling	
180-180875-5	BAW-3	Total/NA	Water	Field Sampling	
180-180875-8	BAW-5	Total/NA	Water	Field Sampling	
180-180875-9	PZ-9	Total/NA	Water	Field Sampling	
180-180875-10	BAW-4	Total/NA	Water	Field Sampling	
180-180875-11	PZ-8	Total/NA	Water	Field Sampling	

10

11 12 13

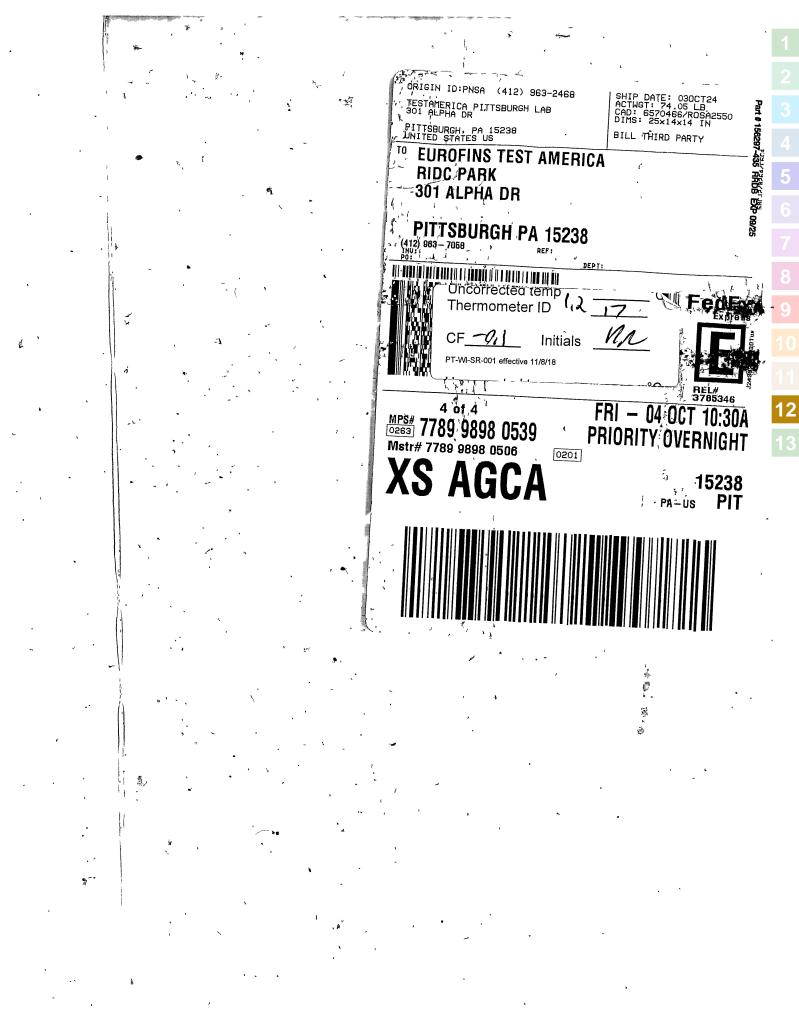
Pittsburgh	
TestAmerica,	ve RIDC Park
Eurofins	301 Alpha Dri

Eurofins TestAmerica, Pittsburgh 301 Alpha Drve RIDC Park Pittsburgh, PA 15238 Phone (412) 963-7058 Fax (412) 963-2468	Chain of (of Custody Record	rd		ở eurofins Environment Testing America
	Sampler Tool / KGUTH	Lab PM Brown, Sh	18	Carrier Tracking No(s)	COC No
Client Contact SCS Contacts	-212-	Z E-Mail Shali.browr	E-Mail shali.brown@eurofinset com		Раде
			Analysis	Requested	Job #
Address 3535 Colonnade Pkwy Bin S 530 EC	Due Date Requested:				
Cıty Bırmıngham	TAT Requested (days):				B - NOCH N - Noone C - Zn Acetate O - AsNaO2
State, zip Alabama					
Phone 205 992 6283	-#Od	(0			
	#OM		(VI br 93sîl		I - Ice J - DI Water
Project Name Daniel Ash Pond B CCR	Project # 18020047		ns III qo u2 sbi		K - EDA L - EDA
	#MOSS		qA) 4f 1oul7 9 sbilo2		of cother:
	Sample	_	208 Custom 470 Mercury 0656 Chlorid 01320/ved 1320 Ma 228 Ma 228		otal Number
Sample Identification	Sample Uate Late G=g		91 6 72 99		E Special Instructions/Note:
FR-03		3			9
BAW -1	1 1350	3		(pois	9
BAW-7	200734 1720 G	5 3 5		snO 1	6
BAW-ZA	200734 1115 6	22			
BAW-3	200727 0859 G	3			\$
DUP-DS	200igy 0759 G	5 3			20
EB-03	2007734 1345 G	5		8081	6
BAW -5	206724 1530 G	r 2			9
6-20	200737 1322 G	\sim			0
BAW-4	200724 0918 6	3			ø
12-8	202524 1150 G	5			6
	Poison B	Sadiological	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Non	assessed if samples are reta	tained longer than 1 month) Archive For Months
			C Requirem		
Empty Kit Relinquished by	Date	Time.	/ ./.	Method of Shipment:	1
Relinquished by Todd Vorces Rhyll	- JOCT 24 1400	Company RM	Received by	Date/Time, 24	0945
Relinquished by	Date/Time	Company	Received by	Date/Time	Company
	Date/Time	Company	Received by	Date/Time	Company
Custody Seals Intact Custody Seal No.: Δ Yes Δ No			Cooler Temperature(s) °C and Other Remarks	marks	
					Ver: 01/16/2019
			11 12 13	7 8 9 10	1 2 3 4 5 6

	1
	Б.
	U
	61
	6
	4

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park

5


Chain 0

🔅 eurofins

ou i Alpria Unive RUUC Park Pittsburgh, IPA 15238	C	Chain of Custody Record	Cust	ody R	oco	đ												: 0		😴 curonns		Environn America	ment	Environment Testing America	00
Phone (412) 963-7058 Fax (412) 963-2468	Sampler 7. //	1 26.84		Lab PM							5														1
Client Information	Voleus	KRISSNAM		Brown,	n, Shali								(chai fairnai	(element				200 190	ŝ						
SCS Contacts	Phone			shali.	e-mail: shali.brown@eurofinset.com	Deurof	inset.	mo									73	afe							
Company: SCS								~ 1	nalysis	is R	Requested	peta	<u> </u>					8							
Address: 3535 Colonnade Pkwy Bin S 530 EC	Due Date Requested								·	_	-						7	rese	Preservation	n Codes:	les:				
City: Birmingham	TAT Requested (days)	5):																B-Na	ξr		N - 1	Hexane None			
State, Zip. Alabarna																			C - Zn Acetate D - Nitric Acid	- 10	000	4204	0 - AsNa02 P - Na2OAS 0 - Na2OAS		
Phone: 205.992.6283	PO #																George	F - MeOH G - Amchi	MeOH Amchlor		S RU	4a2S2/	ដ		
Email: SCS Contacts	WO #					I IV)	ate										1.1	- 100 H - Ag	H - Ascorbic Acid - Ice - In Water	ĝ	< C	Carbon Do	decalny	drate	
Project Name Daniel Ash Pond B CCR	Project #: 18/020047					III and	e Sulf		bined								-	599	K - EDTA		N N	HPR (2			
Site	SSOW#					4 (App	Fluoric	olids	d Com									Other:							
		~	ample	Matrix			and substant	lved S	228 an								ber of								
Sample Identification		U.		,	ield Filter erform M	120B Cue	0656 Chi	otal Disso	a 226 Ra 2								otal Num								
	X	X	Preservation Code:		_							ALC: N					X				1				62
FB-03	actay	1130	ର	3	20	Ŏ	$\widehat{\mathbf{X}}$	Х	Х								9								
1540-1	200727	350 0	0	3	20	\diamond	\Diamond	X	Х								5								
BAW - 7.	20CT2Y 1	720 0	S	3	20	X		\ge	Х								0								
BAW-2A	20CT27 1	115 0	0	3	10	\diamond	\Diamond	X	Х								0								
BAW-3	2 OCTAY 0	0859 0	ର	3	~20	Ķ	$\overline{\mathbf{X}}$	X	Х								9								
002-05	200727 4	0759 (0 0	3	20	\diamond	\Diamond	Х	Х								0								
EB-03	2007241	1345 0	0	3	20	\diamond	\Diamond	Х	Х								5								
BAW-5	2007241	1530 C	5	3	10	\bigotimes	\bigcirc	X	\ge								0								
6-20	200124	1322 0	0	3	no	X	Ż	X	Х								6								
BAW-4	rocray "	8160	0	5	10	$\stackrel{\scriptstyle \leftarrow}{\scriptstyle \leftarrow}$	\Diamond	\times	Х								0								
P2-8	200724	1150 0	6	8	20	\triangleleft	\Diamond		Х								0								
Non-Hazard Flammable Skin Irritant Doi:	Poison B		Radiological		San	Sample Disposal (A fee may be assessed if samples	Deturn To Client	al (A	fee n	nay b ∏b	eass	esse	difs	amp	les a		aine	dion	iger t	are retained longer than 1 month)	1 mor	15)	,		
ested: I, II, III, IV, Other (specify)			c		Spe	Special Instructions/	structio	013	C Requirements	quirer	nents	ants:	-	į			40						ľ		
Empty Kit Relinquished by:		Date:			Time:							M	Method of Shipment:	f Ship	nent										
Reinquished by: Todd Voreis	Date/Time: 300724	1400		Company ROH ENU		Received by	d by:					ł		Dat	Date/Time:	Ê					Co	Company			
reinquished by	Date/Time:		C	Company		Received by	d by:							Dat	Date/Time	, r					Cor	Company			
reinguished by	Date/Time		0	Company		Received by	d by:							Dat	Date/Time						Cor	Company			
Lustody Seals Inflact: Custody Seal No.: ∆ Yes ∆ No						Cooler Temperature(s) °C and Other Remarks	empera	ature(s)	°C and	d Othe	Rem	arks:													

ORIGIN , ID: PNSA (412) 963-2468 SHIP DATE: 030CT24 ACTWGT: 73.00 LB CAD: 6570466/R0SA2550 DIMS: 25x14x13 IN TESTAMERICA PITTSBURGH LAB PITTSBURGH, PA 15238 UNITED STATES US BILL THIRD PARTY ID. EUROFINS TEST AMERICA RIDC PARK 4 **301 ALPHA DR** PITTSBURGH PA 15238 Uncorrected temp FedEx CF Initials PT-WI-SR-001 effective 11/8/18 FRI – 04 OCT 10:30 3 of 4 MPS# 7789 9898 0528 0263 7789 9898 0528 Mstr# 7789 9898 0506 **PRIORITY OVERNIGH** 0201 AG 15 -US PÅ-

1520 Aliport Blvd Ste A Pensaccia, FL 32504 850.474.3796

October 3, 2024 1.56 PM Receipt # · PN5K00807205

FedEx Express FedEx Priority Overnight Estimated 778998980506 778998980517 778998980528 778998980539 Recipient Address Eurofins Test America RTDC Park

301 Alpha Dr PITTSBURGH, PA 15238, US 412 963-7058 Scheduled Delivery Date: 10/04/2024 Pricing Option: Standard Rate Package Information: Your Packaging Additional Services: No Signature Required Total Weight: 289,15 lbs (S) Total Declared Value: \$400 Total Pieces: 4

Pcs	Weight/pc (lbs.)	DV/pc (USD)	Dims. (in.)
1	73.25 (S)	\$100	25x14x14
1	68.85 (S)	\$100	25x14x13
1	73,00 (S)	\$100	25x14x13
1	74.05 (S)	\$100	25x14x14
-	10.000 Pro-		Annual I

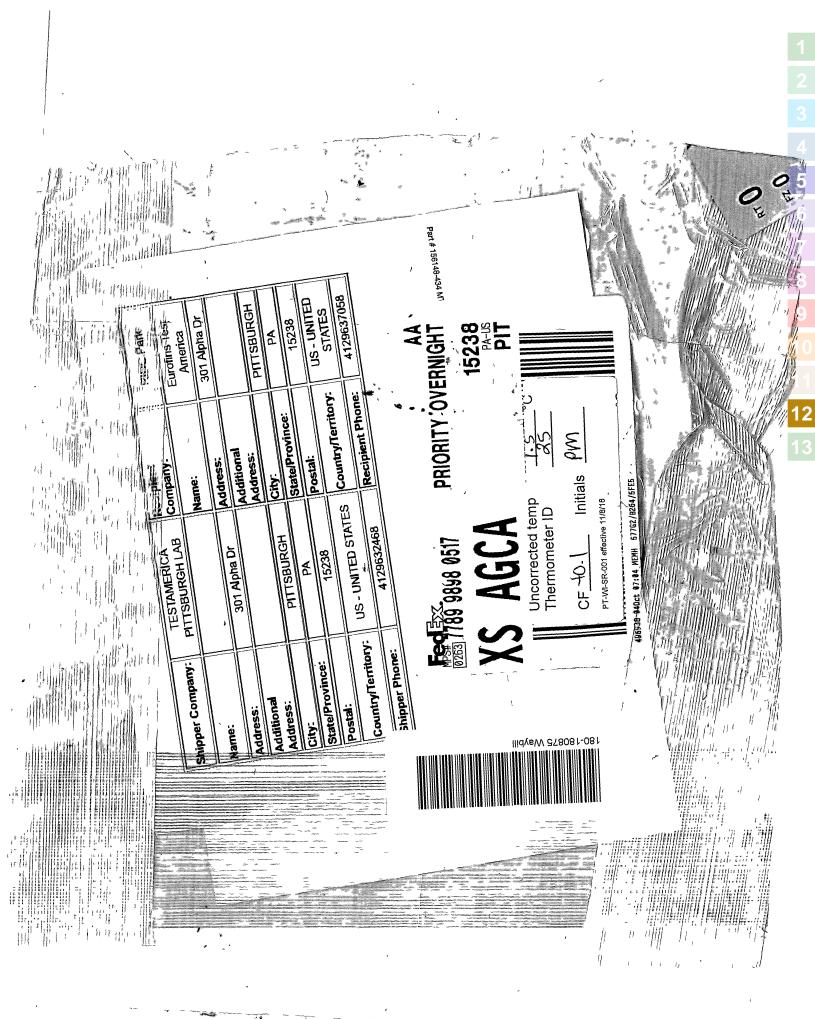
Account Billed

\$285.26

Est. Express Subtotal \$285.26

> Estimated Total \$285.26

Sender Account ending in *1804


Tell us how we're doing. fedex.com/wellsten

ferms and conditions apply, including terms that limit FedEx's Hability. The estimated shipping charge may be different than the actual charges for your shipment. Differences may occur based on actual weight, dimensions and other factors. Shipment related terms and conditions and details on terms and conditions and details on how shipping charges are calculated are available upon request or at fedex.com/serviceguide.

Manually Weighed - (M), Weighed by Scale - (S), Taxable Item = T.

Visit us at: fedex.com Or call 1.800,GoFedEx (1.800,463,3339)

Eurofins Pittsburgh
301 Alpha Drive RIDC Park

Chain of Custody Record

🔅 eurofins

Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468	Gliai	n or cus	louy n	ECU	ιu					<u>.</u>				Environment Tes
Client Information (Sub Contract Lab)	Sampler.		Lab F Brov	^р м: wn, Sha	ali				Carri	er Trackin	g No(s):		COC No: 180-525433.1	
Client Information (Sub Contract Lab) Stient Contact: Shipping/Receiving	Phone:		E-Ma			t.eurofins				of Origin:			Page:	
Company:			Sna				(See note)		IVIIS	sissippi		1100	Page 1 of 2 Job #:	1
urofins Environment Testing Southeast L	Due Date Requested:						_	-		-		_	180-180875-1 Preservation C	adaa.
102 LaRoche Avenue,	10/17/2024						Ana	lysis I	Reques	sted			Preservation C	2062:
ity: avannah	TAT Requested (days):													
ate, Zip:														
A, 31404	PO #:				s									
2-354-7858(Tel) 912-352-0165(Fax)				0	App I	2								
ail:	.WO #:			Vol V	+=	CVA								
ject Name: ant Daniel Ash Pond B	Project #: 18020047			(Yes or s or No)	(App) Ann						alner		
	SSOW#:			Sample (Yes or No) ISD (Yes or No)	60208/3005A Custom 14 (Applil + App IV)	7470A/7470A_Prep Mercury (CVAA)						Total Number of containers	Other:	
					Cust	Prep						er of		
		Sample	Matrix (W=water,	Filtered m MS/A	005A	470A						nmp		
	Sam	Type ple (C=comp,		Field Filt Perform	0B/3	DAI						tal N		
mple Identification - Client ID (Lab ID)	Sample Date Tim		S=solid, O=waste/oll, BT=Tissue, A=Air)	E 2	602	747		-	-			1	Special	Instructions/Note:
	11:3	20	tion Code:	AX				-						
-03 (180-180875-1)	10/2/24 Cent	ral G	Water		X							2		
W-1 (180-180875-2)	10/2/24 Cent	ral G	Water		X	X						2		
W-7 (180-180875-3)	10/2/24 17:2 Cent		Water		X	X						2		
W-2A (180-180875-4)	10/2/24 11:1 Cent		Water		X	x						2		
.W-3 (180-180875-5)	10/2/24 08:5 Cent	⁹ G	Water		X	x						2		
JP-05 (180-180875-6)	10/2/24 07:5 Cent	⁹ G	Water		X	x						2		
-03 (180-180875-7)	10/2/24 13:4 Cent	15 G	Water		X	x						2		
W-5 (180-180875-8)	10/2/24 15:3 Cent	30 G	Water		x	x						2		
-9 (180-180875-9)	10/2/24 13:2 Cent	2 6	Water		X	x						2		
te: Since laboratory accreditations are subject to change, Eurofins Pitt intain accreditation in the State of Origin listed above for analysis/tests antion immediately. If all requested accreditations are current to date,	sburgh places the ownership of method s/matrix being analyzed, the samples m	I, analyte & accredita just be shipped back	to the Eurofins	Pittsburg	gh labo									
ssible Hazard Identification				Sa	mple	Dispos	al (A fee	e may l	be asses	sed if s	amples a	re retain	ed longer than	1 month)
confirmed liverable Requested: I, II, III, IV, Other (specify)	Drimony Dolivomble De	nk: 2			_	Return To				sal By L	ab	Arci	hive For	Months
	Primary Deliverable Ra	JIR. Z			scial	msuucu	ons/QC F	vequire	ments:					
npty Kit Relinquished by:	Date:			Time:	10	_	2	/	71	Method o	f Shipment:			
nquished by:	Date/Time:	200	Er K	UF	Rece	eived by:		//	V		Date/Time	09/7	4 095	Company
inquished by:	Date/Time:		Company		Rece	eived by:			7		Date/Time			Company
inquished by:	Date/Time:		Company		Rece	aived by:					Date/Time	Ð:		Company
Custody Seals Intact: Custody Seal No.:					Cook	er Temper	ature(s) °C	and Othe	r Remarks	:	2	51	12.5	
Δ Yes Δ No					1						~ C	5/	1	

Eurofins Pittsburgh 301 Alpha Drive RIDC Park

Pittsburgh, PA 15238

Chain of Custody Record

🔅 eurofins

Environment Testing

ent Information (Sub Contract Lab)	Sampler:			/n, Sha	ali					arrier Trai	. Ū.			COC No: 180-525433.2	
nt Contact pping/Receiving	Phone:		E-Mail Shali		n@et	.eurofir	nsus.cor	n		itate of Orl Aississip				Page: Page 2 of 2	
any: ofins Environment Testing Southeast L					_		d (See no		1					Job #:	
sins Environment resung Southeast L	Due Date Requested:				-	-	-		-	-	_			180-180875-1 Preservation Co	les.
LaRoche Avenue,	10/17/2024						An	alysis	Requ	lested				-	
nnah	TAT Requested (days):														
Zip:															
31404	PO #:														
554-7858(Tel) 912-352-0165(Fax)	FO #.			2	App IV)										
	WO #:			o N	•	(AA)									
t Name:	Project #:			(es or or No)	14 (Applil	A (C)							lers -		
Daniel Ash Pond B	18020047			es (14 ()	arcur							ntair		
	SSOW#:			Field Filtered Sample (Yes or No Perform MS/MSD (Yes or No)	Custom	7470A/7470A_Prep Mercury (CVAA)							Total Number of containers	Other:	
			Matrix (W=water, S=solid, O=weste/oll, BT=Tiesue, A=Air)	s be		P							ber		
		Sample Type	(W=water,	m M	6020B/3005A	470							E I		
	Sa	mple (C=comp,	S-solid, O=wests/oil,	Ifor	20BV	10A							a la		
ple Identification - Client ID (Lab ID)	Sample Date T	ime G=grab)	BT-Tiesue, A-Air)		8	2		_			_			Special II	structions/Note:
-4 (180-180875-10)	10/2/24 0	9:18 G	ation Code: Water	44	+		-+-+	_	+	_	-		2		
	1	entral	vvater		X	X			+		_		-		
(180-180875-11)	11////4	entral G	Water		X	X							2		
											-				
					-				+			-+-+			
					<u> </u>				+ $+$		_				
Since laboratory accreditations are subject to change, Eurofins Pitt in accreditation in the State of Origin listed above for analysis/test	s/matrix being analyzed, the sample	s must be shipped bad	k to the Eurofins	Pittsburg	gh lab										
on immediately. If all requested accreditations are current to date, sible Hazard Identification	retern are signed origin or ouslody	account to said comp		_		Dispo	sal (A d	lee may	he an	heased	fcom	oles are	rotain	ed longer than 1	month
nfirmed							o Client		11.1	sposal B			٦	hive For	Months
erable Requested: I, II, III, IV, Other (specify)	Primary Deliverable	Rank: 2		Spe			tions/QC				y Lab		710		Monais
y Kit Relinquished by:	Date	e:		Time:		-	/		-	Metho	of Shi	pment			
uismod by:	Date/Time:	200	EPitt	No	Rece	ived by	-	/		X	P	ate/Time:	1	4 0953	Company
uished by:	Date/Time:	100	Company	R	Rece	ived by:	-		4	4	D	0/0° ate/Time:	12	4 <u>~123</u>	Company
									11						
uished by:	Date/Time:		Company		Rece	ived by:					D	ate/Time:			Company
stody Seals Intact: Custody Seal No.:					Cool	er Tempe	rature(s)	C and Ot	her Rem	arks:	11	7 (1	12.5	
Δ Yes Δ No															

Client: Southern Company

Login Number: 180875 List Number: 1 Creator: Kovitch, Christina M

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td>	N/A		
The cooler's custody seal, if present, is intact.	True		-
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	False		
Is the Field Sampler's name present on COC?	True		1
There are no discrepancies between the containers received and the COC.	False	Missing a cooler	
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

Job Number: 180-180875-1

List Source: Eurofins Pittsburgh

Client: Southern Company

Login Number: 180875 List Number: 3 Creator: Lincoln, Alyssa

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 180-180875-1

List Source: Eurofins Savannah

List Creation: 10/09/24 02:20 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

5

Attn: Robert (Trey) Singleton Southern Company 3535 Colonnade Parkway Bin S 530 EC Birmingham, Alabama 35243 Generated 11/6/2024 6:49:49 PM

JOB DESCRIPTION

Plant Daniel Ash Pond B

JOB NUMBER

180-180875-2

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

See page two for job notes and contact information.

Eurofins Pittsburgh

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Authorized for release by Shali Brown, Project Manager II Shali.Brown@et.eurofinsus.com

(615)301-5031

Generated 11/6/2024 6:49:49 PM

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Certification Summary	6
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	13
QC Sample Results	20
QC Association Summary	23
Chain of Custody	24
Receipt Checklists	33

Job ID: 180-180875-2

Eurofins Pittsburgh

Job Narrative 180-180875-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/4/2024 9:00 AM and 10/5/2024 9:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.3° C, 1.6° C, 1.7° C and 2.2° C.

Receipt Exceptions

The Chain of Custody was received without any analyses selected. A revised chain of custody was provide and is included in this report.

The lab received three out of the four coolers shipped. The following two samples BAW-4 and PZ-8 were not received therefore, no analysis was logged. BAW-4 (180-180875-10) and PZ-8 (180-180875-11) Missing cooler received 10/5/24 at 0945. Analysis added and receipt date/time updated.

Gas Flow Proportional Counter

Method 9320_Ra228: Radium-228 Prep Batch 160-683041:

The MDC for the following sample(s) is flagged as failing; The laboratory considers the detection goal (requested limit) met when rounding to the appropriate place value. BAW-2A (180-180875-4)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Rad

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Qualifiers

_		
	-	A
	a	u

Rad		
Qualifier	Qualifier Description	4
G	The Sample MDC is greater than the requested RL.	
U	Result is less than the sample detection limit.	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	0
\X	Listed under the "D" column to designate that the result is reported on a dry weight basis	7
%R	Percent Recovery	
CFL	Contains Free Liquid	0
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	13
ΜΠΑ	Minimum Detectable Activity (Radiochemistry)	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
٦L	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

5

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-08-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-24
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-25
Connecticut	State	PH-0241	03-31-25
Florida	NELAP	E87689	06-30-25
HI - RadChem Recognition	State	n/a	06-30-25
Illinois	NELAP	200023	11-30-25
lowa	State	373	12-01-24
Kentucky (DW)	State	KY90125	12-31-24
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-24
Louisiana	NELAP	04080	06-30-22 *
Louisiana (All)	NELAP	04080	06-30-25
Louisiana (DW)	State	LA011	12-31-24
Maryland	State	310	09-30-25
Massachusetts	State	M-MO054	06-30-25
Missouri	State	780	06-30-25
Nevada	State	MO00054	07-31-25
New Jersey	NELAP	MO002	06-30-25
New Mexico	State	MO00054	06-30-25
New York	NELAP	11616	03-31-25
North Carolina (DW)	State	29700	07-31-25
North Dakota	State	R-207	12-31-24
Oregon	NELAP	4157	09-01-25
Pennsylvania	NELAP	68-00540	02-28-25
South Carolina	State	85002001	06-30-25
Texas	NELAP	T104704193	07-31-25
US Fish & Wildlife	US Federal Programs	058448	07-31-25
USDA	US Federal Programs	P330-17-00028	05-18-26
Utah	NELAP	MO00054	07-31-25
Virginia	NELAP	460230	06-14-25
Washington	State	C592	08-30-25
West Virginia DEP	State	381	10-31-25

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Sample Summary

Client: Southern Company Project/Site: Plant Daniel Ash Pond B

Job ID: 180-180875-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-180875-1	- FB-03	Water	10/02/24 11:30	10/04/24 09:00
180-180875-2	BAW-1	Water	10/02/24 12:50	10/04/24 09:00
180-180875-3	BAW-7	Water	10/02/24 17:20	10/04/24 09:00
180-180875-4	BAW-2A	Water	10/02/24 11:15	10/04/24 09:00
180-180875-5	BAW-3	Water	10/02/24 08:59	10/04/24 09:00
180-180875-6	DUP-05	Water	10/02/24 07:59	10/04/24 09:00
180-180875-7	EB-03	Water	10/02/24 13:45	10/04/24 09:00
180-180875-8	BAW-5	Water	10/02/24 15:30	10/04/24 09:00
180-180875-9	PZ-9	Water	10/02/24 13:22	10/04/24 09:00
180-180875-10	BAW-4	Water	10/02/24 09:18	10/05/24 09:45
180-180875-11	PZ-8	Water	10/02/24 11:50	10/05/24 09:45

Method Summary

Client: Southern Company Project/Site: Plant Daniel Ash Pond B

Method	Method Description	Protocol	Laboratory
9315	Radium-226 (GFPC)	SW846	EET SL
9320	Radium-228 (GFPC)	SW846	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Client Sample ID: FB-03 Date Collected: 10/02/24 11:30 Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			989.99 mL	1.0 g	683038	10/10/24 09:11	BCE	EET SL
Total/NA	Analysis Instrumer	9315 nt ID: GFPCBLUE		1			686242	11/01/24 09:45	SWS	EET SL
Total/NA	Prep	PrecSep_0			989.99 mL	1.0 g	683039	10/10/24 09:17	BCE	EET SL
Total/NA	Analysis Instrumer	9320 nt ID: GFPCRED		1			685385	10/28/24 15:07	FLC	EET SL
Total/NA	Analysis Instrumer	Ra226_Ra228 nt ID: NOEQUIP		1			686854	11/05/24 08:09	FLC	EET SL

Client Sample ID: BAW-1 Date Collected: 10/02/24 12:50

Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			1020.31 mL	1.0 g	683040	10/10/24 09:18	BCE	EET SL
Total/NA	Analysis	9315		1			686865	11/05/24 17:53	CMM	EET SL
	Instrumer	t ID: GFPCPURPLE								
Total/NA	Prep	PrecSep_0			1020.31 mL	1.0 g	683041	10/10/24 09:23	BCE	EET SL
Total/NA	Analysis	9320		1			685736	10/29/24 12:19	FLC	EET SL
	Instrumer	t ID: GFPCPURPLE								
Total/NA	Analysis	Ra226_Ra228		1			686854	11/05/24 08:09	FLC	EET SL
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: BAW-7 Date Collected: 10/02/24 17:20 Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			1008.07 mL	1.0 g	683040	10/10/24 09:18	BCE	EET SL
Total/NA	Analysis Instrumen	9315 ht ID: GFPCPURPLE		1			686865	11/05/24 17:53	CMM	EET SL
Total/NA	Prep	PrecSep_0			1008.07 mL	1.0 g	683041	10/10/24 09:23	BCE	EET SL
Total/NA	Analysis Instrumen	9320 at ID: GFPCRED		1		_	685625	10/29/24 15:16	СММ	EET SL
Total/NA	Analysis Instrumen	Ra226_Ra228 ht ID: NOEQUIP		1			686854	11/05/24 08:09	FLC	EET SL

Client Sample ID: BAW-2A Date Collected: 10/02/24 11:15 Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			999.43 mL	1.0 g	683040	10/10/24 09:18	BCE	EET SL
Total/NA	Analysis	9315		1			686865	11/05/24 22:01	CMM	EET SL
	Instrumer	t ID: GFPCPURPL	E							

Matrix: Water

Matrix: Water

Eurofins Pittsburgh

Lab Sample ID: 180-180875-1 **Matrix: Water**

5 8

Lab Sample ID: 180-180875-2 Matrix: Water

Lab Sample ID: 180-180875-3

Lab Sample ID: 180-180875-4

Job ID: 180-180875-2

Matrix: Water

Matrix: Water

Matrix: Water

9 10 11

Lab Sample ID: 180-180875-4 Matrix: Water

Lab Sample ID: 180-180875-5

Lab Sample ID: 180-180875-6

Lab Sample ID: 180-180875-7

Client Sample ID: BAW-2A Date Collected: 10/02/24 11:15 Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep_0			999.43 mL	1.0 g	683041	10/10/24 09:23	BCE	EET SL
Total/NA	Analysis Instrumer	9320 at ID: GFPCRED		1			685625	10/29/24 15:16	CMM	EET SL
Total/NA	Analysis Instrumer	Ra226_Ra228 at ID: NOEQUIP		1			686854	11/05/24 08:09	FLC	EET SL

Client Sample ID: BAW-3 Date Collected: 10/02/24 08:59 Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			986.83 mL	1.0 g	683040	10/10/24 09:18	BCE	EET SL
Total/NA	Analysis Instrumen	9315 t ID: GFPCPURPLE		1			686865	11/05/24 22:01	CMM	EET SL
Total/NA	Prep	PrecSep_0			986.83 mL	1.0 g	683041	10/10/24 09:23	BCE	EET SL
Total/NA	Analysis Instrumen	9320 t ID: GFPCRED		1			685625	10/29/24 15:16	СММ	EET SL
Total/NA	Analysis Instrumen	Ra226_Ra228 It ID: NOEQUIP		1			686854	11/05/24 08:09	FLC	EET SL

Client Sample ID: DUP-05 Date Collected: 10/02/24 07:59 Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			1008.27 mL	1.0 g	683040	10/10/24 09:18	BCE	EET SL
Total/NA	Analysis	9315		1			686865	11/05/24 22:01	CMM	EET SL
	Instrumer	t ID: GFPCPURPLE	Ξ							
Total/NA	Prep	PrecSep_0			1008.27 mL	1.0 g	683041	10/10/24 09:23	BCE	EET SL
Total/NA	Analysis	9320		1			685625	10/29/24 15:16	CMM	EET SL
	Instrumer	t ID: GFPCRED								
Total/NA	Analysis	Ra226_Ra228		1			686854	11/05/24 08:09	FLC	EET SL
	Instrumer	t ID: NOEQUIP								

Client Sample ID: EB-03 Date Collected: 10/02/24 13:45 Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			990.83 mL	1.0 g	683040	10/10/24 09:18	BCE	EET SL
Total/NA	Analysis	9315		1			686865	11/05/24 22:01	CMM	EET SL
	Instrumen	t ID: GFPCPURPI	.E							
Total/NA	Prep	PrecSep_0			990.83 mL	1.0 g	683041	10/10/24 09:23	BCE	EET SL
Total/NA	Analysis	9320		1			685625	10/29/24 15:17	CMM	EET SL
	Instrumen	t ID: GFPCRED								

Lab Sample ID: 180-180875-7 Matrix: Water

Lab Sample ID: 180-180875-8

Lab Sample ID: 180-180875-9

Lab Sample ID: 180-180875-10

Matrix: water

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: EB-03 Date Collected: 10/02/24 13:45 Date Received: 10/04/24 09:00

Prep Ty Total/NA		be N	Batch Method Ra226_Ra228	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 686854	Prepared or Analyzed 11/06/24 14:15	Analyst FLC	Lab EET SL	_
---------------------	--	------	--------------------------------	-----	---------------	-------------------	-----------------	---------------------------	---	----------------	---------------	---

Client Sample ID: BAW-5 Date Collected: 10/02/24 15:30 Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			1016.28 mL	1.0 g	683040	10/10/24 09:18	BCE	EET SL
Total/NA	Analysis Instrumer	9315 at ID: GFPCPURPLI	E	1			686865	11/05/24 22:01	СММ	EET SL
Total/NA	Prep	PrecSep_0			1016.28 mL	1.0 g	683041	10/10/24 09:23	BCE	EET SL
Total/NA	Analysis Instrumer	9320 at ID: GFPCRED		1			685625	10/29/24 15:17	СММ	EET SL
Total/NA	Analysis Instrumer	Ra226_Ra228 at ID: NOEQUIP		1			686854	11/06/24 14:15	FLC	EET SL

Client Sample ID: PZ-9 Date Collected: 10/02/24 13:22 Date Received: 10/04/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			987.05 mL	1.0 g	683040	10/10/24 09:18	BCE	EET SL
Total/NA	Analysis Instrumen	9315 It ID: GFPCPURPLE		1			686865	11/05/24 22:01	СММ	EET SL
Total/NA	Prep	PrecSep_0			987.05 mL	1.0 g	683041	10/10/24 09:23	BCE	EET SL
Total/NA	Analysis Instrumen	9320 t ID: GFPCRED		1			685625	10/29/24 15:18	СММ	EET SL
Total/NA	Analysis Instrumen	Ra226_Ra228 It ID: NOEQUIP		1			686854	11/06/24 14:15	FLC	EET SL

Client Sample ID: BAW-4 Date Collected: 10/02/24 09:18 Date Received: 10/05/24 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			994.03 mL	1.0 g	683040	10/10/24 09:18	BCE	EET SL
Total/NA	Analysis Instrumer	9315 at ID: GFPCPURPLE		1			686865	11/05/24 22:02	CMM	EET SL
Total/NA	Prep	PrecSep_0			994.03 mL	1.0 g	683041	10/10/24 09:23	BCE	EET SL
Total/NA	Analysis Instrumer	9320 at ID: GFPCRED		1			685625	10/29/24 15:18	СММ	EET SL
Total/NA	Analysis Instrumer	Ra226_Ra228 at ID: NOEQUIP		1			686854	11/06/24 14:15	FLC	EET SL

Client Sample ID: PZ-8 Date Collected: 10/02/24 11:50 Date Received: 10/05/24 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			981.81 mL	1.0 g	683040	10/10/24 09:18	BCE	EET SL
Total/NA	Analysis Instrumer	9315 at ID: GFPCPURPLE	E	1			686865	11/05/24 22:02	CMM	EET SL
Total/NA	Prep	PrecSep_0			981.81 mL	1.0 g	683041	10/10/24 09:23	BCE	EET SL
Total/NA	Analysis Instrumer	9320 at ID: GFPCRED		1			685625	10/29/24 15:18	СММ	EET SL
Total/NA	Analysis Instrumer	Ra226_Ra228 at ID: NOEQUIP		1			686854	11/06/24 14:15	FLC	EET SL

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Analyst References:

Lab: EET SL

Batch Type: Prep BCE = Benjamin Celeslie Batch Type: Analysis CMM = Chelsea Mazariegos FLC = Fernando Cruz SWS = Seth Stubblefield

Lab Sample ID: 180-180875-11 Matrix: Water

Total

Uncert.

(2**σ**+/-)

0.0949

Total

RL

1.00

MDC Unit

0.163 pCi/L

Method: SW846 9315 - Radium-226 (GFPC)

Client Sample ID: FB-03 Date Collected: 10/02/24 11:30 Date Received: 10/04/24 09:00

Analyte

Carrier

Ba Carrier

Radium-226

Lab Sample ID: 180-180875-1 Matrix: Water

10/10/24 09:11 11/01/24 09:45

10/10/24 09:11 11/01/24 09:45

Lab Sample ID: 180-180875-2

Matrix: Water

Analyzed

Analyzed

Prepared

Prepared

watrix: water

Dil Fac

Dil Fac

1

1

Method: SW846 9320 - Radium-228	(GFPC)
	Count

87.4

Result Qualifier

%Yield Qualifier

0.0609 U

A secolar de	Decel	0	Uncert.	Uncert.		MDO	11-14	Descent	A	
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.112	U	0.433	0.433	1.00	0.784	pCi/L	10/10/24 09:17	10/28/24 15:07	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.4		30 - 110					10/10/24 09:17	10/28/24 15:07	1
Y Carrier	80.0		30 - 110					10/10/24 09:17	10/28/24 15:07	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

Count

Uncert.

(20+/-)

0.0947

Limits

30 - 110

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.173	U	0.443	0.443	5.00	0.784	pCi/L		11/05/24 08:09	1

Client Sample ID: BAW-1

Date Collected: 10/02/24 12:50

Date Received: 10/04/24 09:00

		·	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.160		0.0980	0.0990	1.00	0.129	pCi/L	10/10/24 09:18	11/05/24 17:53	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	74.9		30 - 110					10/10/24 09:18	11/05/24 17:53	1

Method: SW846 9320 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.866		0.515	0.521	1.00	0.757	pCi/L	10/10/24 09:23	10/29/24 12:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	74.9		30 - 110					10/10/24 09:23	10/29/24 12:19	1
Y Carrier	82.2		30 - 110					10/10/24 09:23	10/29/24 12:19	1

Client Sample Results

ent: Southern Com	nanv		Cilei	nt Samp	ie kes	uits			lob ID: 180-18	0875-2
roject/Site: Plant Da		ond B							100 10. 100-10	0075-2
lient Sample ID								Lab Sample		
ate Collected: 10/02 ate Received: 10/04									Matrix	: Water
Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiun	n- 228				
			Count	Total						
			Uncert.	Uncert.						
Analyte Combined Radium	Result 1.03	Qualifier	<u>(2σ+/-)</u> 0.524	<u>(2σ+/-)</u> 0.530	RL 5.00	0.757		Prepared	Analyzed 11/05/24 08:09	Dil Fac
226 + 228	1.03		0.524	0.530	5.00	0.757	pCI/L		11/05/24 06:09	I
Client Sample ID	BAW-7	1						Lab Sample	ID: 180-180	875-3
Date Collected: 10/02 Date Received: 10/04									Matrix	: Water
-										
Method: SW846 93	15 - Radiu	im-226 (GF	-PC) Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.241		0.119	0.120	1.00	0.151	pCi/L	10/10/24 09:18	11/05/24 17:53	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.0		30 - 110					10/10/24 09:18		1
Method: SW846 932	20 - Radiu	.m.228 (C								
Welliou. 30040 93/	20 - Kaulu	iiii-220 (Gr	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.572	U	0.490	0.493	1.00	0.760	pCi/L	10/10/24 09:23	10/29/24 15:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	82.0		30 - 110					10/10/24 09:23	10/29/24 15:16	1
Y Carrier	81.5		30 - 110					10/10/24 09:23	10/29/24 15:16	1
Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiun	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte		Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC		Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.813		0.504	0.507	5.00	0.760	pCi/L		11/05/24 08:09	1
Client Sample ID	: BAW-2	Α						Lab Sample	ID: 180-180	875-4
Date Collected: 10/02 Date Received: 10/04										: Water
Method: SW846 93 ⁴			PC)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.203		0.115	0.116	1.00	0.155	pCi/L	10/10/24 09:18	11/05/24 22:01	1
Corrior	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Carrier	/011010									

Client Sample ID: BAW-2A Date Collected: 10/02/24 11:15 Date Received: 10/04/24 09:00

Lab Sample ID): 180-180875-4
	Matrix: Water

Lab Sample ID: 180-180875-5

atrix: Water

Method: SW846 9	320 - Radiu	ım-228 (GI	FPC)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.946	UG	0.669	0.675	1.00	1.02	pCi/L	10/10/24 09:23	10/29/24 15:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	75.7		30 - 110					10/10/24 09:23	10/29/24 15:16	1
Y Carrier	84.9		30 - 110					10/10/24 09:23	10/29/24 15:16	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.15		0.679	0.685	5.00	1.02 pCi/L		11/05/24 08:09	1

Client Sample ID: BAW-3 Date Collected: 10/02/24 08:59 Date Received: 10/04/24 09:00

Method: SW846 9315 - Radium-226 (GFPC) Count Total Uncert. Uncert. Analyte **Result Qualifier** (2σ+/-) (2**σ**+/-) RL MDC Unit Prepared Analyzed Dil Fac Radium-226 0.307 0.118 0.121 1.00 0.129 pCi/L 10/10/24 09:18 11/05/24 22:01 1 Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac 30 - 110 10/10/24 09:18 11/05/24 22:01 Ba Carrier 85.8 1

Method: SW846 9320 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.447	U	0.373	0.376	1.00	0.847	pCi/L	10/10/24 09:23	10/29/24 15:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.8		30 - 110					10/10/24 09:23	10/29/24 15:16	1
Y Carrier	81.1		30 - 110					10/10/24 09:23	10/29/24 15:16	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.140	U	0.391	0.395	5.00	0.847	pCi/L		11/05/24 08:09	1

Eurofins Pittsburgh

Matrix: Water

Client Sample ID: DUP-05 Date Collected: 10/02/24 07:59 Date Received: 10/04/24 09:00

Lab Sample ID: 180-180875-6 Matrix: Water

Lab Sample ID: 180-180875-7

Matrix: Water

natrix: water

5 6

9

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.177		0.0949	0.0962	1.00	0.120	pCi/L	10/10/24 09:18	11/05/24 22:01	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.6		30 - 110					10/10/24 09:18	11/05/24 22:01	1

Method: SW846 9320 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.403	U	0.532	0.533	1.00	0.887	pCi/L	10/10/24 09:23	10/29/24 15:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.6		30 - 110					10/10/24 09:23	10/29/24 15:16	1
Y Carrier	89.3		30 - 110					10/10/24 09:23	10/29/24 15:16	1

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.580	U	0.540	0.542	5.00	0.887	pCi/L		11/05/24 08:09	1

Client Sample ID: EB-03

Date Collected: 10/02/24 13:45

Date Received: 10/04/24 09:00

Method: SW846 9315 - Radium-226 (GFPC)

		·	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0787	U	0.0717	0.0721	1.00	0.108	pCi/L	10/10/24 09:18	11/05/24 22:01	1
Carrier Ba Carrier	% Yield 88.1	Qualifier	Limits 30 - 110					Prepared 10/10/24 09:18	Analyzed 11/05/24 22:01	Dil Fac

Method: SW846 9320 - Radium-228 (GFPC)

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.401	U	0.324	0.326	1.00	0.746	pCi/L	10/10/24 09:23	10/29/24 15:17	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.1		30 - 110					10/10/24 09:23	10/29/24 15:17	1
Y Carrier	87.9		30 - 110					10/10/24 09:23	10/29/24 15:17	1

Client Sample Results

ont: Southorn Com	0001		Cilei	nt Samp	ie kes	Suits			lob ID: 180-18	0075 0
lient: Southern Com roject/Site: Plant Da		ond B							UD ID. 100-10	0070-2
Client Sample ID Date Collected: 10/0 Date Received: 10/04	2/24 13:45							Lab Sample		875-7 Water
Method: TAL-STL F	Ra226_Ra	228 - Com	bined Radi Count Uncert.	um-226 an Total Uncert.	d Radiur	n-228				
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.322		0.332	0.334	5.00	0.746			11/06/24 14:15	1
Client Sample ID	: BAW-5							Lab Sample	ID: 180-180	875-8
Date Collected: 10/0										: Water
Date Received: 10/04	4/24 09:00)								
Method: SW846 93	15 - Radiu	ım-226 (GI	FPC)							
			Count	Total						
			Uncert.	Uncert.						
Analyte		Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC		Prepared	Analyzed	Dil Fac
Radium-226	0.332		0.124	0.127	1.00	0.127	pCi/L	10/10/24 09:18	11/05/24 22:01	1
Carrier		Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	76.5		30 - 110					10/10/24 09:18	11/05/24 22:01	1
Mathadi CM/946 02	20 Dediu									
Method: SW846 93	20 - Radiu	im-228 (Gi	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.892		0.640	0.645	1.00	0.973		10/10/24 09:23	10/29/24 15:17	1
Carrier		Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	76.5		30 - 110					10/10/24 09:23	10/29/24 15:17	1
Y Carrier	80.4		30 - 110					10/10/24 09:23	10/29/24 15:17	1
Method: TAL-STL F	Ra226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte		Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC		Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.22		0.652	0.657	5.00	0.973	pCi/L		11/06/24 14:15	1
Client Sample ID	: PZ-9							Lab Sample	ID: 180-180	875-9
Date Collected: 10/0	2/24 13:22	2						-	Matrix	Water
Date Received: 10/04	4/24 09:00									
Method: SW846 93	15 - Radiu	Im-226 (GI	FPC)							
	is - Raulu		Count	Total						
			Uncert.	Uncert.						
	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Analyte			0.0953	0.0964	1.00	0.126	pCi/L	10/10/24 09:18	11/05/24 22:01	1
Analyte Radium-226	0.161		0.0000				•			
		Qualifier	Limits					Prepared	Analyzed	Dil Fac

Lab Sample ID: 180-180875-9 Client Sample ID: PZ-9 Date Collected: 10/02/24 13:22 Matrix: Water Date Received: 10/04/24 09:00 Method: SW846 9320 - Radium-228 (GFPC) Count Total Uncert. Uncert. Analyte **Result Qualifier** (2σ+/-) (2**σ**+/-) RL MDC Unit Prepared Analyzed Dil Fac Radium-228 -0.135 U 0.482 0.482 1.00 0.924 pCi/L 10/10/24 09:23 10/29/24 15:18 Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 87.3 30 - 110 10/10/24 09:23 10/29/24 15:18 1 30 - 110 10/10/24 09:23 10/29/24 15:18 Y Carrier 84.1 1 Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228 Count Total Uncert. Uncert. **Result Qualifier** (2**σ**+/-) (2σ+/-) MDC Unit Analyte RL Prepared Analyzed Dil Fac Combined Radium 226 0.0261 Ū 0.491 0.492 5.00 0.924 pCi/L 11/06/24 14:15 1 +228**Client Sample ID: BAW-4** Lab Sample ID: 180-180875-10 Date Collected: 10/02/24 09:18 Matrix: Water Date Received: 10/05/24 09:45 Method: SW846 9315 - Radium-226 (GFPC) Count Total Uncert. Uncert. Analyte **Result Qualifier** (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed Dil Fac Radium-226 0.124 U 0.0966 0.0972 1.00 0.144 pCi/L 10/10/24 09:18 11/05/24 22:02 1 Carrier Qualifier Limits Prepared Dil Fac %Yield Analyzed Ba Carrier 87.6 30 - 110 10/10/24 09:18 11/05/24 22:02 1 Method: SW846 9320 - Radium-228 (GFPC) Total Count Uncert. Uncert. Analyte **Result Qualifier** (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed Dil Fac Radium-228 -0.235 U 0.408 0.409 1.00 0.832 pCi/L 10/10/24 09:23 10/29/24 15:18 1 Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac 10/10/24 09:23 10/29/24 15:18 Ba Carrier 87.6 30 - 110 1 30 - 110 10/10/24 09:23 10/29/24 15:18

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

83.7

Y Carrier

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.111	U	0.419	0.420	5.00	0.832	pCi/L		11/06/24 14:15	1

Eurofins Pittsburgh

1

Total

Uncert.

(2**σ+/-**)

0.116

Client Sample ID: PZ-8 Date Collected: 10/02/24 11:50 Date Received: 10/05/24 09:45

Analyzed

Analyzed

Lab Sample ID: 180-180875-11 Matrix: Water

10/10/24 09:18 11/05/24 22:02

10/10/24 09:18 11/05/24 22:02

Prepared

Prepared

Dil Fac

Dil Fac

1

1

5
8
9

Method: SW846 9320 - Radium-228 (GFPC)

Method: SW846 9315 - Radium-226 (GFPC)

Result Qualifier

%Yield Qualifier

0.254

83.0

			Count Uncert.	Total Uncert.							
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Radium-2	28 0.287	U	0.466	0.466	1.00	0.798	pCi/L	10/10/24 09:23	10/29/24 15:18	1	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac	
Ba Carrier	. 83.0		30 - 110					10/10/24 09:23	10/29/24 15:18	1	
Y Carrier	81.5		30 - 110					10/10/24 09:23	10/29/24 15:18	1	

RL

1.00

MDC Unit

0.132 pCi/L

Method: TAL-STL Ra226_Ra228 - Combined Radium-226 and Radium-228

Count

Uncert.

(20+/-)

Limits

30 - 110

0.114

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.542	U	0.480	0.480	5.00	0.798	pCi/L		11/06/24 14:15	1

Analyte

Carrier

Ba Carrier

Radium-226

10

Method: 9315 - Radium-226 (GFPC)

· · · · · · · · · · · · · · · · · · ·): MB 1	60-6830)38/1-A						Clie		ole ID: Metho	
Matrix: Water											Prep Type: 1	
Analysis Batc	h: <mark>6862</mark>	236									Prep Batch:	6830
				Count	Total							
		MB	MB	Uncert.	Uncert.							
Analyte		Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	Р	repared	Analyzed	Dil
Radium-226		0.04376	U	0.0758	0.0759	1.00	0.134	pCi/L	10/1	10/24 09:11	11/01/24 09:38	
		MB	МВ									
Carrier		%Yield		Limits					Р	Prepared	Analyzed	Dil
Ba Carrier		88.4		30 - 110						10/24 09:11	11/01/24 09:38	
Lab Sample ID	0.1.08	160-683	038/2-0					CII	ont Sai	mole ID:	Lab Control	Sam
Matrix: Water	. LOS	100-005	030/2-A					CII	ent Sa		Prep Type: 1	
Analysis Batcl	h. 6863	26									Prep Batch:	
	. 0002					Total					Thep Daten.	0000
			Spike	LCS	LCS	Uncert.					%Rec	
Analyte			Added	Result		(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Radium-226			9.58	8.685		0.976	1.00	0.120		91	75 - 125	
	1.00	1.00							•			
Carrier		LCS Qualifier	· Limits									
Ba Carrier	93.6	Quaimer	<u></u>	-								
Lab Sample ID): MB 1	60-6830)40/1-A						Clie		ole ID: Metho	
Matrix: Water											Prep Type: 1	
Analysis Batcl	h: 6868	865									Prep Batch:	6830
											op Datom	
				Count	Total							
		МВ		Uncert.	Uncert.	-			_			
•		MB Result	Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)		MDC			Prepared	Analyzed	Dil
•		МВ	Qualifier	Uncert.	Uncert.			Unit pCi/L		Prepared 10/24 09:18	Analyzed	Dil
•		MB Result 0.008116	Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)					•	Analyzed	Dil
Radium-226		MB Result 0.008116 <i>MB</i> %Yield	Qualifier	Uncert. (2σ+/-) 0.0673 Limits	Uncert. (2σ+/-)				10/1 P	10/24 09:18 Prepared	Analyzed 11/05/24 17:53 Analyzed	Dil
Radium-226 Carrier		MB Result 0.008116 <i>MB</i>	Qualifier U MB	Uncert. (2σ+/-) 0.0673	Uncert. (2σ+/-)				10/1 P	10/24 09:18 Prepared	Analyzed	Dil
Radium-226 Carrier Ba Carrier		MB Result 0.008116 MB %Yield 94.9	Qualifier U MB Qualifier	Uncert. (2σ+/-) 0.0673 Limits	Uncert. (2σ+/-)			pCi/L	10/1 P 10/1	10/24 09:18 Prepared 10/24 09:18	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53	Dil Dil
Radium-226 Carrier Ba Carrier Lab Sample ID		MB Result 0.008116 MB %Yield 94.9	Qualifier U MB Qualifier	Uncert. (2σ+/-) 0.0673 Limits	Uncert. (2σ+/-)			pCi/L	10/1 P 10/1	10/24 09:18 Prepared 10/24 09:18 mple ID:	Analyzed 11/05/24 17:53 Analyzed	Dil Dil Sam
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water): LCS	MB <u>Result</u> 0.008116 <i>MB</i> %Yield 94.9 160-683	Qualifier U MB Qualifier	Uncert. (2σ+/-) 0.0673 Limits	Uncert. (2σ+/-)			pCi/L	10/1 P 10/1	10/24 09:18 Prepared 10/24 09:18 mple ID:	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control	Dil Dil Sam
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water): LCS	MB <u>Result</u> 0.008116 <i>MB</i> %Yield 94.9 160-683	Qualifier U MB Qualifier	Uncert. (2σ+/-) 0.0673 Limits	Uncert. (2σ+/-)			pCi/L	10/1 P 10/1	10/24 09:18 Prepared 10/24 09:18 mple ID:	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1	Dil Dil Sam
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water): LCS	MB <u>Result</u> 0.008116 <i>MB</i> %Yield 94.9 160-683	Qualifier U MB Qualifier	Uncert. (2σ+/-) 0.0673 Limits 30 - 110	Uncert. (2σ+/-)	1.00		pCi/L	10/1 P 10/1	10/24 09:18 Prepared 10/24 09:18 mple ID:	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1	Dil Dil Sam
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batc): LCS	MB <u>Result</u> 0.008116 <i>MB</i> %Yield 94.9 160-683	Qualifier U MB Qualifier 040/2-A Spike Added	Uncert. (2σ+/-) 0.0673 <i>Limits</i> 30 - 110 LCS Result	Uncert. (2σ+/-) 0.0673	1.00 Total Uncert. (2σ+/-)	0.130 RL	pCi/L Cli MDC	10/1 P 10/1 ent Sar	Prepared 10/24 09:18 10/24 09:18 mple ID: %Rec	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1 Prep Batch: %Rec Limits	Dil Dil Sam
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte): LCS	MB <u>Result</u> 0.008116 <i>MB</i> %Yield 94.9 160-683	Qualifier U MB Qualifier 040/2-A Spike	Uncert. (2σ+/-) 0.0673 Limits 30 - 110	Uncert. (2σ+/-) 0.0673	Total Uncert.	0.130	pCi/L Cli MDC	<u></u> <u>10/1</u> <u></u> <u>10/1</u> <u>10/1</u> <u></u> ent Sal	Prepared 10/24 09:18 10/24 09:18 mple ID:	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1 Prep Batch: %Rec	Dil Dil Sam
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte): LCS h: 6868	MB <u>Result</u> 0.008116 <i>MB</i> %Yield 94.9 160-683 865	Qualifier U MB Qualifier 040/2-A Spike Added	Uncert. (2σ+/-) 0.0673 <i>Limits</i> 30 - 110 LCS Result	Uncert. (2σ+/-) 0.0673	1.00 Total Uncert. (2σ+/-)	0.130 RL	pCi/L Cli MDC	10/1 P 10/1 ent Sar	Prepared 10/24 09:18 10/24 09:18 mple ID: %Rec	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1 Prep Batch: %Rec Limits	Dil Dil Sam
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-226	D: LCS	MB <u>Result</u> 0.008116 <i>MB</i> %Yield 94.9 160-683 865 <i>LCS</i>	Qualifier U MB Qualifier 040/2-A Spike Added 9.58	Uncert. (2σ+/-) 0.0673 <i>Limits</i> 30 - 110 LCS Result	Uncert. (2σ+/-) 0.0673	1.00 Total Uncert. (2σ+/-)	0.130 RL	pCi/L Cli MDC	10/1 P 10/1 ent Sar	Prepared 10/24 09:18 10/24 09:18 mple ID: %Rec	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1 Prep Batch: %Rec Limits	Dil Dil Sam
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-226 Carrier	D: LCS	MB <u>Result</u> 0.008116 <i>MB</i> %Yield 94.9 160-683 865	Qualifier U MB Qualifier 040/2-A Spike Added 9.58	Uncert. (2σ+/-) 0.0673 Limits 30 - 110 LCS Result 9.285	Uncert. (2σ+/-) 0.0673	1.00 Total Uncert. (2σ+/-)	0.130 RL	pCi/L Cli MDC	10/1 P 10/1 ent Sar	Prepared 10/24 09:18 10/24 09:18 mple ID: %Rec	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1 Prep Batch: %Rec Limits	Dil Dil Sam
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-226 Carrier Ba Carrier	D: LCS h: 6868 LCS %Yield 84.8	MB Result 0.008116 <i>MB</i> %Yield 94.9 160-683 865 865	Qualifier U MB Qualifier 040/2-A 040/2-A Added 9.58 C Limits 30 - 110	Uncert. (2σ+/-) 0.0673 Limits 30 - 110 LCS Result 9.285	Uncert. (2σ+/-) 0.0673	1.00 Total Uncert. (2σ+/-)	0.130 RL	pCi/L Cli MDC	10/1 P 10/1 ent Sar	Prepared 10/24 09:18 10/24 09:18 mple ID: 	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1 Prep Batch: %Rec Limits 75 - 125	Dil Dil Sam Total/ 6830
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-226 Carrier Ba Carrier Lab Sample ID	D: LCS h: 6868 LCS %Yield 84.8	MB Result 0.008116 <i>MB</i> %Yield 94.9 160-683 865 865	Qualifier U MB Qualifier 040/2-A 040/2-A Added 9.58 C Limits 30 - 110	Uncert. (2σ+/-) 0.0673 Limits 30 - 110 LCS Result 9.285	Uncert. (2σ+/-) 0.0673	1.00 Total Uncert. (2σ+/-)	0.130 RL	pCi/L Cli MDC	10/1 P 10/1 ent Sar	Clien	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1 Prep Batch: %Rec Limits 75 - 125 At Sample ID:	Dil Dil Sam Total/ 6830
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water	D: LCS h: 6868 <u>%Yield</u> 84.8 D: 180-1	MB Result 0.008116 <i>MB</i> %Yield 94.9 160-683 65 <i>LCS</i> <i>Qualifier</i> 180875-2	Qualifier U MB Qualifier 040/2-A 040/2-A Added 9.58 C Limits 30 - 110	Uncert. (2σ+/-) 0.0673 Limits 30 - 110 LCS Result 9.285	Uncert. (2σ+/-) 0.0673	1.00 Total Uncert. (2σ+/-)	0.130 RL	pCi/L Cli MDC	10/1 P 10/1 ent Sar	Clien	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1 Prep Batch: %Rec Limits 75 - 125 At Sample ID: Prep Type: 1	Dil Dil Sam Total/ 6830
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water	D: LCS h: 6868 <u>%Yield</u> 84.8 D: 180-1	MB Result 0.008116 <i>MB</i> %Yield 94.9 160-683 65 <i>LCS</i> <i>Qualifier</i> 180875-2	Qualifier U MB Qualifier 040/2-A 040/2-A Added 9.58 C Limits 30 - 110	Uncert. (2σ+/-) 0.0673 Limits 30 - 110 LCS Result 9.285	Uncert. (2σ+/-) 0.0673	Total Uncert. (2σ+/-) 1.00	0.130 RL	pCi/L Cli MDC	10/1 P 10/1 ent Sar	Clien	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1 Prep Batch: %Rec Limits 75 - 125 At Sample ID:	Dil Dil Sam Total/ 6830
Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batc Analyte Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water	D: LCS h: 6868 <u>%Yield</u> 84.8 D: 180-1 h: 6868	MB <u>Result</u> 0.008116 <i>MB</i> %Yield 94.9 160-683 65 <i>LCS</i> <i>Qualifier</i> 180875-2 865	Qualifier U MB Qualifier 040/2-A 040/2-A Added 9.58 <u>Limits</u> 30 - 110 2 DU	Uncert. (2σ+/-) 0.0673 Limits 30 - 110 LCS Result 9.285	Uncert. (2σ+/-) 0.0673	Total Uncert. (2σ+/-) 1.00	0.130 RL	pCi/L Cli MDC	10/1 P 10/1 ent Sar	Clien	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1 Prep Batch: %Rec Limits 75 - 125 At Sample ID: Prep Type: 1	Dil Dil Sam fotal/ 6830
Analyte Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batch Analyte Radium-226 Carrier Ba Carrier Lab Sample ID Matrix: Water Analysis Batch	D: LCS h: 6868 <u>%Yield</u> 84.8 D: 180-1 h: 6868 Sample	MB Result 0.008116 <i>MB</i> %Yield 94.9 160-683 65 <i>LCS</i> <i>Qualifier</i> 180875-2	Qualifier U MB Qualifier 040/2-A 040/2-A Added 9.58 <u>Limits</u> 30 - 110 2 DU	Uncert. (2σ+/-) 0.0673 Limits 30 - 110 LCS Result 9.285	Uncert. (2σ+/-) 0.0673	Total Uncert. (2σ+/-) 1.00	0.130 RL	pCi/L Cli MDC	Unit pCi/L	Clien	Analyzed 11/05/24 17:53 Analyzed 11/05/24 17:53 Lab Control Prep Type: 1 Prep Batch: %Rec Limits 75 - 125 At Sample ID: Prep Type: 1	Dil Dil Sam Total/ 6830

QC Sample Results

10

Method: 9315 - Radium-226 (GFPC) (Continued)

Lab Sample ID: Matrix: Water Analysis Batch:			2 DU						Clier	nt Sample ID: Prep Type: To Prep Batch:	otal/N/
•	DU										
Carrier %		DU Qualifier	Limits								
Ba Carrier	79.2	Quaimer	30 - 110	-							
lethod: 9320	- Rac	lium-2	28 (GFPC)							
Lab Sample ID: Matrix: Water	MB 10	60-6830	39/1-A						Client Samp	ole ID: Method Prep Type: To	
Analysis Batch	: 6853	85								Prep Batch:	
				Count	Total						
		MB		Uncert.	Uncert.						
Analyte			Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC		Prepared	Analyzed	Dil Fa
Radium-228		0.1160	U	0.328	0.328	1.00	0.588	pCi/L	10/10/24 09:17	10/28/24 12:29	
		MB									
Carrier			Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier		88.4		30 - 110						10/28/24 12:29	
Y Carrier		75.5		30 - 110					10/10/24 09:17	10/28/24 12:29	
Lab Sample ID: Matrix: Water Analysis Batch:			039/2-A					Clie	ent Sample ID:	Lab Control S Prep Type: To Prep Batch:	otal/N
Analysis Datch.	. 0000	00				Total				Fiep Datch.	00303
			Spike	LCS	LCS	Uncert.				%Rec	
Analyte			Added	Result	Qual	(2 σ +/-)	RL	MDC	Unit %Rec	Limits	
Radium-228			8.39	9.902		1.36	1.00	0.549	pCi/L 118	75 - 125	
	100	109									
Carrier %	LCS Vield		l imits								
	%Yield	LCS Qualifier		-							
Ba Carrier			Limits 30 - 110 30 - 110	-							
Ba Carrier Y Carrier	% Yield 93.6 78.5	Qualifier	30 - 110 30 - 110	-							
Ba Carrier Y Carrier Lab Sample ID:	% Yield 93.6 78.5	Qualifier	30 - 110 30 - 110	-					Client Samp	ole ID: Method	
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water	%Yield 93.6 78.5 MB 10	Qualifier 60-6830	30 - 110 30 - 110	-					Client Samp	Prep Type: To	otal/N
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water	%Yield 93.6 78.5 MB 10	Qualifier 60-6830	30 - 110 30 - 110	- -	7-4-1				Client Samp		otal/N
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water	%Yield 93.6 78.5 MB 10	<u>Qualifier</u> 60-6830 36	30 - 110 30 - 110 41/1-A	Count	Total				Client Samp	Prep Type: To	otal/N
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch:	%Yield 93.6 78.5 MB 10	Qualifier 60-6830 36 MB	30 - 110 30 - 110 41/1-A MB	Uncert.	Uncert.	BI	MDC	Unit		Prep Type: To Prep Batch:	otal/N/ 68304
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte	%Yield 93.6 78.5 MB 10	Qualifier 60-6830 36 MB Result	30 - 110 30 - 110 41/1-A MB Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)	<u></u>	MDC 0 486		Prepared	Prep Type: To Prep Batch: Analyzed	otal/N 68304 Dil Fa
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte	%Yield 93.6 78.5 MB 10	Qualifier 60-6830 36 MB Result 0.1939	30 - 110 30 - 110 41/1-A MB Qualifier U	Uncert.	Uncert.		MDC 0.486			Prep Type: To Prep Batch: Analyzed	otal/N 68304 Dil Fa
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte Radium-228	%Yield 93.6 78.5 MB 10	Qualifier 60-6830 36 MB Result 0.1939 <i>MB</i>	30 - 110 30 - 110 41/1-A MB Qualifier U MB	Uncert. (2σ+/-) 0.287	Uncert. (2σ+/-)				Prepared 10/10/24 09:23	Prep Type: To Prep Batch: Analyzed 10/29/24 12:19	otal/N 68304 Dil Fa
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte Radium-228 Carrier	%Yield 93.6 78.5 MB 10	Qualifier 60-6830 36 MB Result 0.1939 MB %Yield	30 - 110 30 - 110 41/1-A MB Qualifier U	Uncert. (2σ+/-) 0.287 Limits	Uncert. (2σ+/-)				Prepared 10/10/24 09:23 Prepared	Prep Type: To Prep Batch: Analyzed 10/29/24 12:19 Analyzed	otal/N 68304 Dil Fa
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte Radium-228 Carrier Ba Carrier	%Yield 93.6 78.5 MB 10	Qualifier 60-6830 36 MB Result 0.1939 MB %Yield 94.9	30 - 110 30 - 110 41/1-A MB Qualifier U MB	Uncert. (2σ+/-) 0.287 Limits 30 - 110	Uncert. (2σ+/-)				Prepared 10/10/24 09:23 Prepared 10/10/24 09:23	Analyzed 10/29/24 12:19 Analyzed 10/29/24	otal/N 68304 Dil Fa
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte Radium-228 Carrier Ba Carrier	%Yield 93.6 78.5 MB 10	Qualifier 60-6830 36 MB Result 0.1939 MB %Yield	30 - 110 30 - 110 41/1-A MB Qualifier U MB	Uncert. (2σ+/-) 0.287 Limits	Uncert. (2σ+/-)				Prepared 10/10/24 09:23 Prepared 10/10/24 09:23	Prep Type: To Prep Batch: Analyzed 10/29/24 12:19 Analyzed	otal/N 68304 Dil Fa
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte Radium-228 Carrier Ba Carrier Y Carrier	⁶ Yield 93.6 78.5 MB 10 : 6857	Qualifier 60-6830 36 MB Result 0.1939 MB %Yield 94.9 86.7	30 - 110 30 - 110 41/1-A MB Qualifier U MB Qualifier	Uncert. (2σ+/-) 0.287 Limits 30 - 110	Uncert. (2σ+/-)			pCi/L	Prepared 10/10/24 09:23 Prepared 10/10/24 09:23 10/10/24 09:23	Prep Type: To Prep Batch: 10/29/24 12:19 Analyzed 10/29/24 12:19 10/29/24 12:19	otal/N 68304 Dil Fa Dil Fa
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID:	⁶ Yield 93.6 78.5 MB 10 : 6857	Qualifier 60-6830 36 MB Result 0.1939 MB %Yield 94.9 86.7	30 - 110 30 - 110 41/1-A MB Qualifier U MB Qualifier	Uncert. (2σ+/-) 0.287 Limits 30 - 110	Uncert. (2σ+/-)			pCi/L	Prepared 10/10/24 09:23 Prepared 10/10/24 09:23 10/10/24 09:23 ent Sample ID:	Analyzed 10/29/24 12:19 Analyzed 10/29/24 10/29/24 12:19 10/29/24 12:19 10/29/24 12:19 10/29/24 12:19 10/29/24 12:19	otal/N. 68304 <u>Dil Fa</u> <u>Dil Fa</u> Sampl
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID: Matrix: Water	6Yield 93.6 78.5 MB 10 : 6857 : 6857	Qualifier 60-6830 36 MB Result 0.1939 MB %Yield 94.9 86.7	30 - 110 30 - 110 41/1-A MB Qualifier U MB Qualifier	Uncert. (2σ+/-) 0.287 Limits 30 - 110	Uncert. (2σ+/-)			pCi/L	Prepared 10/10/24 09:23 Prepared 10/10/24 09:23 10/10/24 09:23 ent Sample ID:	Prep Type: To Prep Batch: 10/29/24 12:19 Analyzed 10/29/24 12:19 10/29/24 12:19	otal/N 68304 Dil Fa Dil Fa Sampl otal/N
Carrier 9 Ba Carrier Y Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Matrix: Water Matrix: Water Matrix: Water	6Yield 93.6 78.5 MB 10 : 6857 : 6857	Qualifier 60-6830 36 MB Result 0.1939 MB %Yield 94.9 86.7	30 - 110 30 - 110 41/1-A MB Qualifier U MB Qualifier	Uncert. (2σ+/-) 0.287 Limits 30 - 110	Uncert. (2σ+/-)			pCi/L	Prepared 10/10/24 09:23 Prepared 10/10/24 09:23 10/10/24 09:23 ent Sample ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 10/29/24 12:19 <u>Analyzed</u> 10/29/24 12:19 10/29/24 12:19 Lab Control S Prep Type: To	otal/N 68304 Dil Fa Dil Fa Sampl otal/N
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID: Matrix: Water	6Yield 93.6 78.5 MB 10 : 6857 : 6857	Qualifier 60-6830 36 MB Result 0.1939 MB %Yield 94.9 86.7	30 - 110 30 - 110 41/1-A MB Qualifier U MB Qualifier	Uncert. (2σ+/-) 0.287 Limits 30 - 110 30 - 110	Uncert. (2σ+/-)	1.00		pCi/L	Prepared 10/10/24 09:23 Prepared 10/10/24 09:23 10/10/24 09:23 ent Sample ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 10/29/24 12:19 <u>Analyzed</u> 10/29/24 12:19 10/29/24 12:19 Lab Control S Prep Type: To	otal/N 68304 Dil Fa Dil Fa Dil Fa
Ba Carrier Y Carrier Lab Sample ID: Matrix: Water Analysis Batch: Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample ID: Matrix: Water	6Yield 93.6 78.5 MB 10 : 6857 : 6857	Qualifier 60-6830 36 MB Result 0.1939 MB %Yield 94.9 86.7	30 - 110 30 - 110 41/1-A MB Qualifier U MB Qualifier 041/2-A	Uncert. (2σ+/-) 0.287 Limits 30 - 110 30 - 110	Uncert. (2σ+/-) 0.288	1.00		pCi/L	Prepared 10/10/24 09:23 Prepared 10/10/24 09:23 10/10/24 09:23 ent Sample ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 10/29/24 12:19 <u>Analyzed</u> 10/29/24 12:19 10/29/24 12:19 10/29/24 12:19 Lab Control S Prep Type: To Prep Batch:	otal/N 68304 Dil Fa Dil Fa Sampl otal/N

QC Sample Results

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample Matrix: Wate Analysis Ba	er		1/2-A					Cli	ent Sar	nple ID: Lab Control Samp Prep Type: Total/N Prep Batch: 68304	A
	LCS	LCS									
Carrier	%Yield	Qualifier	Limits								- 7
Ba Carrier	84.8		30 - 110								
Y Carrier	83.4		30 - 110								
Lab Sample Matrix: Wate Analysis Ba	er		-			Total				Client Sample ID: BAW Prep Type: Total/N Prep Batch: 68304	A
	Sample	Sample		DU	DU	Uncert.				RE	R
Analyte	Result	Qual		Result	Qual	(2σ+/-)	RL	MDC	Unit	RER Lin	nit 🚪
Radium-228	0.866			0.2033	U	0.476	1.00	0.838	pCi/L	0.66	1
	DU	DU									
Carrier	%Yield	Qualifier	Limits								
Ba Carrier	79.2		30 - 110								
Y Carrier	86.0		30 - 110								

Job ID: 180-180875-2

Rad

Prep Batch: 683038

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-180875-1	FB-03	Total/NA	Water	PrecSep-21	
MB 160-683038/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-683038/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
Prep Batch: 683039					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-180875-1	FB-03	Total/NA	Water	PrecSep_0	
MB 160-683039/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-683039/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
Prep Batch: 683040					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-180875-2	BAW-1	Total/NA	Water	PrecSep-21	
180-180875-3	BAW-7	Total/NA	Water	PrecSep-21	
180-180875-4	BAW-2A	Total/NA	Water	PrecSep-21	
180-180875-5	BAW-3	Total/NA	Water	PrecSep-21	
180-180875-6	DUP-05	Total/NA	Water	PrecSep-21	
180-180875-7	EB-03	Total/NA	Water	PrecSep-21	
180-180875-8	BAW-5	Total/NA	Water	PrecSep-21	
180-180875-9	PZ-9	Total/NA	Water	PrecSep-21	
180-180875-10	BAW-4	Total/NA	Water	PrecSep-21	
180-180875-11	PZ-8	Total/NA	Water	PrecSep-21	
MB 160-683040/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-683040/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
180-180875-2 DU	BAW-1	Total/NA	Water	PrecSep-21	

Prep Batch: 683041

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-180875-2	BAW-1	Total/NA	Water	PrecSep_0	
180-180875-3	BAW-7	Total/NA	Water	PrecSep_0	
180-180875-4	BAW-2A	Total/NA	Water	PrecSep_0	
180-180875-5	BAW-3	Total/NA	Water	PrecSep_0	
180-180875-6	DUP-05	Total/NA	Water	PrecSep_0	
180-180875-7	EB-03	Total/NA	Water	PrecSep_0	
180-180875-8	BAW-5	Total/NA	Water	PrecSep_0	
180-180875-9	PZ-9	Total/NA	Water	PrecSep_0	
180-180875-10	BAW-4	Total/NA	Water	PrecSep_0	
180-180875-11	PZ-8	Total/NA	Water	PrecSep_0	
MB 160-683041/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-683041/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
180-180875-2 DU	BAW-1	Total/NA	Water	PrecSep_0	

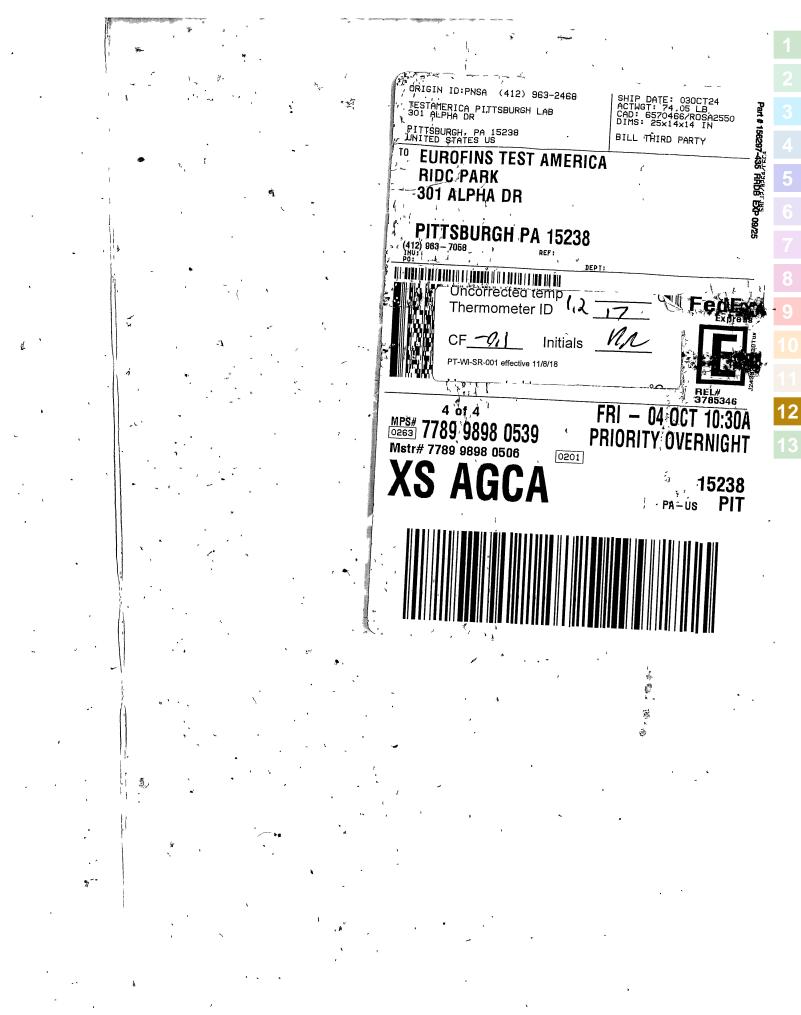
Pittsburgh	
TestAmerica,	Drive RIDC Park
Eurofins	301 Alpha Dri

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phone (412) 963-7058 Fax (412) 963-2468		Chain o	ain of Custody Record	ody Re	scord					•	👶 eurofins	S Environment Testing America
Client Information	Sampler Tock	/ KRISSMAN	14 40~	Lab PM Brown	Lab PM Brown, Shali			Carr	Carrier Tracking No(s)		COC No	
Client Contact: SCS Contacts		517-034	342	E-Mail shali.t	E-Mail shali.brown@eurofinset com	ofinset co	E				Page	
Company [.] SCS							Analysis	s Requested	sted		Job # [.]	
Address 3535 Colonnade Pkwy Bin S 530 EC	Due Date Requested:	ed:									Preservation Codes: A - HCI M	
City Birmingham	TAT Requested (days):	ays):									B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip Alabama											D - Nitric Acid E - NaHSO4	
Phone 205 992 6283	# Od				(6						G - Amchlor H - Ascorbic Acid	
Email SCS Contacts	#OM				(oN	əfeti	þ				l - Ice J - DI Water	
Project Name Daniel Ash Pond B CCR	Project # [.] 18020047				lo sa	uS əbi					K - EUIA L - EDA	w - pri 4-5 Z - other (specify)
Site	SSOW#				v) as	e Fluor				01 COI	Other:	
Common Idontification	Samula Data	Sample Time	Sample Type (C=comp, G=crah)	Matrix (w=water, s=solid, O=waste/oil,	ibld Filtered فرئورس M/SM M/SM شاکره MotsuD B020a	470 Mercury	bevlozzi Disto 822 878 822 85	III		fotal Number	Snerial	Snecial Instructions/Note
				5	X	-	-					
FB-03	300724	1130	0	5	72			00) 0 1) 		9		
BAW -1	20CT24	1250	0	3	0~					9		
BAU-7	206734	1720		3	n					9		
BAW -2A	ROCTOR	1115	0	5	22				o uis	Ø		
BAW-3	ACCTAY	0859	6	5	or					\$		
108-05	JOCIDY	0759	C	3	or.				0-929			
EB-03	205731	1345	C	5	OAL					9		
BAW -5	200724	0851	6	5	22				-081	9		
6-20	200734	1322	e	3	<i>?</i> 2				-	<u>\</u>		
BAW-4	ROCTRY	0918	0	3	er					Ś		
8-24	ROCTH	1150	C	5	22					\$		
	Doison B		Radiological		Sample	le Disposal (A 1 Petum To Client	(A fee má lient	ay be asse	assessed if sampl Disposal By Lab	les are retaint	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month) Months
			variorogradi		Special	Instruction.	Special Instructions/QC Requirements	Jirements			5	
Empty Kit Relinquished by		Date			Time.		V /*		Method of Shipment:	nent:		
Relinquished by Todd Vorces RANCA	Date/Time ー えのCT スイ	140	S R	Company RUH RA	AU Recei	Received by:	THAT		Date	10/13/ 24	CHICO	Compart E
Relinquished by	Date/Time		0	Company	Recei	Received by			Date	Date/Tîme č		Company
Relinquished by	Date/Time			Company	Recel	Received by [.]			Date	Date/Time		Company
Custody Seals Intact ⁻ Custody Seal No.:					Coole	sr Temperatu	re(s) °C and (Cooler Temperature(s) °C and Other Remarks				
												Ver: 01/16/2019
						13	12		о 9	7	5 6	

)
	2
	U.
	Ŀ.
	9
	2
4	Ð
	ю


5

1


Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park

eurofins Environment Testing

		Remarks:	Cooler Temperature(s) ^o C and Other Remarks:	Coo					Custody Seal No.:	Custody Seals Intact: ∆ Yes ∆ No
Company	Date/Time:	Date/	Received by:	Rec	Company			Date/Time:		venindrasted by
Company	Data/Time:	Date	Received by:	Rec	ROH ENU		1400	JOCT & Y	m	Relinquished by:
Company	Date/Time:	Date/	Received by:	_	Company					Relinquished by:
	lent	Method of Shipment:		Time:	1		Date:		э у :	Empty Kit Relinquished by
		ients:	Special Instructions/QC Requirements	Specia					I, III, IV, Oth	Deliverable Requested: I
Months	Archive For	Disposal By Lab	Return To Client	D		Radiological		Poison B Unknown	ble Skin Irritant	Non-Hazard F
1 month)	are reta	(A fee may be assessed if samples	Sample Disposal (A fee may be	Samp					ication	Possible Hazard Identification
	6			$\frac{3}{2}$	8	6	1150	200124		P2-8
	9			\sim	5	9	8160	rocray		BAW-4
	6				3	0	1322	200124		6-23
	9			\sim	3	0	1530	rociay		3
	9			\times	3	0	1345	200724		EB-03
	9			\mathbf{X}	8	0	0759	200727		002-05
	9			X	5	ດ	0859	2 OCT2Y		BAW-3
	6			\mathbf{X}	3	0	1115	DOCT & Y		UAW-2A
	6			\mathbf{X}	3	0	1720	ZOCTAY		BAW - 1
	9			\times	3	Ø	1250	200724		15AW-1
	6			\mathbf{X}	3	ର	1130	accent		FB-03
	X			X	ion Code:	Preservation Code:	X			
pecial Instructions/Note:	6		9 T(P	4		IIIIe			
	otal Number of		7470 Mercury 90656 Chioride I Total Dissolved So Ra 226 Ra 228 an	Perform MS/MS	(Watrix Watrix Field Filtered Sa	Sample Type (C=comp, G=orab)	Sample	Sample Date		Sample Identification
	cont Other:		olids	D (Ye	mple			SSOW#		Site
W - pH 4-5 Z - other (specify)	tainer: L-EDTA			s or l) (Yes			Project #: 18020047		Daniel Ash Pond B CCR
I - I SH Looecanyorate U - Acetone V - MCAA				No)	or No			WO #		Email: SCS Contacts
R - Na2S203 S - H2SO4	F - MeOH G - Amchlor							PO#		Phone: 205.992.6283
D - Nazoas	D - Nitric Acid									Alabama
M - Hexane N - None D - ArMono	A - HCL B - NaOH						ays):	TAT Requested (days):		Birmingham
des:	Preservation Codes:						đ	Due Date Requested	3in S 530 EC	3535 Colonnade Pkwy Bin
	tapr	quested	Analysis Requested							SCS
	Page		E-Mail shali.brown@eurofinset.com	rown@e	E-Mail. shali.b			Phone		SCS Contacts
	COC No:	Carrier Tracking No(s):		Shali	Lab PM. Brown,	Nov 114	KRISSNON	Sampler: Todd		Client Information
5 Environment Testing America	😴 eurofins			cord	Chain of Custody Record	of Cust	Chain		ark 'ax (412) 963-2465	301 Alpha Drive RIDC Park Prittsburgh, PA 15238 Phone (412) 963-7058 Fax (412) 963-2468

ORIGIN , ID: PNSA (412) 963-2468 SHIP DATE: 030CT24 ACTWGT: 73.00 LB CAD: 6570466/R0SA2550 DIMS: 25x14x13 IN TESTAMERICA PITTSBURGH LAB PITTSBURGH, PA 15238 UNITED STATES US BILL THIRD PARTY TO, EUROFINS TEST AMERICA RIDC PARK 4 **301 ALPHA DR** PITTSBURGH PA 15238 Uncorrected temp 10 10 FedEx CF Initials PT-WI-SR-001 effective 11/8/18 FRI – 04 OCT 10:30 3 of 4 MPS# [2263] [2263] [Mstr# 7789 9898 0506 **PRIORITY OVERNIGH** 0201 AG 15 -US PÅ-

1520 Aliport Blvd Ste A Pensaccla, Ft 32504 850.474.3796

October i, 2024 1.56 PM Receipt #+ PN5K00807205

FedEx Express FedEx Priority Overnight Estimated 778998980506 778998980517 778998980528 778998980539 Recipient Address Eurofins Test America RTDC Park

301 Alpha Dr PITTSBURGH, PA 15238, US 412 963-7058 Scheduled Delivery Date: 10/04/2024 Pricing Option: Standard Rate Package Information: Your Packaging Additional Services: No Signature Required Total Weight: 289.15 lbs (S) Total Declared Value: \$400 Total Pieces: 4

Pcs	Weight/pc (lbs.)	DV/pc (USD)	Dims. (in.)
1	73.25 (S)	\$100	25x14x14
1	68.85 (S)	\$100	25x14x13
1	73,00 (S)	\$100	25x14x13
1	74.05 (S)	\$100	25x14x14
-	10.000 Pro-		Annual I

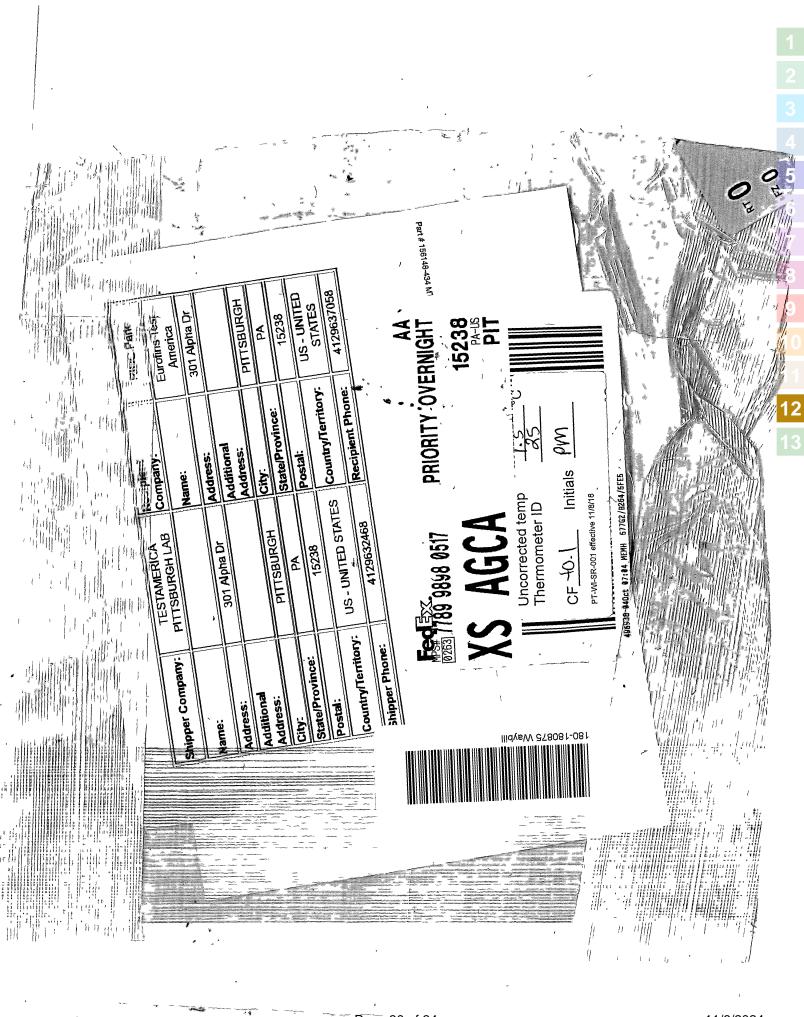
Account Billed

\$285.26

Est. Express Subtotal \$285.26

> Estimated Total \$285.26

Sender Account ending in *1804


Tell us how we're doing. fedex.com/wellsten

ferms and conditions apply, including ferms that limit FedEx's liability. The estimated shipping charge may be different than the actual charges for your shipment. Differences may occur based on actual weight, dimensions and other factors. Shipment related terms and conditions and details on how shipping charges are rate lated how shipping charges are calculated are available upon request or at fedex.com/serviceguide.

Manually Weighed - (M), Weighed by Scale - (S), Taxable Item = T.

Visit us at: fedex.com Or call 1.800,GoFedEx (1.800,463,3339)

Page 30 of 34

Image: Contract Lab) Sampler ries, Inc. Phone: nies, Inc. Due Date Requested: 10117/2024 10117/2024 4-298-8757(Fax) Po # A-298-8757(Fax) Po # Pome Po # A-298-8757(Fax) Po #	E-Mail Brow E-Mail Shali Shali Shali (wwwatr, wwwatr, composed Matrix (wwwatr, composed Matrix (wwwatr, composed Matrix		Analysis Requested Analysis Requested Analysis Pair of containers	COC No 180-525363.1 Page Dab # 180-180875-1 Preservation Codes: Preservation Codes:
ies, Inc. ies, Inc. 10/17/2024 4-298-8757(Fax) Po# 4-298-8757(Fax) Po# 4-298-8757(Fax) Po# Po# Po# Po# Po# Po# Po# Po#	E-Mail Shali (Weweater Second (Weweater Second (Code: Water Water Water	Омл Омл <th></th> <th>Page Page 180-1 Prese</th>		Page Page 180-1 Prese
ies, Inc. 10.17/2024 10.17/2024 10.17/2024 10.17/2024 10.17/2024 10.17/2024 10.17/2024 10.17/2024 10.224 11.30 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11.15 10/224 11/20 10/224 11/20 10/224 11/20 11/20 10/224 11/20 11/20 10/224 11/20 11/20 11/20 10/224 11/20 1/	Matrix Matrix (www.ate. Seeold. Constation. Ber-Teaus. AAM) Ber-Teaus. AAM) Water Water	Retform MS/MSD (Yea or No) Retform MS/MSD (Yea or No) × 9315_Ra226/PrecSep_0 Standard Target List × 9315_Ra226/PrecSep_0 Standard Target List		Prese 1 180-1
1. Due Date Requested (days): 4-298-8757(Fax) 10/17/2024 4-298-8757(Fax) Po # Po # No # No # No # Poly SSOW# SSOW# 11/30 10/2/24 11/30 10/2/24 11/35 10/2/24 11/35 10/2/24 07.59	Matrix (wwwater seque, command Berrene, Astur) Water Water	× B312_E#3258_GEbC × B312_E#3286[bec2eb_31 Radium 226 × B312_E#3286[bec2eb_31 Radium 226		Prese
TaT Requested (days): 4-298-8757(Fax) Po# 4-298-8757(Fax) WO # Poper Pomber # Poper	Matrix Matrix (www.ase. Berenes.exclu) Berenes.exclu) Water Water	× 83256Ka328_GFPC × 9315_Ra226/PrecSep_0 Standard Target List × 9315_Ra226/PrecSep_0 Standard Target Distribution		O the st
4-298-8757(Fax) Po# 4-298-8757(Fax) Wo # Wo # Wo # No # Project # 90000047 \$5000047 SSOW# 11:30 10/2/24 11:30 10/2/24 11:30 10/2/24 11:15 10/2/24 11:15 10/2/24 11:15 10/2/24 11:15 10/2/24 07:59 10/2/24 10:2/24 10/2/24 07:59 10/2/24 10:2/24 10/2/24 07:59 10/2/24 07:59 10/2/24 10:2/24 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59	Matrix (wwwater secolid, Comment and the Bertenewahuh) Water Water	Perform MS/MSD (Yes or No) > 9330_Ra228iPrecSep_0 Standard Target List × 9315_Ra226iPrecSep_0 Standard Target List	N X Total Number of containers	Other:
4-298-8757(Fax) Po # W0 # W0 # B Froject # 18020047 SSOW# SSOW# 10020047 SSOW# 1002024 Oright ID Sample Date Time 10/2/24 O 07:59 O 10/2/24 O 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59 10/2/24 07:59	Matrix (Mervater (Mervater) (Mervater) (Mervater Water	Perform MS/MSD (Yes or No) > 9320_Ra226/PrecSep_0 Standard Target Li × 9315_Ra226/PrecSep_21 Radium 226	N X Total Number of containers	Other
47 Bate Time e Date Sample e Date Sample e Date Time e Date Time e Date 11:30 2/24 11:30 2/24 Central 17:20 2/24 Central 17:20 2/24 Central 17:20 2/24 Central 13:30 2/24 Central	Matrix (www.ass. (www.ass. (www.ass.) Bernews.ass.) Water Water	X Perform MS/MSD (Yes or No) > 9320_Ra226/PrecSep_0 Standard Tail X 93256_Ra226/PrecSep_0 Standard Tail	A A	O ther:
B Project # 18020047 - Client ID (Lab ID) \$Sow# - Client ID (Lab ID) Sample Date Time 10/2/24 - Central 10/2/24 -	Matrix Meatrix (wwwater, secold, constation, Water Water	X 9315_Ra226/PrecSep_0 Stands X 9320_Ra226/PrecSep_0 Stands		Other:
- Client ID (Lab ID) Sample Date Sample - Client ID (Lab ID) Sample Date Time 10/2/24 Central	Matrix (wwwater (wwwater commanded) BETTER Water Water	× 3312_Ra226(PrecSep_2 × 9315_Ra228(PrecSep_0 × 9315_Ra228(PrecSep_0		Other
-Client ID (Lab ID) Sample Date Time Sample Date Time 10(2)24 Time 11:30 10/2)24 Central 11:30 10/2)24 Central 10/2)24 Cental 10/2)24 Cental 1	Matrix (wwwater, seroid owyater/ Water Water	× 3315_Ra226/Prec × 9320_Ra226/Prec		
Client ID (Lab ID) Sample Date Sample Date 7:me 10/2/24 11:30 10/2/24 10/2/24 11:30 10/2/24 10/2/24 11:15 10/2/24 10/2/24 11:15 10/2/24 10/2/24 11:15 10/2/24 10/2/24 06:101 10/2/24 07:59 10/2/54 10/2/24 10/2/24 07:59 10/2/24 10/2/24 07:59 10/2/24 07:59 10/2/24 10/2/24 07:59 10/2/24 10/2/24 07:59 10/2/24 10/2/24 07:59 10/2/24 10/2/24 07:59 10/2/24 10/2/24 07:59 10/2/24 10/2/24 07:59 10/2/24 10/2/24 07:59 10/2/24 10/2/24 07:59 10/2/24	Ormassion Br-Tasue, A-Air) ation Code: Water Water	× 3312		
4) 10/2/24 11:30 10/2/24 11:30 10/2/24 10/2/24 17:20 17:20 10/2/24 17:20 10/2/24 10/2/24 17:20 10/2/24 10/2/24 10/2/24 06:59 10/2/24 07:59 07:59 10/2/24 10/2/24 07:59 10/2/24 07:59 13:45 10/2/24 07:59 13:45 10/2/24 07:29 07:59 10/2/24 07:29 13:45 10/2/24 10/2/24 07:59 10/2/24 07:29 13:45 10/2/24 10/2/24 07:59 10/2/24 10/2/24 07:59	water Water			
10/2/24 10/2/24 10/2/24 10/2/24 10/2/24 10/2/24 10/2/24 10/2/24		×		
10/2/24 4) 10/2/24 4) 10/2/24 10/2/24 10/2/24 10/2/24 10/2/24	$\left - \right $			
4) 10/2/24 10/2/24 10/2/24 10/2/24 10/2/24 10/2/24 10/2/24	$\left \right $	x x x	2	
4) 10/2/24 10/2/24 10/2/24 10/2/24 10/2/24	C Maler	× × ×	~	
10/2/24 10/2/24 10/2/24	G Water	× × ×	2	
10/2/24 10/2/24 10/2/24	G Water	× × ×	3	
10/2/24	G Water	× × ×	8	
10/2/24	G Water	× × ×	5	
_	G Water	× × ×	8	
P2-9 (180-180875-9) 10/2/24 13:22 Central	G Water	× × ×	3	
Note: Since laboratory accreditations are subject to change, Eurofins Pittsburgh places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/hests/matrix being analyzed, the samples must be shipped back to the Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Pittsburgh.	& accreditation compliance upo pped back to the Eurofins Pitts aid compliance to Eurofins Pitts	in our subcontract laboratories. This sarr burgh laboratory or other instructions will sburgh.	ple shipment is forwarded under chain-of-ci- be provided. Any changes to accreditation	ustody. If the laboratory does not currently status should be brought to Eurofins Pittsburgh
Possible Hazard Identification		Sample Disposal (A fee may b	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ed longer than 1 month)
Deliverable Requested: I, II, IV, Other (specify) Primary Deliverable Rank: 2		Special Instructions/OC Requirements	Dosal By Lab	Archive For Months
Empty Kit Relinquished by:			. Г	
DateTime	Coppeday M	Received by:	Method of Shipment: Date/Time:	Сотнали
Relinquished at Date Time: Date Time:	Company	Read by N.	1	6
Relinquished by: Date/Time	Company	And by Land		20240845 Company Company
Custody Seals Intact: Custody Seal No.	-	Cooler Temperature(s) ^o C and Other Remarks	Remarks:	

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468		Chain	nain of Custody Record	tody R	ecol	g								🔅 eul	💸 eurofins	Environment Testing
Client Information (Sub Contract Lab)	Sampler			Lab PM Brown	Lab PM: Brown, Shali					Car	Carrier Tracking No(s)	ing No(s)		COC No 180-52	COC No: 180.555363 0	
Client Contact Shipping/Receiving	Phone			E-Mail Shali	E-Mail: Shali. Brown@et.eurofinsus.com	Øet.eu	Irofinst	IS.com		Sta	State of Origin: Mississioni	c		Page:	2.000	
Company: TestAmerica Laboratories, Inc.					Accredita	tions Re	equired (Accreditations Required (See note)						Toyor of the state	7 10	Ι
Address. 13715 Rider Trail North,	Due Date Requested: 10/17/2024	:pe						Ana	Analvsis Requested	Panna	stad			Presen	180-1808/5-1 Preservation Codes:	
City. Earth City	TAT Requested (days)	iys):				┢						-	E			
State. Zp MO, 63045						ţs										
Phone 314-298-8566(Tel) 314-298-8757(Fax)	# Od				(_				_				_
Email:	# OM															
Project Name: Plant Daniel Ash Pond B	Project # 18020047									_				sıənii		
Site	SSOW#:													stnos 1 Other:		
		Sample	Sample Type (C=comp,	Matrix (w=water, s=solid, 0=wasta/oll,	s benetiis bla M/SM moh	20_Ra228/Prec	226Ra228_GF							al Number o		
Sample Identification - Client ID (Lap ID)	Sample Date		G=grab) I	BT=Tissue, A=Air) Preservation Code			-			-			_		Special Instructions/Note:	/Note:
BAW-4 (180-180875-10)	10/2/24	09:18	5	Water		×	>							X		
D7_8 (180-180076 11)		Central 11:50	,			+	-+	+		-				2		
(11-6/0001-001) 0-7-1	10/2/24	Central	υ	Water		× ×	×	-		-				2		
								_								
								_								
					-									35.		
						-		-		_			_			
								-		_		_	_			
Note: Since laboratory accreditations are subject to change. Eurofins Pittsburgh places the ownership of method, anthod, anthod, and & accreditation compliance upon our subcontract laboratory accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples and to the Eurofing Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation to the Eurofing Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation to Eurofing Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation to Eurofing Pittsburgh laboratory or other instructions will be provided. Any changes to accreditation to Eurofing Pittsburgh	I gh places the ownership of trix being analyzed, the sa rn the signed Chain of Cus	method, analy mples must be tody attesting 1	rte & accreditat shipped back t o said compliar	on compliance o the Eurofins nee to Eurofins	upon our Pittsburgh Pittsburgh	subcont laborato	ract labo	ratories. er instruc	This sam tions will	ple shipn be provic	ient is for ed. Any	warded ur	nder chain	of-custody. If the iter of the	he laboratory does not o aid be brought to Eurofi	s Pittsburgh
Possible Hazard Identification					Sam	ple Di	lasous	(A fee	hav h	9000	i pos	olame			Sample Disnosal (A fee may be accessed if complete on the second	
Unconfirmed						Retur	m To C	lient		Dispo	Disposal By Lab	alquipe		tained longe Archive For	ir than 1 month) Monthe	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable	ble Rank: 2			Spec	ial Inst	ruction	Special Instructions/QC Requirements:	equiren	ients:				0	UNION!	T
Empty Kit Relinquished by:		Date:			Time:						Method	Method of Shipment	ť			T
Aningues and a second sec	DaferTime 7-7	4 10	00	the deador	a de	Received by	Ă,	2				Date/Time	me		Company	
Reinquismed by	Date/Time.		U	Company	α ·			Y.	100	Ł		Date/Time	<	ACAC O	CUL Company	
	Date/Time:		U	Company	æ	eceived by	Â	*	3	ķ	Y	Date/Time	>		Company	
Custody Seals Intact: Custody Seal No.:					0	ooler Te	mperatur	Cooler Temperature(s) °C and Other Remarks	nd Other	Remarks						Τ
					1										Ver: 05/06/2024	/2024

Client: Southern Company

Login Number: 180875 List Number: 1 Creator: Kovitch, Christina M

Radioactivity wasn't checked or is = background as measured by a survey<br/ meter.N/AThe cooler's custody seal, if present, is intact.TrueSample custody seals, if present, are intact.TrueThe cooler or samples do not appear to have been compromised or tampered with.TrueSamples were received on ice.TrueCooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.False
Sample custody seals, if present, are intact.TrueThe cooler or samples do not appear to have been compromised or tampered with.TrueSamples were received on ice.TrueCooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.False
The cooler or samples do not appear to have been compromised or tampered with.TrueSamples were received on ice.TrueCooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.False
tampered with.TrueSamples were received on ice.TrueCooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.False
Cooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.False
Cooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.False
COC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.False
COC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.False
COC is filled out with all pertinent information. False
Is the Field Complete news present on COC2
Is the Field Sampler's name present on COC? True
There are no discrepancies between the containers received and the COC. False Missing a cooler
Samples are received within Holding Time (excluding tests with immediate True HTs)
Sample containers have legible labels. True
Containers are not broken or leaking. True
Sample collection date/times are provided. True
Appropriate sample containers are used. True
Sample bottles are completely filled. True
Sample Preservation Verified. True
There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs
Containers requiring zero headspace have no headspace or bubble is True <6mm (1/4").
Multiphasic samples are not present. True
Samples do not require splitting or compositing. True
Residual Chlorine Checked. N/A

List Source: Eurofins Pittsburgh

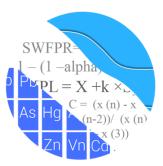
Client: Southern Company

Login Number: 180875 List Number: 2 Creator: Pinette, Meadow L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 180-180875-2

List Source: Eurofins St. Louis


List Creation: 10/08/24 01:30 PM

APPENDIX B

Statistical Analyses

GROUNDWATER STATS CONSULTING

May 8, 2024

Southern Company Services Attn: Mr. Trey Singleton 3535 Colonnade Parkway Birmingham, AL 35243

Re: Plant Daniel Bottom Ash Pond 2024 Annual Statistical Analysis – March 2024 Sample Event

Dear Mr. Singleton,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of groundwater data for the March 2024 Groundwater Detection and Assessment Monitoring report for Mississippi Power Company's Plant Daniel Bottom Ash Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (CCR Rule, 2015) as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at Daniel Bottom Ash Pond for the CCR program in 2016. The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient wells: BAW-1 and BAW-2A
- **Downgradient wells:** BAW-3, BAW-4, BAW-5, and BAW-7

Upgradient well BAW-2 was last sampled in October 2017 and has since been abandoned; however, data for this well are included to represent groundwater quality upgradient of the ash pond. Replacement upgradient well BAW-2A was first sampled in March 2018 and has since been sampled to supplement existing upgradient data for BAW-2.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Andrew Collins, Project Manager for Groundwater Stats Consulting.

1

The CCR program monitors the constituents listed below. The terms "parameters" and "constituents" are used interchangeably.

- Appendix III (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)
- Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A list of Appendix IV downgradient well/constituent pairs containing 100% non-detects follow this letter. For all constituents, a substitution of the most recent reporting limit is used for non-detect data. This generally gives the most conservative limit in each case.

Time series plots for Appendix III and IV parameters are provided for all wells and are used to evaluate concentrations over time. Additionally, box plots are included for all constituents at upgradient and downgradient wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graph. A summary of these values follows this letter. The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

During the previous screening, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided with the screening to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below.

Summary of Statistical Methods

Based on the evaluation for federal regulatory requirements, the following methods were selected for Appendix III constituents:

• Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS

The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. Parametric prediction limits (or tolerance limits or confidence intervals as applicable) are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric prediction limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric prediction limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The following approaches are used for handling non-detects (USEPA, 2009):

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data for parametric limits. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data following each sampling event after careful screening for any new outliers. In some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening Conducted in October 2017

Outlier Analysis

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits. No suspected outliers were observed in any of the proposed background data at upgradient wells. When any values are identified as outliers, they are plotted in a lighter font on the time series graph.

<u>Seasonality</u>

No seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Test Evaluation

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed a couple statistically significant decreasing and increasing trends. All trends noted were relatively low in magnitude when compared to average concentrations; therefore, no adjustments were made to any of the data sets at that time.

Appendix III – Determination of Spatial Variation

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA showed no variation for calcium, chloride, pH, sulfate, and TDS, making these parameters eligible for interwell methods. Boron and fluoride contained 100% non-detects and, therefore, could not be tested with the ANOVA. These parameters are also eligible for interwell methods since no variation is present. A summary table of the ANOVA results was included with the October 2017 screening.

Statistical Analysis of Appendix III Parameters – March 2024

Prior to constructing interwell prediction limits, data through the March 2024 sample event at upgradient wells were re-evaluated for outliers using visual screening. No additional outliers were suspected or flagged during this analysis. Tukey's outlier test had previously identified an outlier for calcium at well BAW-2 during the November 2019 statistical analysis; however, a similar measurement exists in replacement upgradient well BAW-2A; therefore, the measurement is not flagged as an outlier. A summary of flagged data follows this report. Additionally, any flagged values are displayed in a lighter font and as a disconnected symbol on the time series reports, as well as in a lighter font on the accompanying data pages.

Interwell Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample strategy, were established for each of the Appendix III parameters using pooled historical upgradient well data through March 2024. The reported measurements at downgradient wells for the March 2024 sample event were compared to the interwell prediction limits to determine whether initial exceedances are present.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary. Complete graphical results of the prediction limits may be found following this letter. Exceedances were identified for the following well/constituent pairs:

- Boron: BAW-4 and BAW-5
- Calcium: BAW-4 and BAW-5
- Fluoride: BAW-5
- pH: BAW-3 (lower limit) and BAW-5 (upper limit)
- Sulfate: BAW-4 and BAW-5
- TDS: BAW-4 and BAW-5

Trend Test Evaluation

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test at the 99% confidence level to determine whether concentrations are statistically increasing, decreasing, or stable. Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. The existence of similar trends in both upgradient and downgradient wells is an indication of variability in groundwater that is assumed to be unrelated to practices at the site. Statistically significant trends were identified for the following well/constituent pairs:

Increasing:

- Calcium: BAW-4
- Sulfate: BAW-2A (upgradient) and BAW-4

Decreasing:

- Calcium: BAW-2 and BAW-2A (both upgradient)
- pH: BAW-2 (upgradient), BAW-3, and BAW-5
- Sulfate: BAW-1 (upgradient)

As mentioned above, upgradient well BAW-2 was abandoned but data from this well are still used for constructing interwell statistical limits.

Statistical Methods – Appendix IV Parameters

Appendix IV parameters are evaluated by statistically comparing the mean of each downgradient well/constituent pair against corresponding Groundwater Protection Standards (GWPS). The GWPS may be either regulatory (MCL or CCR rule-specified limits) or site-specific limits that are based on upgradient groundwater quality. Site-specific background limits are determined using upper tolerance limits, and the comparison of downgradient means or medians to GWPS is performed using confidence intervals. The methods are described below.

Evaluation of Appendix IV Parameters – March 2024

For Appendix IV parameters, confidence intervals for each downgradient well/constituent pair were compared against corresponding Groundwater Protection Standards (GWPS). GWPS were developed as described below. Well/constituent pairs that have 100% nondetects do not require analysis.

Data from upgradient wells for Appendix IV parameters are reassessed for outliers during each analysis. No additional values were flagged during this analysis. Tukey's outlier test had previously identified an outlier for lithium at upgradient well BAW-1 during the November 2019 statistical analysis, and this value remains flagged. A summary of flagged outliers follows this report.

Interwell Upper Tolerance Limits

Parametric upper tolerance limits were used to calculate background limits from pooled upgradient well data through March 2024 when data followed a normal distribution for Appendix IV parameters with a target of 95% confidence and 95% coverage to determine background limits. When data contained greater than 50% non-detects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were constructed. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

The interwell upper tolerance limits were compared to the Maximum Contaminant Levels (MCLs), CCR Rule-Specified levels, and background limits in the GWPS table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons.

Confidence Intervals

Confidence intervals were then constructed on downgradient wells using all data through March 2024 for each of the Appendix IV parameters. The Sanitas software was used to calculate the confidence intervals, either parametric or nonparametric, as appropriate. The lower confidence limit, which is constructed with 99% confidence for parametric confidence intervals, is compared to the GWPS prepared as described above. The confidence level associated with nonparametric confidence intervals is dependent upon the number samples available. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. Complete graphical results of the confidence interval follow this letter. An exceedance was identified for the following well/constituent pair:

• Lithium: BAW-5

Trend Test Evaluation – Appendix IV

When confidence interval exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable at the 95% confidence level. Utilizing the 95% confidence level for trend tests readily identifies significant trends and is more sensitive than the 99% confidence level without drastically increasing the false negative rate. Upgradient wells are included in the trend analyses for all parameters found to exceed their confidence intervals in downgradient wells. When similar patterns exist upgradient of the site, it is an indication of variability in groundwater which may be unrelated to practices at the site. Statistically significant trends were identified for the following well/constituent pairs:

Increasing:

• None

Decreasing:

• Lithium: BAW-5

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Daniel Bottom Ash Pond. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Kristine Rayner

Kristina Rayner Senior Statistician

Alolling

Andrew Collins Project Manager

100% Non-Detects: Appendix IV Downgradient

Analysis Run 5/2/2024 10:11 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Antimony (mg/L) BAW-3, BAW-4, BAW-5, BAW-7

Arsenic (mg/L) BAW-3

Beryllium (mg/L) BAW-4, BAW-5

Cadmium (mg/L) BAW-4, BAW-7

Molybdenum (mg/L) BAW-3

Selenium (mg/L) BAW-4

Thallium (mg/L) BAW-4, BAW-5

Interwell Prediction Limits - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:26 AM

Constituent	Well	Upper Lim.	Lower Lim	. Date	Observ.	<u>Sig.</u> B	<u>ig N</u> E	<u>3g Mean</u>	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	BAW-4	0.0928	n/a	3/21/2024	0.115	Yes 49	9 n	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-5	0.0928	n/a	3/20/2024	0.686	Yes 49	9 n	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BAW-4	1.881	n/a	3/21/2024	7.31	Yes 49	9 -	0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Calcium (mg/L)	BAW-5	1.881	n/a	3/20/2024	28.9	Yes 49	9 -	0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	BAW-5	0.1	n/a	3/20/2024	0.11	Yes 49	9 n	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
pH (SU)	BAW-3	5.77	4.59	3/21/2024	4.39	Yes 47	7 n	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
pH (SU)	BAW-5	5.77	4.59	3/20/2024	6.2	Yes 47	7 n	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-4	7.68	n/a	3/21/2024	12.1	Yes 47	7 n	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-5	7.68	n/a	3/20/2024	30	Yes 47	7 n	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	BAW-4	57.17	n/a	3/21/2024	64	Yes 47	75	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-5	57.17	n/a	3/20/2024	164	Yes 47	75	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2

Interwell Prediction Limits - All Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:26 AM

		i lant Dan	er ollerit		inpany D	ata. Dott	lom	Asir COR TI	11160 3/2/20	24, 10.2				
Constituent	Well	Upper Lim.	Lower Li	n. <u>Date</u>	Observ.	<u>Sig.</u>	Bg N	<u>N Bg Mean</u>	Std. Dev.	<u>%ND</u>	<u>s ND Adj.</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	BAW-3	0.0928	n/a	3/21/2024	0.08ND	No 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-4	0.0928	n/a	3/21/2024	0.115	Yes 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-5	0.0928	n/a	3/20/2024	0.686	Yes 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-7	0.0928	n/a	3/21/2024	0.08ND	No 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BAW-3	1.881	n/a	3/21/2024	0.818	No 4	49	-0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Calcium (mg/L)	BAW-4	1.881	n/a	3/21/2024	7.31	Yes 4	49	-0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Calcium (mg/L)	BAW-5	1.881	n/a	3/20/2024	28.9	Yes 4	49	-0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Calcium (mg/L)	BAW-7	1.881	n/a	3/21/2024	1.38	No 4	49	-0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Chloride (mg/L)	BAW-3	16.4	n/a	3/21/2024	5.21	No 4	47	n/a	n/a	0	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-4	16.4	n/a	3/21/2024	8.17	No 4	47	n/a	n/a	0	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-5	16.4	n/a	3/20/2024	9	No 4	47	n/a	n/a	0	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-7	16.4	n/a	3/21/2024	8.37	No 4	47	n/a	n/a	0	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Fluoride (mg/L)	BAW-3	0.1	n/a	3/21/2024	0.0537J	No 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-4	0.1	n/a	3/21/2024	0.0578J	No 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-5	0.1	n/a	3/20/2024	0.11	Yes 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-7	0.1	n/a	3/21/2024	0.0292J	No 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
pH (SU)	BAW-3	5.77	4.59	3/21/2024	4.39	Yes 4	47	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
pH (SU)	BAW-4	5.77	4.59	3/21/2024	5.47	No 4	47	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
pH (SU)	BAW-5	5.77	4.59	3/20/2024	6.2	Yes 4	47	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
pH (SU)	BAW-7	5.77	4.59	3/21/2024	4.89	No 4	47	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-3	7.68	n/a	3/21/2024	7.6	No 4	47	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-4	7.68	n/a	3/21/2024	12.1	Yes 4	47	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-5	7.68	n/a	3/20/2024	30	Yes 4	47	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-7	7.68	n/a	3/21/2024	1.66	No 4	47	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	BAW-3	57.17	n/a	3/21/2024	31	No 4	47	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-4	57.17	n/a	3/21/2024	64	Yes 4	47	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-5	57.17	n/a	3/20/2024	164	Yes 4	47	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-7	57.17	n/a	3/21/2024	40	No 4	47	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2

Appendix III Trend Tests - Prediction Limit Exceedances - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:20 AM

Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	BAW-2 (bg)	-0.5725	-31	-25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-2A (bg)	-0.05023	-55	-53	Yes	15	6.667	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-4	0.3488	139	111	Yes	25	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2 (bg)	-0.5393	-29	-25	Yes	9	0	n/a	n/a	0.01	NP
pH (SU)	BAW-3	-0.06553	-182	-105	Yes	24	0	n/a	n/a	0.01	NP
pH (SU)	BAW-5	-0.05237	-152	-105	Yes	24	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-1 (bg)	-0.4138	-121	-105	Yes	24	45.83	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2A (bg)	0.9245	56	48	Yes	14	7.143	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-4	0.3988	165	105	Yes	24	0	n/a	n/a	0.01	NP

Appendix III Trend Tests - Prediction Limit Exceedances - All Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:20 AM

							.,				
Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	BAW-1 (bg)	0	6	111	No	25	96	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-2 (bg)	0	0	25	No	9	100	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-2A (bg)	-0.002126	-39	-53	No	15	53.33	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-4	0.007426	108	111	No	25	36	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-5	0.0151	61	111	No	25	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-1 (bg)	0.02243	73	111	No	25	4	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-2 (bg)	-0.5725	-31	-25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-2A (bg)	-0.05023	-55	-53	Yes	15	6.667	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-4	0.3488	139	111	Yes	25	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-5	0.7643	38	111	No	25	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	BAW-1 (bg)	0	-49	-111	No	25	88	n/a	n/a	0.01	NP
Fluoride (mg/L)	BAW-2 (bg)	0	0	25	No	9	100	n/a	n/a	0.01	NP
Fluoride (mg/L)	BAW-2A (bg)	0	-34	-53	No	15	66.67	n/a	n/a	0.01	NP
Fluoride (mg/L)	BAW-5	0.0009981	39	111	No	25	4	n/a	n/a	0.01	NP
pH (SU)	BAW-1 (bg)	-0.01122	-40	-105	No	24	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2 (bg)	-0.5393	-29	-25	Yes	9	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2A (bg)	-0.02024	-21	-48	No	14	0	n/a	n/a	0.01	NP
pH (SU)	BAW-3	-0.06553	-182	-105	Yes	24	0	n/a	n/a	0.01	NP
pH (SU)	BAW-5	-0.05237	-152	-105	Yes	24	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-1 (bg)	-0.4138	-121	-105	Yes	24	45.83	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2 (bg)	0	-11	-25	No	9	77.78	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2A (bg)	0.9245	56	48	Yes	14	7.143	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-4	0.3988	165	105	Yes	24	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-5	0.8287	80	105	No	24	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-1 (bg)	1.364	92	105	No	24	8.333	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-2 (bg)	-5.236	-4	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-2A (bg)	1.336	17	48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-4	2.234	50	105	No	24	4.167	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-5	6.434	58	105	No	24	0	n/a	n/a	0.01	NP

Upper Tolerance Limits

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:09 AM

Constituent	Upper Lim.	Lower Lim.	<u>Bg N</u>	Bg Mean	Std. Dev.	<u>%NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	0.002	n/a	41	n/a	n/a	97.56	n/a	n/a	0.1221	NP Inter(NDs)
Arsenic (mg/L)	0.001	n/a	47	n/a	n/a	100	n/a	n/a	0.08974	NP Inter(NDs)
Barium (mg/L)	0.0512	n/a	47	n/a	n/a	2.128	n/a	n/a	0.08974	NP Inter(normality)
Beryllium (mg/L)	0.001	n/a	43	n/a	n/a	97.67	n/a	n/a	0.1102	NP Inter(NDs)
Cadmium (mg/L)	0.001	n/a	47	n/a	n/a	97.87	n/a	n/a	0.08974	NP Inter(NDs)
Chromium (mg/L)	0.00286	n/a	45	n/a	n/a	91.11	n/a	n/a	0.09944	NP Inter(NDs)
Cobalt (mg/L)	0.001707	n/a	47	0.02914	0.00585	6.383	None	sqrt(x)	0.05	Inter
Combined Radium 226 + 228 (pCi/L)	2.5	n/a	47	n/a	n/a	4.255	n/a	n/a	0.08974	NP Inter(normality)
Fluoride (mg/L)	0.1	n/a	49	n/a	n/a	83.67	n/a	n/a	0.08099	NP Inter(NDs)
Lead (mg/L)	0.001	n/a	45	n/a	n/a	100	n/a	n/a	0.09944	NP Inter(NDs)
Lithium (mg/L)	0.00505	n/a	46	n/a	n/a	67.39	n/a	n/a	0.09447	NP Inter(NDs)
Mercury (mg/L)	0.0002	n/a	39	n/a	n/a	89.74	n/a	n/a	0.1353	NP Inter(NDs)
Molybdenum (mg/L)	0.005	n/a	43	n/a	n/a	90.7	n/a	n/a	0.1102	NP Inter(NDs)
Selenium (mg/L)	0.005	n/a	43	n/a	n/a	86.05	n/a	n/a	0.1102	NP Inter(NDs)
Thallium (mg/L)	0.001	n/a	43	n/a	n/a	95.35	n/a	n/a	0.1102	NP Inter(NDs)

PLANT D	ANIEL BOT	TOM ASH GW	PS	
		CCR-Rule	Background	
Constituent Name	MCL	Specified	Limit	GWPS
Antimony, Total (mg/L)	0.006		0.002	0.006
Arsenic, Total (mg/L)	0.01		0.001	0.01
Barium, Total (mg/L)	2		0.051	2
Beryllium, Total (mg/L)	0.004		0.001	0.004
Cadmium, Total (mg/L)	0.005		0.001	0.005
Chromium, Total (mg/L)	0.1		0.0029	0.1
Cobalt, Total (mg/L)	n/a	0.006	0.0017	0.006
Combined Radium, Total (pCi/L)	5		2.5	5
Fluoride, Total (mg/L)	4		0.1	4
Lead, Total (mg/L)	0.015		0.001	0.015
Lithium, Total (mg/L)	n/a	0.04	0.0051	0.04
Mercury, Total (mg/L)	0.002		0.0002	0.002
Molybdenum, Total (mg/L)	n/a	0.1	0.005	0.1
Selenium, Total (mg/L)	0.05		0.005	0.05
Thallium, Total (mg/L)	0.002		0.001	0.002

*MCL = Maximum Contaminant Level

*CCR = Coal Combustion Residuals

*GWPS = Groundwater Protection Standard

Confidence Interval Summary Table - Significant Results

		Plant Daniel	Client: Sout	thern Company	y Data:	Bottom Ash Co	CR Printed	5/2/202	4, 10:13 AM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Compliance</u>	<u>Sig. N</u>	Mean	Std. Dev.	<u>%ND</u>	<u>s ND Adj.</u>	Transform	<u>Alpha</u>	Method
Lithium (mg/L)	BAW-5	0.1837	0.1377	0.04	Yes 24	0.1535	0.05393	0	None	x^2	0.01	Param.

Confidence Interval Summary Table - All Results

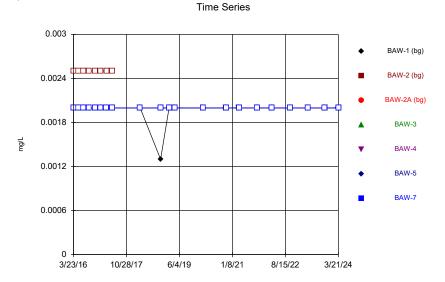
Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:13 AM

		Plant Daniel	Client: Sout	hern Company	Data:	Bottom Ash CC	R Printed 5	/2/2024	, 10:13 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig. N</u>	Mean	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	BAW-4	0.001525	0.0007639	0.01	No 24	0.001516	0.001274	16.67	Kaplan-Meier	ln(x)	0.01	Param.
Arsenic (mg/L)	BAW-5	0.004662	0.002135	0.01	No 24	0.003876	0.003196	0	None	x^(1/3)	0.01	Param.
Arsenic (mg/L)	BAW-7	0.001	0.00052	0.01	No 24	0.0009592	0.0001384	91.67	None	No	0.01	NP (NDs)
Barium (mg/L)	BAW-3	0.03274	0.02393	2	No 24	0.02833	0.008638	0	None	No	0.01	Param.
Barium (mg/L)	BAW-4	0.0223	0.0091	2	No 24	0.0142	0.007611	0	None	No	0.01	NP (normality)
Barium (mg/L)	BAW-5	0.055	0.041	2	No 24	0.05227	0.01909	0	None	No	0.01	NP (normality)
Barium (mg/L)	BAW-7	0.02	0.0117	2	No 24	0.01873	0.01745	0	None	No	0.01	NP (normality)
Beryllium (mg/L)	BAW-3	0.001	0.000225	0.004	No 22	0.0009295	0.000228	90.91	None	No	0.01	NP (NDs)
Beryllium (mg/L)	BAW-7	0.001	0.000185	0.004	No 22	0.000963	0.0001738	95.45	None	No	0.01	NP (NDs)
Cadmium (mg/L)	BAW-3	0.0008494	0.0005588	0.005	No 24	0.0007041	0.0002848	4.167	None	No	0.01	Param.
Cadmium (mg/L)	BAW-5	0.001	0.000155	0.005	No 24	0.0009648	0.0001725	95.83	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-3	0.003	0.00165	0.1	No 23	0.002772	0.003566	86.96	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-4	0.002	0.0015	0.1	No 23	0.001917	0.0002289	86.96	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-5	0.0024	0.0012	0.1	No 23	0.002113	0.0006573	86.96	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-7	0.00206	0.002	0.1	No 23	0.002003	0.00001251	95.65	None	No	0.01	NP (NDs)
Cobalt (mg/L)	BAW-3	0.006845	0.005147	0.006	No 24	0.005996	0.001664	0	None	No	0.01	Param.
Cobalt (mg/L)	BAW-4	0.00144	0.00107	0.006	No 24	0.001255	0.0003628	0	None	No	0.01	Param.
Cobalt (mg/L)	BAW-5	0.000802	0.0005	0.006	No 24	0.000711	0.0005099	70.83		No	0.01	NP (NDs)
Cobalt (mg/L)	BAW-7	0.00112	0.00071	0.006	No 24	0.00119	0.0009895	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BAW-3	0.884	0.27	5	No 24	0.6381	0.6789		None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BAW-4	0.7165	0.1361	5	No 24	0.6056	0.7719	12.5	None	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BAW-5	0.9408	0.4066	5	No 23	0.7426	0.5912	4.348		sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BAW-7	1.014	0.333	5	No 24	0.7977	0.7902	12.5	None	sqrt(x)	0.01	Param.
Fluoride (mg/L)	BAW-3	0.1	0.0537	4	No 25	0.09274	0.0204	88	None	No	0.01	NP (NDs)
Fluoride (mg/L)	BAW-4	0.0578	0.04	4	No 25	0.0572	0.0254	24	None	No	0.01	NP (normality)
Fluoride (mg/L)	BAW-5	0.07424	0.05336	4	No 25	0.06687	0.02828	4	None		0.01	Param.
Fluoride (mg/L)	BAW-5 BAW-7	0.07424	0.03330	4	No 25	0.09189	0.02828	4 88		ln(x) No	0.01	NP (NDs)
					No 23				None			. ,
Lead (mg/L)	BAW-3	0.001	0.000322	0.015		0.0007143	0.000375	60.87	None	No	0.01	NP (NDs)
Lead (mg/L)	BAW-4	0.001	0.00042	0.015	No 23	0.0008763	0.0002803	82.61		No	0.01	NP (NDs)
Lead (mg/L)	BAW-5	0.001	0.000152	0.015	No 23	0.0009631	0.0001768	95.65		No	0.01	NP (NDs)
Lead (mg/L)	BAW-7	0.001	0.000129	0.015	No 23	0.0009621	0.0001816	95.65		No	0.01	NP (NDs)
Lithium (mg/L)	BAW-3	0.005	0.00322	0.04	No 24	0.004271	0.001255		None	No	0.01	NP (NDs)
Lithium (mg/L)	BAW-4	0.02574	0.0176	0.04	No 24	0.02167	0.007973	0	None	No	0.01	Param.
Lithium (mg/L)	BAW-5	0.1837	0.1377	0.04	Yes 24	0.1535	0.05393	0	None	x^2	0.01	Param.
Lithium (mg/L)	BAW-7	0.005	0.0037	0.04	No 24	0.004956	0.002231	50	None	No	0.01	NP (normality)
Mercury (mg/L)	BAW-3	0.000497	0.000133	0.002	No 20	0.0002022	0.00007642	80	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-4	0.0002	0.000135	0.002	No 20	0.0001869	0.00003389		None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-5	0.0002	0.000134	0.002	No 20	0.0001904	0.00003111	90	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-7	0.000235	0.000151	0.002	No 20	0.00024	0.0002284	75	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BAW-4	0.005	0.00109	0.1	No 22	0.003809	0.001845	68.18	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BAW-5	0.003809	0.001686	0.1	No 22	0.006402	0.005683	27.27	Kaplan-Meier	x^(1/3)	0.01	Param.
Molybdenum (mg/L)	BAW-7	0.005	0.0038	0.1	No 22	0.004945	0.0002558	95.45	Kaplan-Meier	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-3	0.005	0.00079	0.05	No 22	0.003563	0.002157	68.18	None	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-5	0.005	0.00033	0.05	No 22	0.004788	0.0009956	95.45	None	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-7	0.005	0.0021	0.05	No 22	0.004013	0.001895	77.27	None	No	0.01	NP (NDs)
Thallium (mg/L)	BAW-3	0.001	0.000276	0.002	No 22	0.0008461	0.0003358	81.82	None	No	0.01	NP (NDs)
Thallium (mg/L)	BAW-7	0.001	0.000153	0.002	No 22	0.0009615	0.0001806	95.45	None	No	0.01	NP (NDs)

Appendix IV Trend Tests - Confidence Interval Exceedances - Significant Results

	Plant Daniel	Client: Southern Company	Data: Bottor	n Ash CCR	Printe	ed 5/2/20	24, 10:10	6 AM			
Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Lithium (mg/L)	BAW-5	-0.01541	-126	-81	Yes	24	0	n/a	n/a	0.05	NP

Appendix IV Trend Tests - Confidence Interval Exceedances - All Results

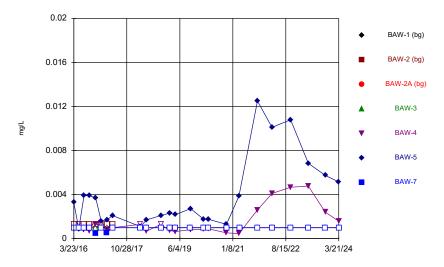

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:16 AM

Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	Alpha	Method
Lithium (mg/L)	BAW-1 (bg)	0	-14	-76	No	23	65.22	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-2 (bg)	0	0	17	No	8	100	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-2A (bg)	0	-1	-41	No	15	53.33	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-5	-0.01541	-126	-81	Yes	24	0	n/a	n/a	0.05	NP

Table of Contents

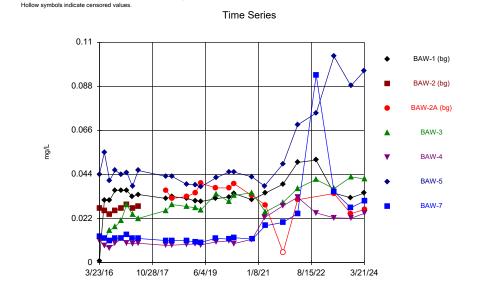
Time Series	22
Box Plots	50
Outlier Summary	57
Interwell Prediction Limits	59
Trend Tests - Prediction Limit Exceedances	71
Upper Tolerance Limits	82
Groundwater Protection Standards	92
Confidence Intervals	94
Trend Tests - Confidence Intervals Exceedances	115

Sanitas¹⁸ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

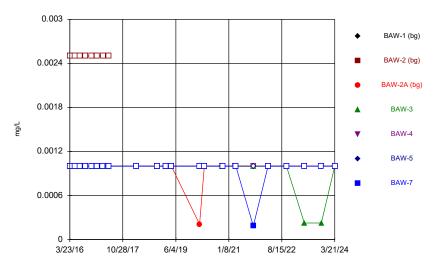


Constituent: Antimony
 Analysis Run 5/2/2024 10:22 AM
 View: Descriptive

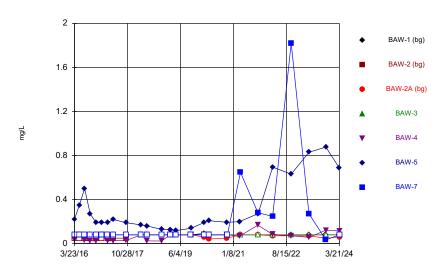
 Plant Daniel
 Client: Southern Company
 Data: Bottom Ash CCR


Sanitas^m v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Arsenic Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas^{tte} v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

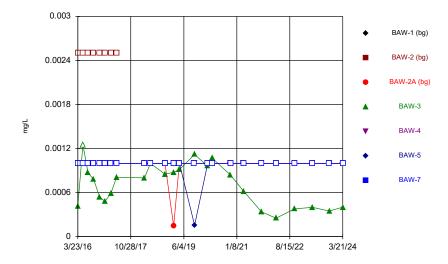
Constituent: Barium Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas¹⁸ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

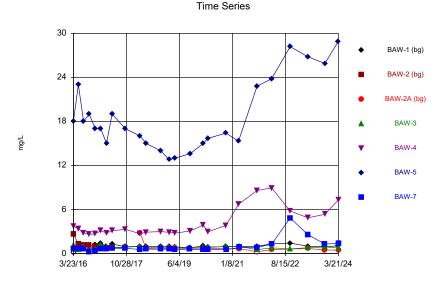
Constituent: Beryllium Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

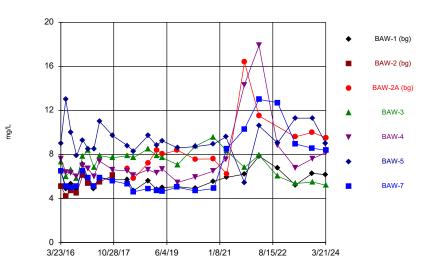
Sanitas¹¹ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



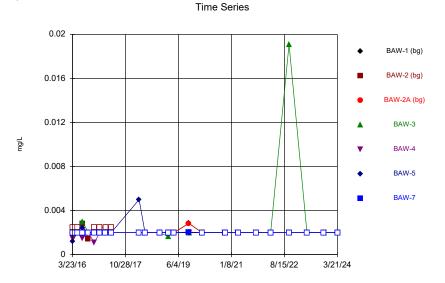
Time Series

Constituent: Boron Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

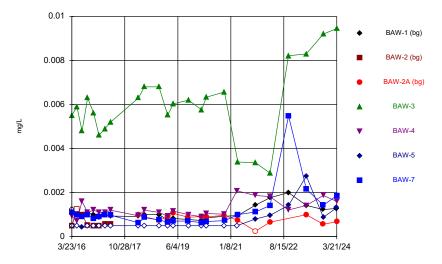

Sanitas $^{\rm to}$ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Cadmium Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

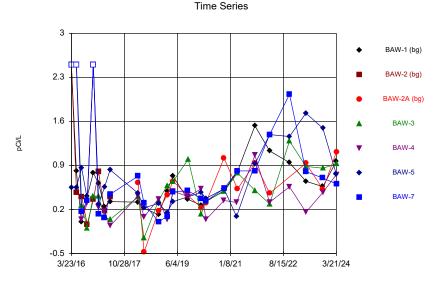
Sanitas^{tee} v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Calcium Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

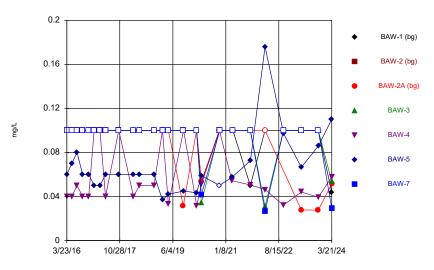
Constituent: Chloride Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas¹¹ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Chromium Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas^{tw} v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Cobalt Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

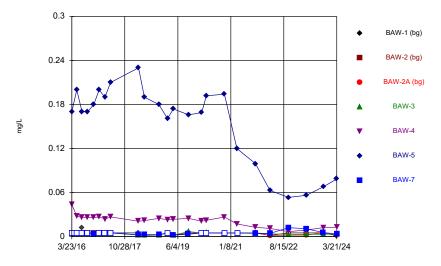

Sanitas^{tte} v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Combined Radium 226 + 228 Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas¹⁸ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

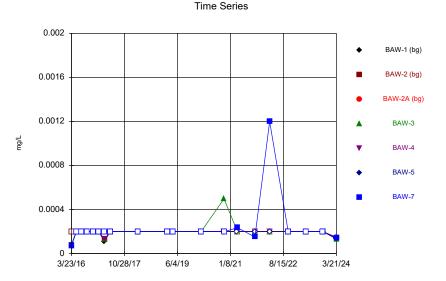
Time Series

Constituent: Fluoride Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

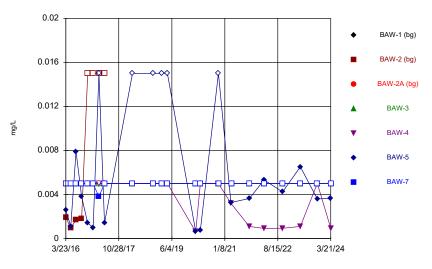

Sanitas¹⁸ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series 0.002 BAW-1 (bg) ٠ BAW-2 (bg) 0.0016 BAW-2A (bg) 0.0012 BAW-3 mg/L . BAW-4 0.0008 BAW-5 BAW-7 0.0004 0 3/23/16 3/21/24 10/28/17 6/4/19 1/8/21 8/15/22

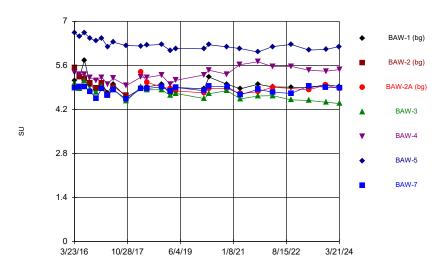
Constituent: Lead Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

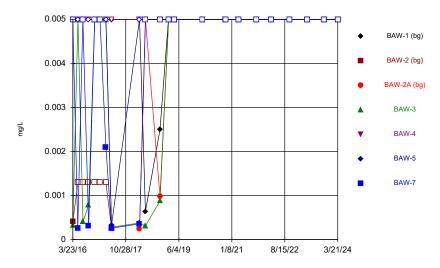

Sanitas¹¹⁴ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Mercury Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

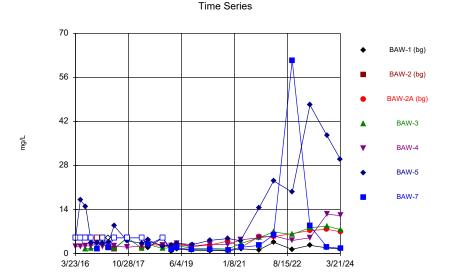

Sanitas^m v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Molybdenum Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

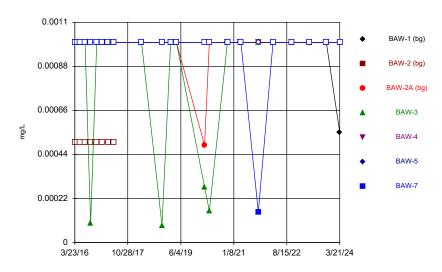


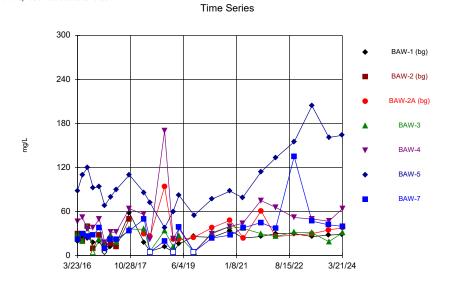
Constituent: pH Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Selenium Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Sulfate Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas¹⁸ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Thallium Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas $^{\rm \tiny W}$ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Total Dissolved Solids Analysis Run 5/2/2024 10:22 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Antimony (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.002	<0.0025		<0.002	<0.002	<0.002	<0.002
5/17/2016	<0.002				<0.002	<0.002	<0.002
5/18/2016		<0.0025		<0.002			
7/12/2016	<0.002						<0.002
7/13/2016		<0.0025		<0.002	<0.002	<0.002	
9/13/2016	<0.002					<0.002	<0.002
9/14/2016		<0.0025		<0.002	<0.002		
11/19/2016	<0.002	<0.0025		<0.002	<0.002	<0.002	<0.002
1/17/2017	<0.002	<0.0025		<0.002			<0.002
1/18/2017					<0.002	<0.002	
3/22/2017	<0.002						<0.002
3/23/2017		<0.0025		<0.002	<0.002	<0.002	
5/24/2017	<0.002	<0.0025		<0.002	<0.002	<0.002	<0.002
3/28/2018	<0.002		<0.002	<0.002	<0.002	<0.002	
3/29/2018							<0.002
11/8/2018	0.0013 (J)			<0.002	<0.002		
11/9/2018			<0.002			<0.002	<0.002
2/11/2019	<0.002				<0.002	<0.002	
2/12/2019			<0.002	<0.002			<0.002
4/17/2019	<0.002		<0.002	<0.002	<0.002	<0.002	
4/18/2019							<0.002
2/21/2020	<0.002		<0.002	<0.002			<0.002
2/22/2020					<0.002	<0.002	
10/30/2020	<0.002		<0.002	<0.002	<0.002	<0.002	
11/2/2020							<0.002
3/17/2021					<0.002	<0.002	
3/26/2021	<0.002		<0.002	<0.002			<0.002
10/5/2021	<0.002				<0.002		<0.002
10/6/2021			<0.002	<0.002		<0.002	
3/16/2022	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002
10/5/2022	<0.002			<0.002	<0.002		
10/6/2022						<0.002	<0.002
4/20/2023	<0.002		<0.002	<0.002			
4/21/2023					<0.002	<0.002	<0.002
10/24/2023	<0.002		<0.002				<0.002
10/25/2023				<0.002	<0.002	<0.002	
3/20/2024	<0.002					<0.002	
3/21/2024			<0.002	<0.002	<0.002		<0.002

Constituent: Arsenic (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

		BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
;	3/23/2016	<0.001	<0.0013		<0.001	0.00087 (J)	0.0033	<0.001
!	5/17/2016	<0.001				<0.0013	0.00089 (J)	<0.001
!	5/18/2016		<0.0013		<0.001			
	7/12/2016	<0.001						<0.001
	7/13/2016		<0.0013		<0.001	0.00081 (J)	0.0039	
9	9/13/2016	<0.001					0.0039	<0.001
9	9/14/2016		<0.0013		<0.001	0.00069 (J)		
	11/19/2016	<0.001	<0.0013		<0.001	0.0013	0.0037	0.0005 (J)
	1/17/2017	<0.001	<0.0013		<0.001			<0.001
	1/18/2017					<0.0013	0.0016	
;	3/22/2017	<0.001						0.00052 (J)
;	3/23/2017		<0.0013		<0.001	0.00078 (J)	0.0017	
;	5/24/2017	<0.001	<0.0013		<0.001	0.001 (J)	0.0021	<0.001
:	3/28/2018	<0.001		<0.001	<0.001	<0.0013	0.0011 (J)	
:	3/29/2018							<0.001
	6/2/2018	<0.001		<0.001	<0.001	0.00068 (J)	0.0017	<0.001
	11/8/2018	<0.001			<0.001	<0.0013		
	11/9/2018			<0.001			0.0021	<0.001
:	2/11/2019	<0.001				0.000737 (J)	0.00232	
:	2/12/2019			<0.001	<0.001			<0.001
	4/17/2019	<0.001		<0.001	<0.001	0.000645 (J)	0.00218	
	4/18/2019							<0.001
9	9/27/2019	<0.001		<0.001				<0.001
:	9/30/2019				<0.001	0.000821 (J)	0.00272	
:	2/21/2020	<0.001		<0.001	<0.001			<0.001
:	2/22/2020					0.000837 (J)	0.00177	
	4/14/2020	<0.001		<0.001	<0.001	0.000896 (J)	0.00177	<0.001
	10/30/2020	<0.001		<0.001	<0.001	0.000529 (J)	0.0013	
	11/2/2020							<0.001
;	3/17/2021					0.000454 (J)	0.00385	
;	3/26/2021	<0.001		<0.001	<0.001			<0.001
	10/5/2021	<0.001				0.00259		<0.001
	10/6/2021			<0.001	<0.001		0.0125	
;	3/16/2022	<0.001		<0.001	<0.001	0.00411	0.0101	<0.001
	10/5/2022	<0.001			<0.001	0.00467		
	10/6/2022						0.0108	<0.001
	4/20/2023	<0.001		<0.001	<0.001			
	4/21/2023					0.00477	0.00683	<0.001
	10/24/2023	<0.001		<0.001				<0.001
	10/25/2023				<0.001	0.00241	0.00575	
	3/20/2024	<0.001					0.00515	
:	3/21/2024			<0.001	<0.001	0.00159		<0.001

Constituent: Barium (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

BAW-1 (bg) BAW-2 (bg) BAW-2A (bg) BAW-3 BAW-4 BAW-5 BAW-7 3/23/2016 0.00084 (J) 0.027 0.013 0.011 0.044 0.013 5/17/2016 0.0085 0.012 0.031 0.055 5/18/2016 0.026 0.012 7/12/2016 0.031 0.011 7/13/2016 0.024 0.016 0.0073 0.041 9/13/2016 0.036 0.046 0.012 9/14/2016 0.026 0.018 0.0095 11/19/2016 0.036 0.027 0.021 0.012 0.044 0.012 0.029 1/17/2017 0.036 0.029 0.014 0.0096 1/18/2017 0.045 3/22/2017 0.033 0.012 3/23/2017 0.027 0.024 0.0093 0.038 0.028 0.0096 5/24/2017 0.034 0.022 0.046 0.012 3/28/2018 0.032 0.036 0.026 0.0086 0.043 3/29/2018 0.011 0.0087 6/2/2018 0.033 0.032 0.029 0.043 0.011 11/8/2018 0.032 0.028 0.0091 11/9/2018 0.033 0.039 0.011 2/11/2019 0.0308 0.00931 0.0388 2/12/2019 0.0348 0.0274 0.0102 0.0305 0.0396 0.0263 0.00888 4/17/2019 0.0378 4/18/2019 0.0101 9/27/2019 0.0319 0.0373 0.0121 9/30/2019 0.0343 0.0103 0.0424 2/21/2020 0.0327 0.0373 0.0304 0.0117 2/22/2020 0.0108 0.0453 4/14/2020 0.0345 0.0394 0.0335 0.00949 (J) 0.0452 0.0124 10/30/2020 0.0314 0.0334 0.0349 0.0116 0.0428 0.0117 11/2/2020 3/17/2021 0.0224 0.0382 0.0347 0.0287 0.0253 0.0184 3/26/2021 10/5/2021 0.0391 0.0283 0.02 10/6/2021 <0.01 0.03 0.0493 3/16/2022 0.05 0.0314 0.037 0.0326 0.0688 0.0245 0.0512 0.0248 10/5/2022 0.0415 10/6/2022 0.0747 0.0937 4/20/2023 0.0345 0.0369 0.0347 4/21/2023 0.0223 0.103 0.0355 10/24/2023 0.0244 0.0274 0.0323 10/25/2023 0.0427 0.0221 0.0883 3/20/2024 0.0347 0.0958 3/21/2024 0.0265 0.0418 0.0246 0.0307

Constituent: Beryllium (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.001	<0.0025		<0.001	<0.001	<0.001	<0.001
5/17/2016	<0.001				<0.001	<0.001	<0.001
5/18/2016		<0.0025		<0.001			
7/12/2016	<0.001						<0.001
7/13/2016		<0.0025		<0.001	<0.001	<0.001	
9/13/2016	<0.001					<0.001	<0.001
9/14/2016		<0.0025		<0.001	<0.001		
11/19/2016	<0.001	<0.0025		<0.001	<0.001	<0.001	<0.001
1/17/2017	<0.001	<0.0025		<0.001			<0.001
1/18/2017					<0.001	<0.001	
3/22/2017	<0.001						<0.001
3/23/2017		<0.0025		<0.001	<0.001	<0.001	
5/24/2017	<0.001	<0.0025		<0.001	<0.001	<0.001	<0.001
3/28/2018	<0.001		<0.001	<0.001	<0.001	<0.001	
3/29/2018							<0.001
11/8/2018	<0.001			<0.001	<0.001		
11/9/2018			<0.001			<0.001	<0.001
2/11/2019	<0.001				<0.001	<0.001	
2/12/2019			<0.001	<0.001			<0.001
4/17/2019	<0.001		<0.001	<0.001	<0.001	<0.001	
4/18/2019							<0.001
2/21/2020	<0.001		0.000207 (J)	<0.001			<0.001
2/22/2020					<0.001	<0.001	
4/14/2020	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001
10/30/2020	<0.001		<0.001	<0.001	<0.001	<0.001	
11/2/2020							<0.001
3/17/2021					<0.001	<0.001	
3/26/2021	<0.001		<0.001	<0.001			<0.001
10/5/2021	<0.001				<0.001		0.000185 (J)
10/6/2021			<0.001	<0.001		<0.001	
3/16/2022	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001
10/5/2022	<0.001			<0.001	<0.001		
10/6/2022						<0.001	<0.001
4/20/2023	<0.001		<0.001	0.000225 (J)			
4/21/2023					<0.001	<0.001	<0.001
10/24/2023	<0.001		<0.001				<0.001
10/25/2023				0.000225 (J)	<0.001	<0.001	
3/20/2024	<0.001					<0.001	
3/21/2024			<0.001	<0.001	<0.001		<0.001

Constituent: Boron (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.08	<0.05		<0.08	0.037 (J)	0.22	<0.08
5/17/2016	<0.08				<0.08	0.35	<0.08
5/18/2016		<0.05		<0.08			
7/12/2016	<0.08						<0.08
7/13/2016		<0.05		<0.08	0.032 (J)	0.5	
9/13/2016	<0.08					0.27	<0.08
9/14/2016		<0.05		<0.08	0.027 (J)		
11/19/2016	<0.08	<0.05		<0.08	0.024 (J)	0.19	<0.08
1/17/2017	<0.08	<0.05		<0.08			<0.08
1/18/2017					<0.08	0.19	
3/22/2017	<0.08						<0.08
3/23/2017		<0.05		<0.08	0.024 (J)	0.19	
5/24/2017	<0.08	<0.05		<0.08	0.027 (J)	0.22	<0.08
10/16/2017	<0.08	<0.05		<0.08	0.03 (J)	0.19	<0.08
3/28/2018	<0.08		<0.08	<0.08	<0.08	0.17	
3/29/2018							<0.08
6/2/2018	<0.08		<0.08	<0.08	0.025 (J)	0.16	<0.08
11/8/2018	<0.08			<0.08	0.024 (J)		
11/9/2018			<0.08			0.13	<0.08
2/11/2019	<0.08				<0.08	0.126	
2/12/2019			<0.08	<0.08			<0.08
4/17/2019	<0.08		<0.08	<0.08	<0.08	0.118	
4/18/2019							<0.08
9/27/2019	<0.08		<0.08				<0.08
9/30/2019				<0.08	<0.08	0.14	
2/21/2020	0.0928		0.0589 (J)	<0.08			<0.08
2/22/2020					<0.08	0.193	
4/14/2020	<0.08		0.0424 (J)	<0.08	<0.08	0.209	<0.08
10/30/2020	<0.08		0.0495 (J)	<0.08	<0.08	0.194	
11/2/2020							<0.08
3/17/2021					0.0673 (J)	0.2	
3/26/2021	<0.08		<0.08	<0.08			0.647
10/5/2021	<0.08				0.168		0.281
10/6/2021			<0.08	<0.08		0.272	
3/16/2022	<0.08		0.0717 (J)	<0.08	0.084	0.695	0.247
10/5/2022	<0.08			<0.08	0.0714 (J)		
10/6/2022						0.631	1.82
4/20/2023	<0.08		0.0711 (J)	<0.08			
4/21/2023					0.058 (J)	0.831	0.271
10/24/2023	<0.08		0.0502 (J)				0.0336 (J)
10/25/2023				<0.08	0.122	0.877	
3/20/2024	<0.08					0.686	
3/21/2024			0.0604 (J)	<0.08	0.115		<0.08

Constituent: Cadmium (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.001	<0.0025		0.00041 (J)	<0.001	<0.001	<0.001
5/17/2016	<0.001				<0.001	<0.001	<0.001
5/18/2016		<0.0025		<0.0025			
7/12/2016	<0.001						<0.001
7/13/2016		<0.0025		0.00087 (J)	<0.001	<0.001	
9/13/2016	<0.001					<0.001	<0.001
9/14/2016		<0.0025		0.00078 (J)	<0.001		
11/19/2016	<0.001	<0.0025		0.00054 (J)	<0.001	<0.001	<0.001
1/17/2017	<0.001	<0.0025		0.00048 (J)			<0.001
1/18/2017					<0.001	<0.001	
3/22/2017	<0.001						<0.001
3/23/2017		<0.0025		0.00059 (J)	<0.001	<0.001	
5/24/2017	<0.001	<0.0025		0.00081 (J)	<0.001	<0.001	<0.001
3/28/2018	<0.001		<0.001	0.0008 (J)	<0.001	<0.001	
3/29/2018							<0.001
6/2/2018	<0.001		<0.001	0.001 (J)	<0.001	<0.001	<0.001
11/8/2018	<0.001			0.00085 (J)	<0.001		
11/9/2018			<0.001			<0.001	<0.001
2/11/2019	<0.001				<0.001	<0.001	
2/12/2019			0.000143 (J)	0.000877 (J)			<0.001
4/17/2019	<0.001		<0.001	0.000915 (J)	<0.001	<0.001	
4/18/2019							<0.001
9/27/2019	<0.001		<0.001				<0.001
9/30/2019				0.00112 (J)	<0.001	0.000155 (J)	
2/21/2020	<0.001		<0.001	0.000962 (J)			<0.001
2/22/2020					<0.001	<0.001	
4/14/2020	<0.001		<0.001	0.00107 (J)	<0.001	<0.001	<0.001
10/30/2020	<0.001		<0.001	0.00084 (J)	<0.001	<0.001	
11/2/2020							<0.001
3/17/2021					<0.001	<0.001	
3/26/2021	<0.001		<0.001	0.000615 (J)			<0.001
10/5/2021	<0.001				<0.001		<0.001
10/6/2021			<0.001	0.000338 (J)		<0.001	
3/16/2022	<0.001		<0.001	0.000252 (J)	<0.001	<0.001	<0.001
10/5/2022	<0.001			0.000379 (J)	<0.001		
10/6/2022						<0.001	<0.001
4/20/2023	<0.001		<0.001	0.0004 (J)			
4/21/2023					<0.001	<0.001	<0.001
10/24/2023	<0.001		<0.001				<0.001
10/25/2023				0.00035 (J)	<0.001	<0.001	
3/20/2024	<0.001					<0.001	
3/21/2024			<0.001	0.000401 (J)	<0.001		<0.001

Constituent: Calcium (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.25	2.6		1.1	3.7	18	0.65
5/17/2016	0.84				3.4	23	0.68
5/18/2016		1.3		0.56			
7/12/2016	0.79						0.62
7/13/2016		1.1		0.95	2.8	18	
9/13/2016	0.42					19	0.25
9/14/2016		1.1		0.4	2.6		
11/19/2016	1.2	1		0.62	2.7	17	0.36
1/17/2017	1.4	0.87		1.2			0.66
1/18/2017					3.1	17	
3/22/2017	0.95						0.65
3/23/2017		0.74		0.87	2.8	15	
5/24/2017	1.3	0.84		0.81	3.1	19	0.72
10/16/2017	0.93	0.76		0.86	3.3	17	0.7
3/28/2018	1		2.8	0.97	2.7	16	
3/29/2018							0.55
6/2/2018	0.93		0.71	0.86	2.9	15	0.6
11/8/2018	1			0.84	3		
11/9/2018			0.61			14	0.59
2/11/2019	1				2.88	12.8	
2/12/2019			0.757	0.856			0.608
4/17/2019	0.893		0.755	0.711	2.77	13	
4/18/2019							0.55
9/27/2019	0.8		0.663				0.598
9/30/2019				0.826	3.08	13.6	
2/21/2020	1.02		0.648	0.841			0.552
2/22/2020					3.86	15	
4/14/2020	0.887		0.67	0.811	2.95	15.7	0.532
10/30/2020	0.945		0.672	1	3.84	16.4	
11/2/2020							0.535
3/17/2021					6.69	15.3	
3/26/2021	0.965		0.644	0.937			0.848
10/5/2021	0.996				8.57		0.829
10/6/2021			<0.5	0.532		22.8	
3/16/2022	1.32		0.539	0.78	8.94	23.8	1.28
10/5/2022	1.42			0.647	5.81		
10/6/2022						28.2	4.84
4/20/2023	0.996		0.685	0.789			
4/21/2023					4.87	26.8	2.56
10/24/2023	0.918		0.498 (J)				1.3
10/25/2023				0.875	5.35	25.9	
3/20/2024	1.05					28.9	
3/21/2024			0.469 (J)	0.818	7.31		1.38

Constituent: Chloride (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	6.5	5.1		7.3	7.6	9	6.5
5/17/2016	4.9				6.4	13	5.1
5/18/2016		4.2		6			
7/12/2016	5.3						5
7/13/2016		4.7		6.6	6.3	10	
9/13/2016	4.8 (F1)					7.9	5.1
9/14/2016		4.5		5.8	6		
11/19/2016	7.1	6.1		7.8	7	9.3	6.5
1/17/2017	5.8	5.4		8.4			5.9
1/18/2017					6.7	8.5	
3/22/2017	4.9						5.1
3/23/2017		5.1		6.8	6	8.5	
5/24/2017	5.9	5.5		7.9	7.4	11	5.9
10/16/2017	5.7	6.1		7.7	6.6	9.7	5.6
3/28/2018	5.7		6.7	7.9	6.5	8.8	
3/29/2018							5.3
6/2/2018	4.7		5.8	7.7	6.1	8.3	4.6
11/8/2018	5.6			8.5	6.6		
11/9/2018			7.2			9.7	4.9
2/11/2019	4.84				6.31	8.84	
2/12/2019			8.4	7.89			4.72
4/17/2019	4.99		8.03	7.71	6.68	9.24	
4/18/2019							4.64
9/27/2019	5.08		8.37				5.02
9/30/2019				7.07	5.45	8.59	
4/14/2020	4.91		7.57	8.75	5.93	8.71	4.68
10/30/2020	5.55		7.59	9.58	6.49	8.93	
11/2/2020							4.91
3/17/2021					7.55	9.6	
3/26/2021	5.92		6.21	8.32			8.5
10/5/2021	6.21				14.3		10.3
10/6/2021			16.4	6.8		5.44	
3/16/2022	7.85		11.5	7.94	17.9	10.6	13
10/5/2022	6.75			6.04	8.84		
10/6/2022						9.04	12.7
4/20/2023	5.22		9.6	5.36			
4/21/2023					6.78	11.3	8.95
10/24/2023	6.29		10				8.57
10/25/2023				5.5	7.6	11.3	
3/20/2024	6.17					9	
3/21/2024			9.52	5.21	8.17		8.37

Constituent: Chromium (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.002	<0.0025		<0.002	0.0015 (J)	0.0012 (J)	<0.002
5/17/2016	<0.002				<0.002	<0.002	<0.002
5/18/2016		<0.0025		<0.002			
7/12/2016	<0.002						<0.002
7/13/2016		0.0028		0.003	0.0015 (J)	0.0024 (J)	
9/13/2016	<0.002					<0.002	<0.002
9/14/2016		0.0014 (J)		<0.002	<0.002		
11/19/2016	<0.002	<0.0025		<0.002	0.0011 (J)	<0.002	<0.002
1/17/2017	<0.002	<0.0025		<0.002			<0.002
1/18/2017					<0.002	<0.002	
3/22/2017	<0.002						<0.002
3/23/2017		<0.0025		<0.002	<0.002	<0.002	
5/24/2017	<0.002	<0.0025		<0.002	<0.002	<0.002	<0.002
3/28/2018	<0.002		<0.002	<0.002	<0.002	0.005	
3/29/2018							<0.002
6/2/2018	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002
11/8/2018	<0.002			<0.002	<0.002		
11/9/2018			<0.002			<0.002	<0.002
2/11/2019	<0.002				<0.002	<0.002	
2/12/2019			<0.002	0.00165 (J)			<0.002
4/17/2019	<0.002		<0.002	<0.002	<0.002	<0.002	
4/18/2019							<0.002
9/27/2019	0.00286		0.00284				0.00206 (J)
9/30/2019				<0.002	<0.002	<0.002	
2/21/2020	<0.002		<0.002	<0.002			<0.002
2/22/2020					<0.002	<0.002	
10/30/2020	<0.002		<0.002	<0.002	<0.002	<0.002	
11/2/2020							<0.002
3/17/2021					<0.002	<0.002	
3/26/2021	<0.002		<0.002	<0.002			<0.002
10/5/2021	<0.002				<0.002		<0.002
10/6/2021			<0.002	<0.002		<0.002	
3/16/2022	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002
10/5/2022	<0.002			0.0191	<0.002		
10/6/2022						<0.002	<0.002
4/20/2023	<0.002		<0.002	<0.002			
4/21/2023					<0.002	<0.002	<0.002
10/24/2023	<0.002		<0.002				<0.002
10/25/2023				<0.002	<0.002	<0.002	
3/20/2024	<0.002					<0.002	
3/21/2024			<0.002	<0.002	<0.002		<0.002

Constituent: Cobalt (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

					1 2		
	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.0025	0.00048 (J)		0.0055	0.00094 (J)	<0.0005	0.0011 (J)
5/17/2016	0.00099 (J)				0.0007 (J)	<0.0005	0.001 (J)
5/18/2016		<0.0025		0.0059			
7/12/2016	0.00093 (J)						0.00091 (J)
7/13/2016		0.001 (J)		0.0048	0.0016 (J)	0.00042 (J)	
9/13/2016	0.0011 (J)					<0.0005	0.001 (J)
9/14/2016		0.00051 (J)		0.0063	0.0011 (J)		
11/19/2016	0.001 (J)	0.0005 (J)		0.0056	0.0012 (J)	<0.0005	0.00083 (J)
1/17/2017	0.00088 (J)	0.00049 (J)		0.0046			0.00091 (J)
1/18/2017					0.0011 (J)	<0.0005	
3/22/2017	0.001 (J)						0.00098 (J)
3/23/2017		0.00057 (J)		0.0049	0.0011 (J)	<0.0005	
5/24/2017	0.00093 (J)	0.00057 (J)		0.0052	0.0012 (J)	<0.0005	0.00098 (J)
3/28/2018	0.00092 (J)		0.00098 (J)	0.0063	0.00095 (J)	<0.0005	
3/29/2018							0.00063 (J)
6/2/2018	0.001 (J)		0.0009 (J)	0.0068	0.0012 (J)	<0.0005	0.00087 (J)
11/8/2018	0.001 (J)			0.0068	0.0011 (J)		
11/9/2018			0.00075 (J)			<0.0005	0.00076 (J)
2/11/2019	0.000768 (J)				0.00093 (J)	<0.0005	
2/12/2019			0.000896 (J)	0.00552			0.000661 (J)
4/17/2019	0.000825 (J)		0.00106 (J)	0.00603	0.00116 (J)	<0.0005	
4/18/2019							0.000705 (J)
9/27/2019	0.000783 (J)		0.000885 (J)				0.00071 (J)
9/30/2019				0.0062	0.001 (J)	<0.0005	
2/21/2020	0.00073 (J)		0.000909 (J)	0.00576			0.000634 (J)
2/22/2020					0.000907 (J)	<0.0005	
4/14/2020	0.000853 (J)		0.000899 (J)	0.00633	0.00105 (J)	<0.0005	0.000684 (J)
10/30/2020	0.000924 (J)		0.000972 (J)	0.00657	0.00102 (J)	<0.0005	
11/2/2020							0.000729 (J)
3/17/2021					0.00208	<0.0005	
3/26/2021	0.000961		0.000744	0.00339			0.000995
10/5/2021	0.00143				0.00187		0.00112
10/6/2021			<0.0005	0.00336		0.000802	
3/16/2022	0.00177		0.000658	0.00289	0.00182	0.000967	0.00141
10/5/2022	0.002			0.00821	0.00121		
10/6/2022						0.00143	0.00548
4/20/2023	0.00142		0.000995	0.0083			
4/21/2023					0.00142	0.00275	0.00216
10/24/2023	0.00123		0.000565				0.00143
10/25/2023				0.0092	0.00187	0.000885	
3/20/2024	0.00128					0.00131	
3/21/2024			0.000677	0.00945	0.0016		0.00186

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	
3/23/2016	<5	<5		<5	<5	0.549	<5	
5/17/2016	0.813				<5	0.551	<5	
5/18/2016		0.471		<5				
7/12/2016	-0.00163 (U)						0.165 (U)	
7/13/2016		0.401		0.27 (U)	0.0365 (U)	0.859		
9/13/2016	0.41 (U)					0.367 (U)	0.341 (U)	
9/14/2016		-0.033 (U)		-0.0909 (U)	0.3 (U)			
11/19/2016	0.783	0.358		0.416	<5 (U)	<5 (U)	<5 (U)	
1/17/2017	0.613	0.799		0.412 (U)			0.124 (U)	
1/18/2017					0.235 (U)	0.289 (U)		
3/22/2017	0.241 (U)						0.0719 (U)	
3/23/2017		0.182 (U)		0.0761 (U)	0.168 (U)	0.554		
5/24/2017	0.325	0.404		0.0415 (U)	-0.0607 (U)	0.831	0.441	
3/28/2018	0.318 (U)		0.629	0.398	0.42	0.458		
3/29/2018							0.731	
6/2/2018	0.222 (U)		-0.478 (U)	-0.253 (U)	0.0844 (U)	0.226 (U)	0.303 (U)	
11/8/2018	0.117 (U)			0.343 (U)	0.367 (U)			
11/9/2018			0.179 (U)			0.298 (U)	0.00226 (U)	
2/11/2019	0.493				0.0402 (U)	0.15 (U)		
2/12/2019			0.432	0.581			0.094 (U)	
4/17/2019	0.729		0.648	0.646	0.493	0.326 (U)		
4/18/2019							0.48	
9/27/2019	0.36 (U)		0.422 (U)				0.497	
9/30/2019				1	0.404			
2/21/2020	0.268 (U)		0.23 (U)	0.126 (U)			0.375	
2/22/2020					0.53	0.47		
4/14/2020	0.324 (U)		0.307 (U)	0.338	0.0408 (U)	0.376 (U)	0.329 (U)	
10/30/2020	0.497		1.02	0.485	0.344	0.528		
11/2/2020							0.535	
3/17/2021					0.312 (U)	0.0889 (U)		
3/26/2021	0.804		0.526	0.78			0.813	
10/5/2021	1.53				1.06		0.814	
10/6/2021			0.937	0.503		0.931		
3/16/2022	1.13		0.458	0.286 (U)	0.314 (U)	1.39	1.39	
10/21/2022	0.946			1.29	0.562 (U)	1.36	2.03	
4/20/2023	0.647		0.935	0.884				
4/21/2023					0.158 (U)	1.73	0.802	
10/24/2023	0.563		0.521				0.7	
10/25/2023				0.857	0.472 (U)	1.49		
3/20/2024	0.968					0.758		
3/21/2024			1.11	0.926	0.754		0.606	

Constituent: Fluoride (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	
3/23/2016	<0.1	<0.1		<0.1	0.04 (J)	0.06 (J)	<0.1	
5/17/2016	<0.1				0.04 (J)	0.07 (J)	<0.1	
5/18/2016		<0.1		<0.1				
7/12/2016	<0.1						<0.1	
7/13/2016		<0.1		<0.1	0.05 (J)	0.08 (J)		
9/13/2016	<0.1					0.06 (J)	<0.1	
9/14/2016		<0.1		<0.1	0.04 (J)			
11/19/2016	<0.1	<0.1		<0.1	0.04 (J)	0.06 (J)	<0.1	
1/17/2017	<0.1	<0.1		<0.1			<0.1	
1/18/2017					<0.1	0.05 (J)		
3/22/2017	<0.1						<0.1	
3/23/2017		<0.1		<0.1	<0.1	0.05 (J)		
5/24/2017	<0.1	<0.1		<0.1	0.04 (J)	0.06 (J)	<0.1 (D)	
10/16/2017	<0.1	<0.1		<0.1	<0.1	0.06 (J)	<0.1	
3/28/2018	<0.1		<0.1	<0.1	0.04 (J)	0.06 (J)		
3/29/2018							<0.1	
6/2/2018	<0.1		<0.1	<0.1	0.05 (J)	0.06 (J)	<0.1	
11/8/2018	<0.1			<0.1	0.05 (J)			
11/9/2018			<0.1			0.06 (J)	<0.1	
2/11/2019	<0.1				<0.1	0.0368 (J)		
2/12/2019			<0.1	<0.1			<0.1	
4/17/2019	<0.1		<0.1	<0.1	0.033 (J)	0.0421 (J)		
4/18/2019							<0.1	
9/27/2019	<0.1		0.0313 (J)				<0.1	
9/30/2019				<0.1	<0.1	0.045 (J)		
2/21/2020	<0.1		<0.1	<0.1			<0.1	
2/22/2020					0.0317 (J)	0.0434 (J)		
4/14/2020	0.0532 (J)		0.0537 (J)	0.034 (J)	0.0508 (J)	0.059 (J)	0.0415 (J)	
10/30/2020	<0.1		<0.1	<0.1	<0.1	<0.1		
11/2/2020							<0.1	
3/17/2021					0.0544 (J)	0.0575 (J)		
3/26/2021	<0.1		<0.1	<0.1			<0.1	
10/5/2021	0.0499 (J)				0.0505 (J)		<0.1	
10/6/2021			<0.1	<0.1		0.0725 (J)		
3/16/2022	<0.1		<0.1	0.0307 (J)	0.0462 (J)	0.176	0.0266 (J)	
10/5/2022	<0.1			<0.1	0.0322 (J)			
10/6/2022						0.0972 (J)	<0.1	
4/20/2023	<0.1		0.0278 (J)	<0.1				
4/21/2023					0.0441 (J)	0.0665 (J)	<0.1	
10/24/2023	<0.1		0.0276 (J)				<0.1	
10/25/2023				<0.1	0.0393 (J)	0.0858 (J)		
3/20/2024	0.0436 (J)					0.11		
3/21/2024			0.0515 (J)	0.0537 (J)	0.0578 (J)		0.0292 (J)	

Constituent: Lead (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.001	<0.0013		<0.001	0.00039 (J)	<0.001	<0.001
5/17/2016	<0.001				<0.001	<0.001	<0.001
5/18/2016		<0.0013		<0.001			
7/12/2016	<0.001						<0.001
7/13/2016		<0.0013		<0.001	<0.001	<0.001	
9/13/2016	<0.001					<0.001	<0.001
9/14/2016		<0.0013		0.00056 (J)	<0.001		
11/19/2016	<0.001	<0.0013		<0.001	0.00042 (J)	<0.001	<0.001
1/17/2017	<0.001	<0.0013		<0.001			<0.001
1/18/2017					<0.001	<0.001	
3/22/2017	<0.001						<0.001
3/23/2017		<0.0013		0.00038 (J)	<0.001	<0.001	
5/24/2017	<0.001	<0.0013		0.00036 (J)	<0.001	<0.001	<0.001
3/28/2018	<0.001		<0.001	<0.001	<0.001	<0.001	
3/29/2018							<0.001
11/8/2018	<0.001			<0.001	<0.001		
11/9/2018			<0.001			<0.001	<0.001
2/11/2019	<0.001				<0.001	<0.001	
2/12/2019			<0.001	0.000139 (J)			<0.001
4/17/2019	<0.001		<0.001	<0.001	<0.001	<0.001	
4/18/2019							<0.001
9/27/2019	<0.001		<0.001				0.000129 (J)
9/30/2019				0.000322 (J)	0.000191 (J)	0.000152 (J)	
2/21/2020	<0.001		<0.001	0.00015 (J)			<0.001
2/22/2020					<0.001	<0.001	
4/14/2020	<0.001		<0.001	0.000236 (J)	<0.001	<0.001	<0.001
10/30/2020	<0.001		<0.001	0.000136 (J)	<0.001	<0.001	
11/2/2020							<0.001
3/17/2021					0.000153 (J)	<0.001	
3/26/2021	<0.001		<0.001	0.000145 (J)			<0.001
10/5/2021	<0.001				<0.001		<0.001
10/6/2021			<0.001	<0.001		<0.001	
3/16/2022	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001
10/5/2022	<0.001			<0.001	<0.001		
10/6/2022						<0.001	<0.001
4/20/2023	<0.001		<0.001	<0.001			
4/21/2023					<0.001	<0.001	<0.001
10/24/2023	<0.001		<0.001				<0.001
10/25/2023				<0.001	<0.001	<0.001	
3/20/2024	<0.001					<0.001	
3/21/2024			<0.001	<0.001	<0.001		<0.001

Constituent: Lithium (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

BAW-1 (bg) BAW-2 (bg) BAW-2A (bg) BAW-3 BAW-4 BAW-5 BAW-7 3/23/2016 <0.005 <0.005 < 0.005 0.044 0.17 <0.005 0.0037 (J) 0.028 5/17/2016 0.2 <0.005 5/18/2016 < 0.005 < 0.005 0.012 (o) 7/12/2016 <0.005 7/13/2016 <0.005 < 0.005 0.026 0.17 9/13/2016 <0.005 0.17 <0.005 9/14/2016 <0.005 0.026 < 0.005 11/19/2016 <0.005 <0.005 <0.005 0.026 0.18 0.0035 (J) 1/17/2017 <0.005 <0.005 < 0.005 <0.005 1/18/2017 0.027 0.2 3/22/2017 <0.005 <0.005 3/23/2017 < 0.005 < 0.005 0.024 0.19 5/24/2017 <0.005 < 0.005 < 0.005 0.027 0.21 <0.005 3/28/2018 <0.005 0.0026 (J) 0.0023 (J) 0.021 0.23 3/29/2018 0.0026 (J) 6/2/2018 0.0017 (J) 0.0021 (J) 0.002 (J) 0.022 0.19 0.0029 (J) 0.0023 (J) 0.0024 (J) 0.025 11/8/2018 11/9/2018 0.0024 (J) 0.18 0.0027 (J) 2/11/2019 <0.005 0.0229 0.161 2/12/2019 <0.005 < 0.005 <0.005 0.00191 (J) 4/17/2019 0.00229 (J) 0.00197 (J) 0.0236 0.174 4/18/2019 0.00238 (J) 0.00375 (J) 9/27/2019 0.00346 (J) <0.005 9/30/2019 0.00687 0.0249 0.166 2/21/2020 <0.005 <0.005 < 0.005 <0.005 2/22/2020 0.0211 0.169 4/14/2020 0.00505 <0.005 <0.005 0.0224 0.192 <0.005 10/30/2020 <0.005 <0.005 <0.005 0.0267 0.194 <0.005 11/2/2020 3/17/2021 0.0174 0.12 <0.005 3/26/2021 <0.005 <0.005 <0.005 10/5/2021 <0.005 0.0127 0.0045 (J) 10/6/2021 <0.005 <0.005 0.0994 3/16/2022 0.00165 (J) 0.0038 (J) 0.0112 0.0629 0.00437 (J) 0.00171 (J) 0.00676 10/5/2022 <0.005 0.00322 (J) 10/6/2022 0.0534 0.0123 4/20/2023 <0.005 0.00235 (J) 0.00309 (J) 0.0091 0.0564 0.0107 4/21/2023 <0.005 0.00555 10/24/2023 <0.005 0.0123 0.0679 10/25/2023 0.0033 (J) 3/20/2024 0.00133 (J) 0.0786 3/21/2024 0.00174 (J) 0.0037 (J) 0.00355 (J) 0.013

Constituent: Mercury (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.0002	<0.0002		8.4E-05 (JB)	7.3E-05 (JB)	7.4E-05 (JB)	7.1E-05 (JB)
5/17/2016	<0.0002				<0.0002	<0.0002	<0.0002
5/18/2016		<0.0002		<0.0002			
7/12/2016	<0.0002						<0.0002
7/13/2016		<0.0002		<0.0002	<0.0002	<0.0002	
9/13/2016	<0.0002					<0.0002	<0.0002
9/14/2016		<0.0002		<0.0002	<0.0002		
11/19/2016	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002
1/17/2017	<0.0002	<0.0002		<0.0002			<0.0002
1/18/2017					<0.0002	<0.0002	
3/22/2017	0.00011 (J)						<0.0002
3/23/2017		0.00013 (J)		0.00013 (J)	0.00013 (J)	<0.0002	
5/24/2017	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002
3/28/2018	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	
3/29/2018							<0.0002
2/11/2019	<0.0002				<0.0002	<0.0002	
2/12/2019			<0.0002	<0.0002			<0.0002
4/17/2019	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	
4/18/2019							<0.0002
2/21/2020	<0.0002		<0.0002	<0.0002			<0.0002
2/22/2020					<0.0002	<0.0002	
10/30/2020	<0.0002		<0.0002	0.000497	<0.0002	<0.0002	
11/2/2020							<0.0002
3/17/2021					<0.0002	<0.0002	
3/26/2021	<0.0002		<0.0002	<0.0002			0.000235
10/5/2021	<0.0002				<0.0002		0.000151 (J)
10/6/2021			<0.0002	<0.0002		<0.0002	
3/16/2022	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	0.0012
10/5/2022	<0.0002			<0.0002	<0.0002		
10/6/2022						<0.0002	<0.0002
4/20/2023	<0.0002		<0.0002	<0.0002			
4/21/2023					<0.0002	<0.0002	<0.0002
10/24/2023	<0.0002		<0.0002				<0.0002
10/25/2023				<0.0002	<0.0002	<0.0002	
3/20/2024	0.000141 (J)					0.000134 (J)	
3/21/2024			0.00015 (J)	0.000133 (J)	0.000135 (J)		0.000143 (J)

Constituent: Molybdenum (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.005	0.0019 (J)		<0.005	<0.005	0.0026 (J)	<0.005
5/17/2016	<0.005				<0.005	0.0011 (J)	<0.005
5/18/2016		0.00096 (J)		<0.005			
7/12/2016	<0.005						<0.005
7/13/2016		0.0017 (J)		<0.005	<0.005	0.0079 (J)	
9/13/2016	<0.005					0.0038 (J)	<0.005
9/14/2016		0.0018 (J)		<0.005	<0.005		
11/19/2016	<0.005	<0.015		<0.005	<0.005	0.0014 (J)	<0.005
1/17/2017	<0.005	<0.015		<0.005			<0.005
1/18/2017					<0.005	0.001 (J)	
3/22/2017	<0.005						0.0038 (J)
3/23/2017		<0.015		<0.005	<0.005	<0.015	
5/24/2017	<0.005	<0.015		<0.005	<0.005	0.0014 (J)	<0.005
3/28/2018	<0.005		<0.005	<0.005	<0.005	<0.015	
3/29/2018							<0.005
11/8/2018	<0.005			<0.005	<0.005		
11/9/2018			<0.005			<0.015	<0.005
2/11/2019	<0.005				<0.005	<0.015	
2/12/2019			<0.005	<0.005			<0.005
4/17/2019	<0.005		<0.005	<0.005	<0.005	<0.015	
4/18/2019							<0.005
2/21/2020	<0.005		<0.005	<0.005			<0.005
2/22/2020					0.000616 (J)	0.000627 (J)	
4/14/2020	<0.005		<0.005	<0.005	<0.005	0.000747 (J)	<0.005
10/30/2020	<0.005		<0.005	<0.005	<0.005	<0.015	
11/2/2020							<0.005
3/17/2021					0.0032 (J)	0.00328 (J)	
3/26/2021	<0.005		<0.005	<0.005			<0.005
10/5/2021	<0.005				0.00109 (J)		<0.005
10/6/2021			<0.005	<0.005		0.00364 (J)	
3/16/2022	<0.005		<0.005	<0.005	0.000916 (J)	0.00533	<0.005
10/5/2022	<0.005			<0.005	0.000939 (J)		
10/6/2022						0.00424 (J)	<0.005
4/20/2023	<0.005		<0.005	<0.005			
4/21/2023					0.00109 (J)	0.00651	<0.005
10/24/2023	<0.005		<0.005				<0.005
10/25/2023				<0.005	<0.005	0.0036 (J)	
3/20/2024	<0.005					0.00366 (J)	
3/21/2024			<0.005	<0.005	0.000937 (J)		<0.005

Constituent: pH (SU) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	
3/23/2016	5.12	5.52		5.05	5.38	6.64	4.89	
5/17/2016	5.23				5.32	6.52	4.92	
5/18/2016		5.24		4.86				
7/12/2016	5.77						4.93	
7/13/2016		5.17		5.11	5.31	6.63		
9/13/2016	4.98					6.46	4.76	
9/14/2016		5.04		4.84	5.21			
11/19/2016	4.82	4.88		4.74	5.12	6.38	4.56	
1/17/2017	5.04	5.04		4.95			4.86	
1/18/2017					5.22	6.47		
3/22/2017	4.73						4.66	
3/23/2017		4.66		4.66	5.01	6.19		
5/24/2017	5.01	4.93		4.86	5.19	6.34	4.83	
10/16/2017	4.59	4.65		4.47	4.96	6.23	4.53	
3/28/2018	4.87		5.39	4.93	5.23	6.22		
3/29/2018							4.87	
6/2/2018	4.92		5.06	4.83	5.22	6.24	4.87	
11/8/2018	5			4.83	5.29			
11/9/2018			4.92			6.27	4.92	
2/11/2019	4.7				5	6.08		
2/12/2019			4.86	4.65			4.79	
4/17/2019	4.9		4.79	4.71	5.13	6.14		
4/18/2019							4.9	
2/21/2020	4.86		4.73	4.55			4.8	
2/22/2020					5.3	6.13		
4/14/2020	5.23		4.87	4.7	5.45	6.26	4.94	
10/30/2020	5		4.87	4.8	5.32	6.19		
11/2/2020							4.92	
3/17/2021					5.62	6.14		
3/26/2021	4.86		4.7	4.54			4.67	
10/5/2021	5				5.72		4.84	
10/6/2021			4.77	4.63		6.03		
3/16/2022	4.92		4.91	4.64	5.56	6.2	4.75	
10/5/2022	4.91			4.51	5.57			
10/6/2022						6.27	4.71	
4/20/2023	4.89		4.83	4.49				
4/21/2023					5.45	6.09	4.95	
10/24/2023	4.99		4.98				4.91	
10/25/2023				4.43	5.42	6.11		
3/20/2024	4.93					6.2		
3/21/2024			4.86	4.39	5.47		4.89	

Constituent: Selenium (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.005	0.00041 (J)		0.00033 (J)	<0.005	<0.005	<0.005
5/17/2016	<0.005				<0.005	<0.005	0.00026 (J)
5/18/2016		<0.0013		<0.005			
7/12/2016	<0.005						<0.005
7/13/2016		<0.0013		0.00041 (J)	<0.005	<0.005	
9/13/2016	<0.005					<0.005	0.00031 (J)
9/14/2016		<0.0013		0.00079 (J)	<0.005		
11/19/2016	<0.005	<0.0013		<0.005	<0.005	<0.005	<0.005
1/17/2017	<0.005	<0.0013		<0.005			<0.005
1/18/2017					<0.005	<0.005	
3/22/2017	<0.005						0.0021
3/23/2017		<0.0013		<0.005	<0.005	<0.005	
5/24/2017	<0.005	0.00026 (J)		0.00028 (J)	<0.005	0.00033 (J)	0.00026 (J)
3/28/2018	<0.005		0.00024 (J)	0.00038 (J)	<0.005	<0.005	
3/29/2018							0.00036 (J)
6/2/2018	0.00064 (J)		<0.005	0.00031 (J)	<0.005	<0.005	<0.005
11/8/2018	0.0025			0.00088 (J)	<0.005		
11/9/2018			0.00098 (J)			<0.005	<0.005
2/11/2019	<0.005				<0.005	<0.005	
2/12/2019			<0.005	<0.005			<0.005
4/17/2019	<0.005		<0.005	<0.005	<0.005	<0.005	
4/18/2019							<0.005
2/21/2020	<0.005		<0.005	<0.005			<0.005
2/22/2020					<0.005	<0.005	
10/30/2020	<0.005		<0.005	<0.005	<0.005	<0.005	
11/2/2020							<0.005
3/17/2021					<0.005	<0.005	
3/26/2021	<0.005		<0.005	<0.005			<0.005
10/5/2021	<0.005				<0.005		<0.005
10/6/2021			<0.005	<0.005		<0.005	
3/16/2022	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005
10/5/2022	<0.005			<0.005	<0.005		
10/6/2022						<0.005	<0.005
4/20/2023	<0.005		<0.005	<0.005			
4/21/2023					<0.005	<0.005	<0.005
10/24/2023	<0.005		<0.005				<0.005
10/25/2023				<0.005	<0.005	<0.005	
3/20/2024	<0.005					<0.005	
3/21/2024			<0.005	<0.005	<0.005		<0.005

Time Series

Constituent: Sulfate (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

BAW-1 (bg) BAW-2 (bg) BAW-2A (bg) BAW-3 BAW-4 BAW-5 BAW-7 <5 3/23/2016 <5 <5 2.3 (J) 4.5 (J) <5 5/17/2016 <5 <5 2.3 (J) 17 5/18/2016 <5 <5 7/12/2016 <5 <5 7/13/2016 <5 1.5 (J) 2.4 (J) 15 9/13/2016 <5 3.4 (J) <5 9/14/2016 <5 1.6 (J) 2.4 (J) 11/19/2016 <5 <5 1.8 (J) 3.3 (J) 3.5 (J) 1.5 (J) 1/17/2017 <5 <5 <5 <5 2.3 (J) 1/18/2017 3.2 (J) 3/22/2017 <5 1.9 (J) 3/23/2017 1.8 (J) 2.3 (J) 3.2 (J) 3.7 (J) 1.5 (J) 5/24/2017 <5 1.6 (J) 2.4 (J) 8.8 <5 10/16/2017 <5 <5 <5 2 (J) 4 (J) <5 3/28/2018 <5 1.7 (J) 1.6 (J) 2.4 (J) 3.3 (J) 3/29/2018 <5 6/2/2018 1.9 (J) 3 (J) 2.9 (J) 3.7 (J) 4.3 (J) 2.8 (J) 11/8/2018 <5 1.6 (J) 2.7 (J) 11/9/2018 <5 2.3 (J) <5 2/11/2019 0.774 (J) 2.5 2.64 1.97 2/12/2019 1.97 1.35 4/17/2019 1.43 2.82 2.5 3.15 3.27 4/18/2019 1.82 9/27/2019 1.03 2.19 1.22 9/30/2019 1.64 2.34 2.82 4/14/2020 0.928 (J) 2.71 1.62 2.99 4.2 1.18 10/30/2020 0.91 (J) 3.97 2.84 4.76 1.44 11/2/2020 1.08 4.35 4.07 3/17/2021 3/26/2021 1.49 2.04 3.25 2 10/5/2021 5.02 2.55 1.13 10/6/2021 5.37 5.07 14.5 3/16/2022 3.6 5.37 6.85 5.64 23.1 5.93 10/5/2022 1.34 6.07 4.12 10/6/2022 19.5 61.4 4/20/2023 2.6 7.32 8.2 4/21/2023 5 47.2 8.82 10/24/2023 7.68 1.8 2.11 10/25/2023 8.72 12.5 37.5 3/20/2024 30 1.41 3/21/2024 6.92 7.6 12.1 1.66

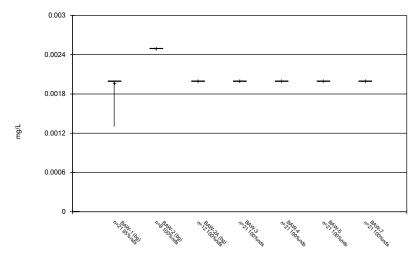
Time Series

Constituent: Thallium (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.001	<0.0005		<0.001	<0.001	<0.001	<0.001
5/17/2016	<0.001				<0.001	<0.001	<0.001
5/18/2016		<0.0005		<0.001			
7/12/2016	<0.001						<0.001
7/13/2016		<0.0005		<0.001	<0.001	<0.001	
9/13/2016	<0.001					<0.001	<0.001
9/14/2016		<0.0005		9.5E-05 (J)	<0.001		
11/19/2016	<0.001	<0.0005		<0.001	<0.001	<0.001	<0.001
1/17/2017	<0.001	<0.0005		<0.001			<0.001
1/18/2017					<0.001	<0.001	
3/22/2017	<0.001						<0.001
3/23/2017		<0.0005		<0.001	<0.001	<0.001	
5/24/2017	<0.001	<0.0005		<0.001	<0.001	<0.001	<0.001
3/28/2018	<0.001		<0.001	<0.001	<0.001	<0.001	
3/29/2018							<0.001
11/8/2018	<0.001			8.5E-05 (J)	<0.001		
11/9/2018			<0.001			<0.001	<0.001
2/11/2019	<0.001				<0.001	<0.001	
2/12/2019			<0.001	<0.001			<0.001
4/17/2019	<0.001		<0.001	<0.001	<0.001	<0.001	
4/18/2019							<0.001
2/21/2020	<0.001		0.000486 (J)	0.000276 (J)			<0.001
2/22/2020					<0.001	<0.001	
4/14/2020	<0.001		<0.001	0.000158 (J)	<0.001	<0.001	<0.001
10/30/2020	<0.001		<0.001	<0.001	<0.001	<0.001	
11/2/2020							<0.001
3/17/2021					<0.001	<0.001	
3/26/2021	<0.001		<0.001	<0.001			<0.001
10/5/2021	<0.001				<0.001		0.000153 (J)
10/6/2021			<0.001	<0.001		<0.001	
3/16/2022	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001
10/5/2022	<0.001			<0.001	<0.001		
10/6/2022						<0.001	<0.001
4/20/2023	<0.001		<0.001	<0.001			
4/21/2023					<0.001	<0.001	<0.001
10/24/2023	<0.001		<0.001				<0.001
10/25/2023				<0.001	<0.001	<0.001	
3/20/2024	0.000549 (J)					<0.001	
3/21/2024			<0.001	<0.001	<0.001		<0.001

Time Series

Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/2/2024 10:23 AM View: Descriptive

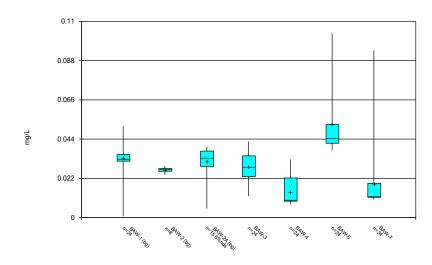

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	20	30		30	46	88	22
5/17/2016	24				52	110	30
5/18/2016		20		20			
7/12/2016	24						26
7/13/2016		40		40	36	120	
9/13/2016	18					92	28
9/14/2016		10		<10	38		
11/19/2016	20	28		22	50	94	38
1/17/2017	<10	14		14			10
1/18/2017					18	68	
3/22/2017	12						22
3/23/2017		16		28	32	80	
5/24/2017	16 (D)	12		18	32	90	22
10/16/2017	58	50		36	64	110	34
3/28/2018	18		30	36	56	86	
3/29/2018							50
6/2/2018	6		26	6	22	72	<10
11/8/2018	12			34	170		
11/9/2018			94			38	20
2/11/2019	<10				23	60	
2/12/2019			22	12			<10
4/17/2019	16		22	27	37	82	
4/18/2019							39
9/27/2019	26		25				<10
9/30/2019				<10	<10	55	
4/14/2020	25		38	31	30	77	24
10/30/2020	34		48	40	40	88	
11/2/2020							28
3/17/2021					44	79	
3/26/2021	24		24	37			38
10/5/2021	26				75		45
10/6/2021			61	30		114	
3/16/2022	30		26	26	66	133	37
10/5/2022	30			32	52		
10/6/2022						155	135
4/20/2023	26		30	31			
4/21/2023					50	204	47
10/24/2023	28		35				42
10/25/2023				19	47	161	
3/20/2024	29					164	
3/21/2024			38	31	64		40

Box Plots

Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

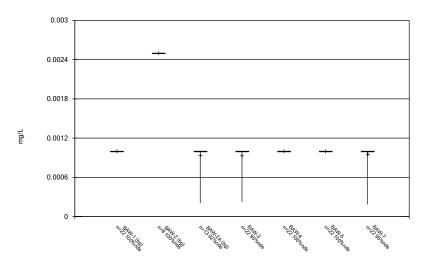
Box & Whiskers Plot


Constituent: Antimony Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Arsenic Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

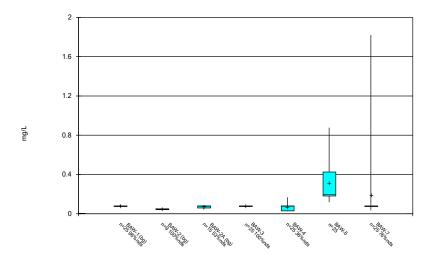
Box & Whiskers Plot



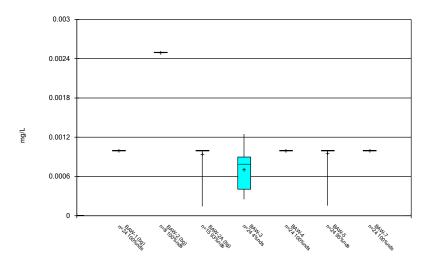
Constituent: Barium
 Analysis Run 5/2/2024 10:23 AM
 View: Descriptive

 Plant Daniel
 Client: Southern Company
 Data: Bottom Ash CCR

Box & Whiskers Plot



Constituent: Beryllium Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Box & Whiskers Plot

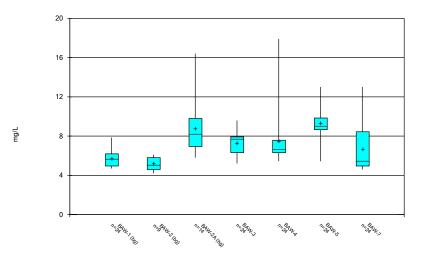
Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Boron Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Cadmium Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

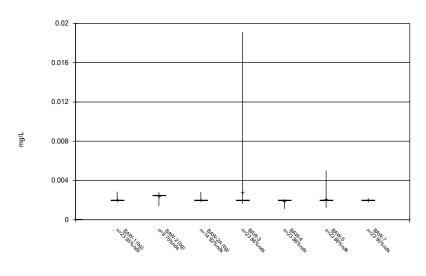
Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Calcium Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

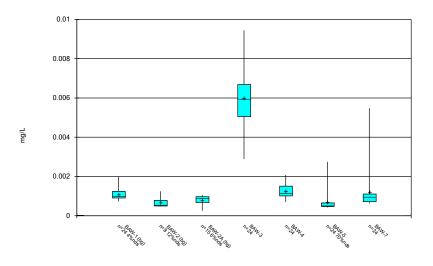
Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot



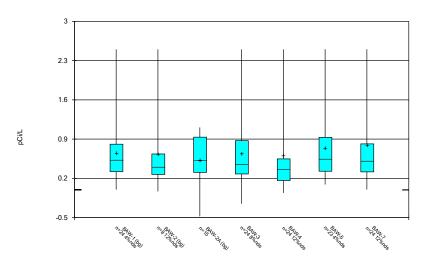
Constituent: Chloride Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Box & Whiskers Plot


Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

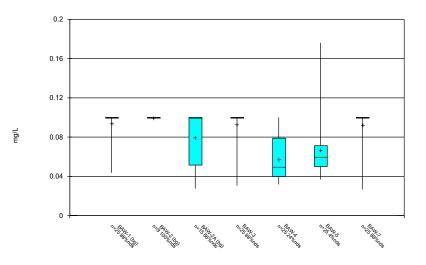
Box & Whiskers Plot

Box & Whiskers Plot


Constituent: Chromium Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Cobalt Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

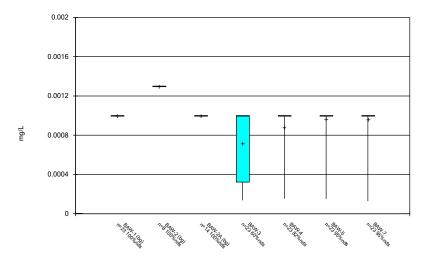
Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG


Box & Whiskers Plot

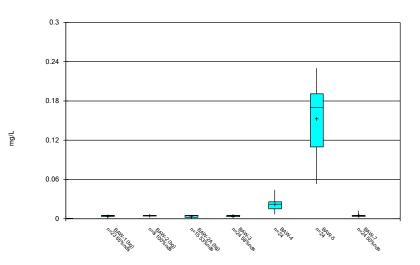
Constituent: Combined Radium 226 + 228 Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

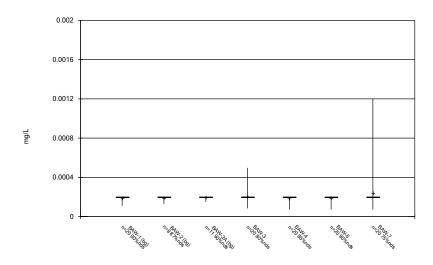


Constituent: Fluoride Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

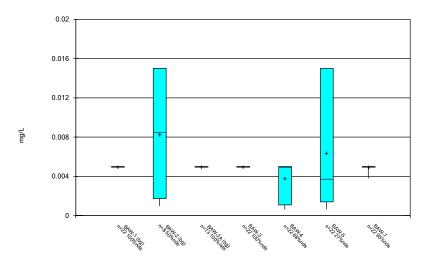
Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot


Constituent: Lead Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

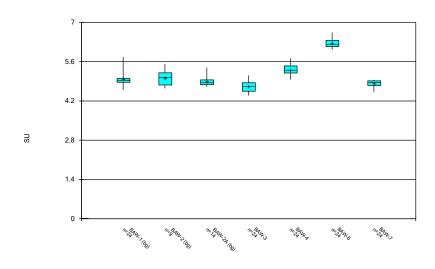
Constituent: Lithium Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

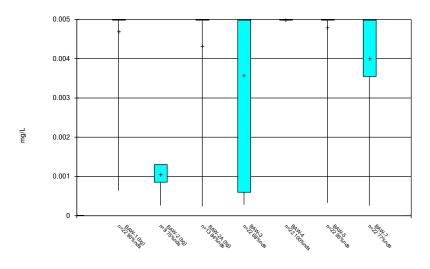

Box & Whiskers Plot

Constituent: Mercury Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Box & Whiskers Plot

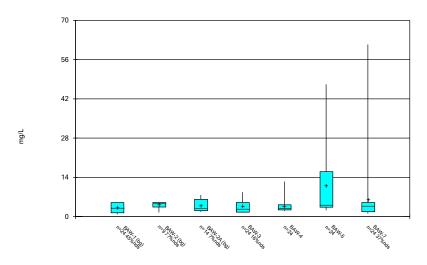

Constituent: Molybdenum Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG


Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

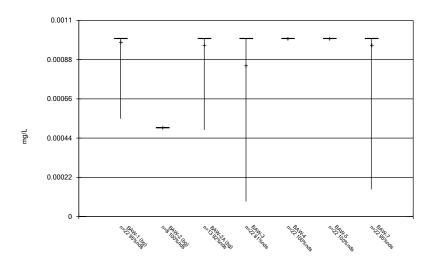
Box & Whiskers Plot


Constituent: pH Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Selenium Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

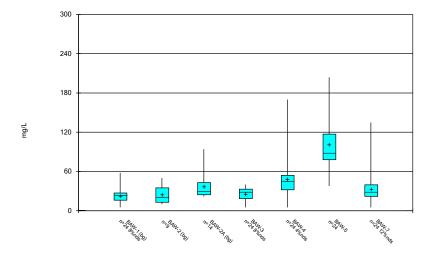
Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot



 Constituent: Sulfate
 Analysis Run 5/2/2024 10:23 AM
 View: Descriptive

 Plant Daniel
 Client: Southern Company
 Data: Bottom Ash CCR


Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Thallium Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Total Dissolved Solids Analysis Run 5/2/2024 10:23 AM View: Descriptive Plant Daniel Client: Southern Company Data: Bottom Ash CCR **Outlier Summary**

Outlier Summary

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:24 AM

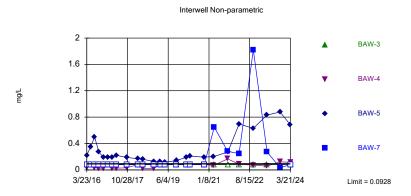
BAW-1 Lithium (mg/L)

7/12/2016 0.012 (o)

Prediction Limits - Interwell

Interwell Prediction Limits - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:26 AM

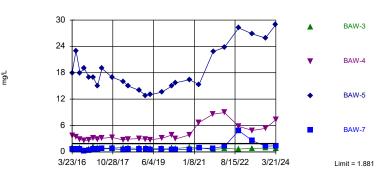

Constituent	Well	Upper Lim.	Lower Lim	. Date	Observ.	<u>Sig.</u> B	<u>ig N</u> E	<u>3g Mean</u>	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (mg/L)	BAW-4	0.0928	n/a	3/21/2024	0.115	Yes 49	9 n	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-5	0.0928	n/a	3/20/2024	0.686	Yes 49	9 n	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BAW-4	1.881	n/a	3/21/2024	7.31	Yes 49	9 -	0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Calcium (mg/L)	BAW-5	1.881	n/a	3/20/2024	28.9	Yes 49	9 -	0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Fluoride (mg/L)	BAW-5	0.1	n/a	3/20/2024	0.11	Yes 49	9 n	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
pH (SU)	BAW-3	5.77	4.59	3/21/2024	4.39	Yes 47	7 n	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
pH (SU)	BAW-5	5.77	4.59	3/20/2024	6.2	Yes 47	7 n	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-4	7.68	n/a	3/21/2024	12.1	Yes 47	7 n	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-5	7.68	n/a	3/20/2024	30	Yes 47	7 n	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	BAW-4	57.17	n/a	3/21/2024	64	Yes 47	75	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-5	57.17	n/a	3/20/2024	164	Yes 47	75	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2

Interwell Prediction Limits - All Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:26 AM

		i lant Dan	er ollerit		inpany D	ata. Dott	lom	Asir COR TI	11160 3/2/20	24, 10.2				
Constituent	Well	Upper Lim.	Lower Li	n. <u>Date</u>	Observ.	<u>Sig.</u>	Bg N	<u>N Bg Mean</u>	Std. Dev.	<u>%ND</u>	<u>s ND Adj.</u>	Transform	<u>Alpha</u>	Method
Boron (mg/L)	BAW-3	0.0928	n/a	3/21/2024	0.08ND	No 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-4	0.0928	n/a	3/21/2024	0.115	Yes 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-5	0.0928	n/a	3/20/2024	0.686	Yes 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-7	0.0928	n/a	3/21/2024	0.08ND	No 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BAW-3	1.881	n/a	3/21/2024	0.818	No 4	49	-0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Calcium (mg/L)	BAW-4	1.881	n/a	3/21/2024	7.31	Yes 4	49	-0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Calcium (mg/L)	BAW-5	1.881	n/a	3/20/2024	28.9	Yes 4	49	-0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Calcium (mg/L)	BAW-7	1.881	n/a	3/21/2024	1.38	No 4	49	-0.159	0.4381	4.082	None	ln(x)	0.00188	Param Inter 1 of 2
Chloride (mg/L)	BAW-3	16.4	n/a	3/21/2024	5.21	No 4	47	n/a	n/a	0	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-4	16.4	n/a	3/21/2024	8.17	No 4	47	n/a	n/a	0	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-5	16.4	n/a	3/20/2024	9	No 4	47	n/a	n/a	0	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-7	16.4	n/a	3/21/2024	8.37	No 4	47	n/a	n/a	0	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Fluoride (mg/L)	BAW-3	0.1	n/a	3/21/2024	0.0537J	No 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-4	0.1	n/a	3/21/2024	0.0578J	No 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-5	0.1	n/a	3/20/2024	0.11	Yes 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-7	0.1	n/a	3/21/2024	0.0292J	No 4	49	n/a	n/a	83.67	n/a	n/a	0.0007847	NP Inter (NDs) 1 of 2
pH (SU)	BAW-3	5.77	4.59	3/21/2024	4.39	Yes 4	47	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
pH (SU)	BAW-4	5.77	4.59	3/21/2024	5.47	No 4	47	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
pH (SU)	BAW-5	5.77	4.59	3/20/2024	6.2	Yes 4	47	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
pH (SU)	BAW-7	5.77	4.59	3/21/2024	4.89	No 4	47	n/a	n/a	0	n/a	n/a	0.001728	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-3	7.68	n/a	3/21/2024	7.6	No 4	47	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-4	7.68	n/a	3/21/2024	12.1	Yes 4	47	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-5	7.68	n/a	3/20/2024	30	Yes 4	47	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-7	7.68	n/a	3/21/2024	1.66	No 4	47	n/a	n/a	40.43	n/a	n/a	0.0008638	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	BAW-3	57.17	n/a	3/21/2024	31	No 4	47	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-4	57.17	n/a	3/21/2024	64	Yes 4	47	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-5	57.17	n/a	3/20/2024	164	Yes 4	47	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-7	57.17	n/a	3/21/2024	40	No 4	47	5.01	1.409	4.255	None	sqrt(x)	0.00188	Param Inter 1 of 2

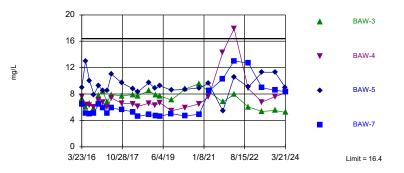
Sanitas^w v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Exceeds Limit: BAW-4. BAW-5


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 49 background values. 83.67% NDs. Annual per-constituent alpha = 0.006261. Individual comparison alpha = 0.0007847 (1 of 2). Comparing 4 points to limit.

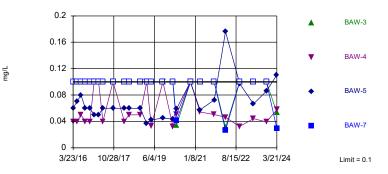
Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Prediction Limit


Background Data Summary (based on natural log transformation): Mean=-0.159, Std. Dev.=0.4381, n=49, 4.082% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9325, critical = 0.929. Kappa = 1.805 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

Constituent: Boron Analysis Run 5/2/2024 10:16 AM View: Interwell Plant Daniel Client: Southern Company Data: Bottom Ash CCR Constituent: Calcium Analysis Run 5/2/2024 10:16 AM View: Interwell Plant Daniel Client: Southern Company Data: Bottom Ash CCR

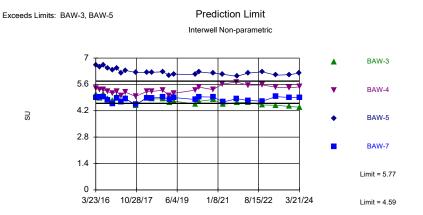
Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting, UG


Within Limit

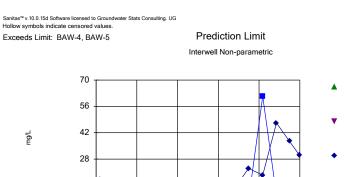
Prediction Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 47 background values. Annual per-constituent alpha = 0.00689. Individual comparison alpha = 0.0008638 (1 of 2). Comparing 4 points to limit. Sanitas^w v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Exceeds Limit: BAW-5

Prediction Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 49 background values. 83.67% NDs. Annual per-constituent alpha = 0.006261. Individual comparison alpha = 0.0007847 (1 of 2). Comparing 4 points to limit.


Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

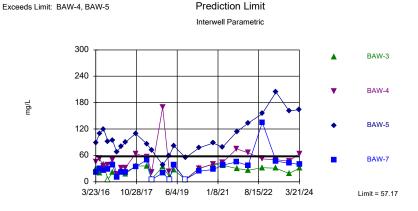
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 47 background values. Annual perconstituent alpha = 0.01378. Individual comparison alpha = 0.001728 (1 of 2). Comparing 4 points to limit.

14

0 3/23/16 10/28/17 6/4/19 1/8/21 8/15/22 3/21/24 Limit = 7.68

BAW-3

BAW-4


BAW-5

BAW-7

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 47 background values. 40.43% NDs. Annual perconstituent alpha = 0.00689. Individual comparison alpha = 0.0008638 (1 of 2). Comparing 4 points to limit.

Constituent: pH Analysis Run 5/2/2024 10:17 AM View: Interwell Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Sulfate Analysis Run 5/2/2024 10:17 AM View: Interwell Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Background Data Summary (based on square root transformation): Mean=5.01, Std. Dev.=1.409, n=47, 4.255% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.953, critical = 0.928. Kappa = 1.81 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

Constituent: Boron (mg/L) Analysis Run 5/2/2024 10:18 AM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	<0.08	<0.08	0.22	<0.08	<0.08	0.037 (J)	
5/17/2016	<0.08	<0.08	0.35			<0.08	
5/18/2016				<0.08	<0.08		
7/12/2016	<0.08	<0.08					
7/13/2016			0.5	<0.08	<0.08	0.032 (J)	
9/13/2016	<0.08	<0.08	0.27				
9/14/2016				<0.08	<0.08	0.027 (J)	
11/19/2016	<0.08	<0.08	0.19	<0.08	<0.08	0.024 (J)	
1/17/2017	<0.08	<0.08		<0.08	<0.08		
1/18/2017			0.19			<0.08	
3/22/2017	<0.08	<0.08					
3/23/2017			0.19	<0.08	<0.08	0.024 (J)	
5/24/2017	<0.08	<0.08	0.22	<0.08	<0.08	0.027 (J)	
10/16/2017	<0.08	<0.08	0.19	<0.08	<0.08	0.03 (J)	
3/28/2018	<0.08		0.17	<0.08		<0.08	<0.08
3/29/2018		<0.08					
6/2/2018	<0.08	<0.08	0.16	<0.08		0.025 (J)	<0.08
11/8/2018	<0.08			<0.08		0.024 (J)	
11/9/2018		<0.08	0.13				<0.08
2/11/2019	<0.08		0.126			<0.08	
2/12/2019		<0.08		<0.08			<0.08
4/17/2019	<0.08		0.118	<0.08		<0.08	<0.08
4/18/2019		<0.08					
9/27/2019	<0.08	<0.08					<0.08
9/30/2019			0.14	<0.08		<0.08	
2/21/2020	0.0928	<0.08		<0.08			0.0589 (J)
2/22/2020			0.193			<0.08	
4/14/2020	<0.08	<0.08	0.209	<0.08		<0.08	0.0424 (J)
10/30/2020	<0.08		0.194	<0.08		<0.08	0.0495 (J)
11/2/2020		<0.08					
3/17/2021			0.2			0.0673 (J)	
3/26/2021	<0.08	0.647		<0.08			<0.08
10/5/2021	<0.08	0.281				0.168	
10/6/2021			0.272	<0.08			<0.08
3/16/2022	<0.08	0.247	0.695	<0.08		0.084	0.0717 (J)
10/5/2022	<0.08			<0.08		0.0714 (J)	
10/6/2022		1.82	0.631				
4/20/2023	<0.08			<0.08			0.0711 (J)
4/21/2023		0.271	0.831			0.058 (J)	
10/24/2023	<0.08	0.0336 (J)					0.0502 (J)
10/25/2023			0.877	<0.08		0.122	
3/20/2024	<0.08		0.686				
3/21/2024		<0.08		<0.08		0.115	0.0604 (J)

Constituent: Calcium (mg/L) Analysis Run 5/2/2024 10:18 AM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	<0.5	0.65	18	1.1	2.6	3.7	
5/17/2016	0.84	0.68	23			3.4	
5/18/2016				0.56	1.3		
7/12/2016	0.79	0.62					
7/13/2016			18	0.95	1.1	2.8	
9/13/2016	0.42	0.25	19				
9/14/2016				0.4	1.1	2.6	
11/19/2016	1.2	0.36	17	0.62	1	2.7	
1/17/2017	1.4	0.66		1.2	0.87		
1/18/2017			17			3.1	
3/22/2017	0.95	0.65					
3/23/2017			15	0.87	0.74	2.8	
5/24/2017	1.3	0.72	19	0.81	0.84	3.1	
10/16/2017	0.93	0.7	17	0.86	0.76	3.3	
3/28/2018	1		16	0.97		2.7	2.8
3/29/2018		0.55					
6/2/2018	0.93	0.6	15	0.86		2.9	0.71
11/8/2018	1			0.84		3	
11/9/2018		0.59	14				0.61
2/11/2019	1		12.8			2.88	
2/12/2019		0.608		0.856			0.757
4/17/2019	0.893		13	0.711		2.77	0.755
4/18/2019		0.55					
9/27/2019	0.8	0.598					0.663
9/30/2019			13.6	0.826		3.08	
2/21/2020	1.02	0.552		0.841			0.648
2/22/2020			15			3.86	
4/14/2020	0.887	0.532	15.7	0.811		2.95	0.67
10/30/2020	0.945		16.4	1		3.84	0.672
11/2/2020		0.535					
3/17/2021			15.3			6.69	
3/26/2021	0.965	0.848		0.937			0.644
10/5/2021	0.996	0.829				8.57	
10/6/2021			22.8	0.532			<0.5
3/16/2022	1.32	1.28	23.8	0.78		8.94	0.539
10/5/2022	1.42			0.647		5.81	
10/6/2022		4.84	28.2				
4/20/2023	0.996			0.789			0.685
4/21/2023		2.56	26.8			4.87	
10/24/2023	0.918	1.3					0.498 (J)
10/25/2023			25.9	0.875		5.35	
3/20/2024	1.05		28.9				
3/21/2024		1.38		0.818		7.31	0.469 (J)

Constituent: Chloride (mg/L) Analysis Run 5/2/2024 10:18 AM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	6.5	6.5	9	7.3	5.1	7.6	
5/17/2016	4.9	5.1	13			6.4	
5/18/2016				6	4.2		
7/12/2016	5.3	5					
7/13/2016			10	6.6	4.7	6.3	
9/13/2016	4.8 (F1)	5.1	7.9				
9/14/2016				5.8	4.5	6	
11/19/2016	7.1	6.5	9.3	7.8	6.1	7	
1/17/2017	5.8	5.9		8.4	5.4		
1/18/2017			8.5			6.7	
3/22/2017	4.9	5.1					
3/23/2017			8.5	6.8	5.1	6	
5/24/2017	5.9	5.9	11	7.9	5.5	7.4	
10/16/2017	5.7	5.6	9.7	7.7	6.1	6.6	
3/28/2018	5.7		8.8	7.9		6.5	6.7
3/29/2018		5.3					
6/2/2018	4.7	4.6	8.3	7.7		6.1	5.8
11/8/2018	5.6			8.5		6.6	
11/9/2018		4.9	9.7				7.2
2/11/2019	4.84		8.84			6.31	
2/12/2019		4.72		7.89			8.4
4/17/2019	4.99		9.24	7.71		6.68	8.03
4/18/2019		4.64					
9/27/2019	5.08	5.02					8.37
9/30/2019			8.59	7.07		5.45	
4/14/2020	4.91	4.68	8.71	8.75		5.93	7.57
10/30/2020	5.55		8.93	9.58		6.49	7.59
11/2/2020		4.91					
3/17/2021			9.6			7.55	
3/26/2021	5.92	8.5		8.32			6.21
10/5/2021	6.21	10.3				14.3	
10/6/2021			5.44	6.8			16.4
3/16/2022	7.85	13	10.6	7.94		17.9	11.5
10/5/2022	6.75			6.04		8.84	
10/6/2022		12.7	9.04				
4/20/2023	5.22			5.36			9.6
4/21/2023		8.95	11.3			6.78	
10/24/2023	6.29	8.57					10
10/25/2023			11.3	5.5		7.6	
3/20/2024	6.17		9				
3/21/2024		8.37		5.21		8.17	9.52

Constituent: Fluoride (mg/L) Analysis Run 5/2/2024 10:18 AM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	<0.1	<0.1	0.06 (J)	<0.1	<0.1	0.04 (J)	
5/17/2016	<0.1	<0.1	0.07 (J)			0.04 (J)	
5/18/2016				<0.1	<0.1		
7/12/2016	<0.1	<0.1					
7/13/2016			0.08 (J)	<0.1	<0.1	0.05 (J)	
9/13/2016	<0.1	<0.1	0.06 (J)				
9/14/2016				<0.1	<0.1	0.04 (J)	
11/19/2016	<0.1	<0.1	0.06 (J)	<0.1	<0.1	0.04 (J)	
1/17/2017	<0.1	<0.1		<0.1	<0.1		
1/18/2017			0.05 (J)			<0.1	
3/22/2017	<0.1	<0.1					
3/23/2017			0.05 (J)	<0.1	<0.1	<0.1	
5/24/2017	<0.1	<0.1 (D)	0.06 (J)	<0.1	<0.1	0.04 (J)	
10/16/2017	<0.1	<0.1	0.06 (J)	<0.1	<0.1	<0.1	
3/28/2018	<0.1		0.06 (J)	<0.1		0.04 (J)	<0.1
3/29/2018		<0.1					
6/2/2018	<0.1	<0.1	0.06 (J)	<0.1		0.05 (J)	<0.1
11/8/2018	<0.1			<0.1		0.05 (J)	
11/9/2018		<0.1	0.06 (J)				<0.1
2/11/2019	<0.1		0.0368 (J)			<0.1	
2/12/2019		<0.1		<0.1			<0.1
4/17/2019	<0.1		0.0421 (J)	<0.1		0.033 (J)	<0.1
4/18/2019		<0.1					
9/27/2019	<0.1	<0.1					0.0313 (J)
9/30/2019			0.045 (J)	<0.1		<0.1	
2/21/2020	<0.1	<0.1		<0.1			<0.1
2/22/2020			0.0434 (J)			0.0317 (J)	
4/14/2020	0.0532 (J)	0.0415 (J)	0.059 (J)	0.034 (J)		0.0508 (J)	0.0537 (J)
10/30/2020	<0.1		<0.1	<0.1		<0.1	<0.1
11/2/2020		<0.1					
3/17/2021			0.0575 (J)			0.0544 (J)	
3/26/2021	<0.1	<0.1		<0.1			<0.1
10/5/2021	0.0499 (J)	<0.1				0.0505 (J)	
10/6/2021			0.0725 (J)	<0.1			<0.1
3/16/2022	<0.1	0.0266 (J)	0.176	0.0307 (J)		0.0462 (J)	<0.1
10/5/2022	<0.1			<0.1		0.0322 (J)	
10/6/2022		<0.1	0.0972 (J)				
4/20/2023	<0.1			<0.1			0.0278 (J)
4/21/2023		<0.1	0.0665 (J)			0.0441 (J)	
10/24/2023	<0.1	<0.1					0.0276 (J)
10/25/2023			0.0858 (J)	<0.1		0.0393 (J)	
3/20/2024	0.0436 (J)		0.11				
3/21/2024		0.0292 (J)		0.0537 (J)		0.0578 (J)	0.0515 (J)

Constituent: pH (SU) Analysis Run 5/2/2024 10:18 AM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	5.12	4.89	6.64	5.05	5.52	5.38	
5/17/2016	5.23	4.92	6.52			5.32	
5/18/2016				4.86	5.24		
7/12/2016	5.77	4.93					
7/13/2016			6.63	5.11	5.17	5.31	
9/13/2016	4.98	4.76	6.46				
9/14/2016				4.84	5.04	5.21	
11/19/2016	4.82	4.56	6.38	4.74	4.88	5.12	
1/17/2017	5.04	4.86		4.95	5.04		
1/18/2017			6.47			5.22	
3/22/2017	4.73	4.66					
3/23/2017			6.19	4.66	4.66	5.01	
5/24/2017	5.01	4.83	6.34	4.86	4.93	5.19	
10/16/2017	4.59	4.53	6.23	4.47	4.65	4.96	
3/28/2018	4.87		6.22	4.93		5.23	5.39
3/29/2018		4.87					
6/2/2018	4.92	4.87	6.24	4.83		5.22	5.06
11/8/2018	5			4.83		5.29	
11/9/2018		4.92	6.27				4.92
2/11/2019	4.7		6.08			5	
2/12/2019		4.79		4.65			4.86
4/17/2019	4.9		6.14	4.71		5.13	4.79
4/18/2019		4.9					
2/21/2020	4.86	4.8		4.55			4.73
2/22/2020			6.13			5.3	
4/14/2020	5.23	4.94	6.26	4.7		5.45	4.87
10/30/2020	5		6.19	4.8		5.32	4.87
11/2/2020		4.92					
3/17/2021			6.14			5.62	
3/26/2021	4.86	4.67		4.54			4.7
10/5/2021	5	4.84				5.72	
10/6/2021			6.03	4.63			4.77
3/16/2022	4.92	4.75	6.2	4.64		5.56	4.91
10/5/2022	4.91			4.51		5.57	
10/6/2022		4.71	6.27				
4/20/2023	4.89			4.49			4.83
4/21/2023		4.95	6.09			5.45	
10/24/2023	4.99	4.91					4.98
10/25/2023			6.11	4.43		5.42	
3/20/2024	4.93		6.2				
3/21/2024		4.89		4.39		5.47	4.86

Constituent: Sulfate (mg/L) Analysis Run 5/2/2024 10:18 AM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	<5	<5	4.5 (J)	<5	<5	2.3 (J)	
5/17/2016	<5	<5	17			2.3 (J)	
5/18/2016				<5	<5		
7/12/2016	<5	<5					
7/13/2016			15	1.5 (J)	<5	2.4 (J)	
9/13/2016	<5	<5	3.4 (J)				
9/14/2016				1.6 (J)	<5	2.4 (J)	
11/19/2016	<5	1.5 (J)	3.5 (J)	1.8 (J)	<5	3.3 (J)	
1/17/2017	<5	<5		<5	<5		
1/18/2017			3.2 (J)			2.3 (J)	
3/22/2017	<5	1.9 (J)					
3/23/2017			3.7 (J)	2.3 (J)	1.8 (J)	3.2 (J)	
5/24/2017	<5	<5	8.8	1.6 (J)	1.5 (J)	2.4 (J)	
10/16/2017	<5	<5	4 (J)	<5	<5	2 (J)	
3/28/2018	<5		3.3 (J)	1.6 (J)		2.4 (J)	1.7 (J)
3/29/2018		<5					
6/2/2018	1.9 (J)	2.8 (J)	4.3 (J)	2.9 (J)		3.7 (J)	3 (J)
11/8/2018	<5			1.6 (J)		2.7 (J)	
11/9/2018		<5	2.3 (J)				<5
2/11/2019	0.774 (J)		2.64			2.5	
2/12/2019		1.35		1.97			1.97
4/17/2019	1.43		3.27	2.5		3.15	2.82
4/18/2019		1.82					
9/27/2019	1.03	1.22					2.19
9/30/2019			2.82	1.64		2.34	
4/14/2020	0.928 (J)	1.18	4.2	1.62		2.99	2.71
10/30/2020	0.91 (J)		4.76	1.44		2.84	3.97
11/2/2020		1.08					
3/17/2021			4.07			4.35	
3/26/2021	1.49	2		3.25			2.04
10/5/2021	1.13	2.55				5.02	
10/6/2021			14.5	5.07			5.37
3/16/2022	3.6	5.93	23.1	6.85		5.64	5.37
10/5/2022	1.34			6.07		4.12	
10/6/2022		61.4	19.5				
4/20/2023	2.6			8.2			7.32
4/21/2023		8.82	47.2			5	
10/24/2023	1.8	2.11					7.68
10/25/2023			37.5	8.72		12.5	
3/20/2024	1.41		30				
3/21/2024		1.66		7.6		12.1	6.92

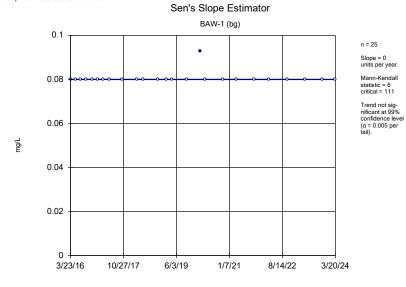
Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/2/2024 10:18 AM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	20	22	88	30	30	46	
5/17/2016	24	30	110			52	
5/18/2016				20	20		
7/12/2016	24	26					
7/13/2016			120	40	40	36	
9/13/2016	18	28	92				
9/14/2016				<10	10	38	
11/19/2016	20	38	94	22	28	50	
1/17/2017	<10	10		14	14		
1/18/2017			68			18	
3/22/2017	12	22					
3/23/2017			80	28	16	32	
5/24/2017	16 (D)	22	90	18	12	32	
10/16/2017	58	34	110	36	50	64	
3/28/2018	18		86	36		56	30
3/29/2018		50					
6/2/2018	6	<10	72	6		22	26
11/8/2018	12			34		170	
11/9/2018		20	38				94
2/11/2019	<10		60			23	
2/12/2019		<10		12			22
4/17/2019	16		82	27		37	22
4/18/2019		39					
9/27/2019	26	<10					25
9/30/2019			55	<10		<10	
4/14/2020	25	24	77	31		30	38
10/30/2020	34		88	40		40	48
11/2/2020		28					
3/17/2021			79			44	
3/26/2021	24	38		37			24
10/5/2021	26	45				75	
10/6/2021			114	30			61
3/16/2022	30	37	133	26		66	26
10/5/2022	30			32		52	
10/6/2022		135	155				
4/20/2023	26			31			30
4/21/2023		47	204			50	
10/24/2023	28	42					35
10/25/2023			161	19		47	
3/20/2024	29		164				
3/21/2024		40		31		64	38

Trend Tests - Prediction Limit Exceedances

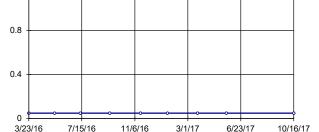
Appendix III Trend Tests - Prediction Limit Exceedances - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:20 AM


Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	BAW-2 (bg)	-0.5725	-31	-25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-2A (bg)	-0.05023	-55	-53	Yes	15	6.667	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-4	0.3488	139	111	Yes	25	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2 (bg)	-0.5393	-29	-25	Yes	9	0	n/a	n/a	0.01	NP
pH (SU)	BAW-3	-0.06553	-182	-105	Yes	24	0	n/a	n/a	0.01	NP
pH (SU)	BAW-5	-0.05237	-152	-105	Yes	24	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-1 (bg)	-0.4138	-121	-105	Yes	24	45.83	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2A (bg)	0.9245	56	48	Yes	14	7.143	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-4	0.3988	165	105	Yes	24	0	n/a	n/a	0.01	NP

Appendix III Trend Tests - Prediction Limit Exceedances - All Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:20 AM


Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	BAW-1 (bg)	0	6	111	No	25	96	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-2 (bg)	0	0	25	No	9	100	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-2A (bg)	-0.002126	-39	-53	No	15	53.33	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-4	0.007426	108	111	No	25	36	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-5	0.0151	61	111	No	25	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-1 (bg)	0.02243	73	111	No	25	4	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-2 (bg)	-0.5725	-31	-25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-2A (bg)	-0.05023	-55	-53	Yes	15	6.667	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-4	0.3488	139	111	Yes	25	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-5	0.7643	38	111	No	25	0	n/a	n/a	0.01	NP
Fluoride (mg/L)	BAW-1 (bg)	0	-49	-111	No	25	88	n/a	n/a	0.01	NP
Fluoride (mg/L)	BAW-2 (bg)	0	0	25	No	9	100	n/a	n/a	0.01	NP
Fluoride (mg/L)	BAW-2A (bg)	0	-34	-53	No	15	66.67	n/a	n/a	0.01	NP
Fluoride (mg/L)	BAW-5	0.0009981	39	111	No	25	4	n/a	n/a	0.01	NP
pH (SU)	BAW-1 (bg)	-0.01122	-40	-105	No	24	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2 (bg)	-0.5393	-29	-25	Yes	9	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2A (bg)	-0.02024	-21	-48	No	14	0	n/a	n/a	0.01	NP
pH (SU)	BAW-3	-0.06553	-182	-105	Yes	24	0	n/a	n/a	0.01	NP
pH (SU)	BAW-5	-0.05237	-152	-105	Yes	24	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-1 (bg)	-0.4138	-121	-105	Yes	24	45.83	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2 (bg)	0	-11	-25	No	9	77.78	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2A (bg)	0.9245	56	48	Yes	14	7.143	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-4	0.3988	165	105	Yes	24	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-5	0.8287	80	105	No	24	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-1 (bg)	1.364	92	105	No	24	8.333	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-2 (bg)	-5.236	-4	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-2A (bg)	1.336	17	48	No	14	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-4	2.234	50	105	No	24	4.167	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-5	6.434	58	105	No	24	0	n/a	n/a	0.01	NP

Sanitas¹¹ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

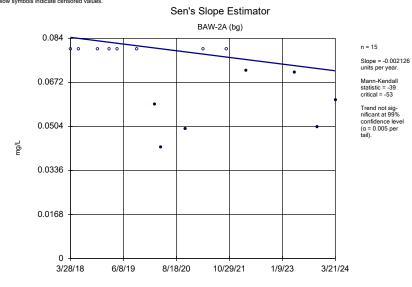
Constituent: Boron Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

n = 9

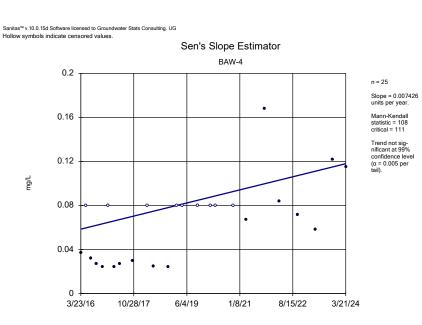
Slope = 0

units per year.

Mann-Kendall

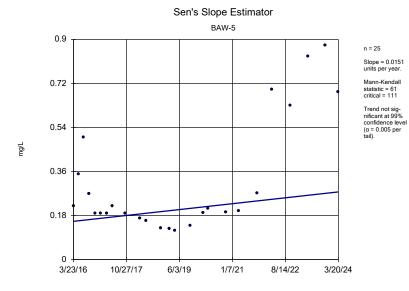

Trend not significant at 99% confidence level

(α = 0.005 per tail).

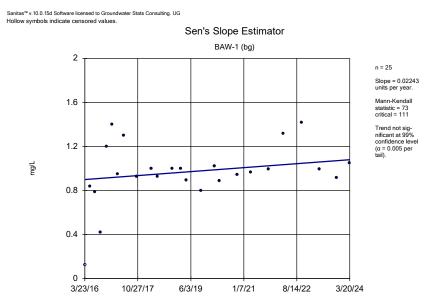

statistic = 0 critical = 25

Constituent: Boron Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



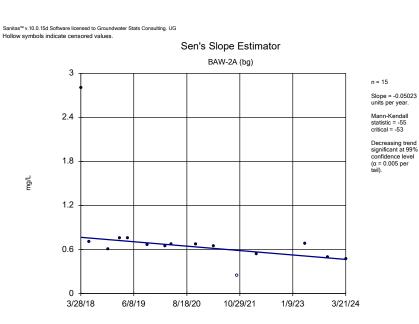
Constituent: Boron Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR



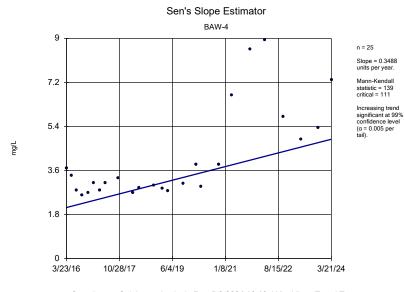
Constituent: Boron Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

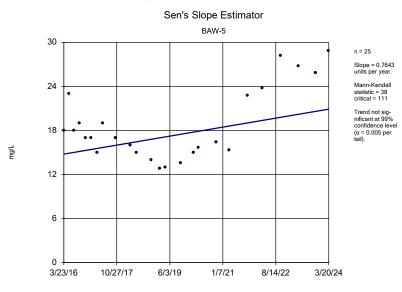
Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Constituent: Boron Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

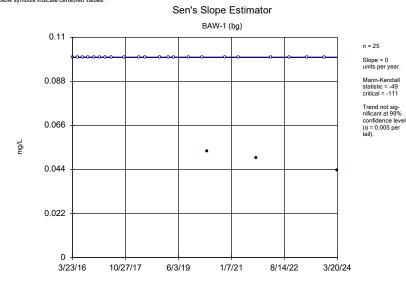


Constituent: Calcium Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

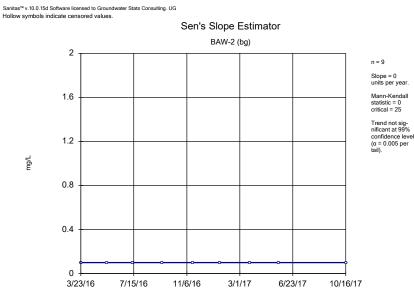

Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG


Constituent: Calcium Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Calcium Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

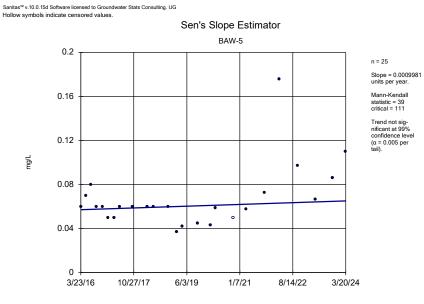


Constituent: Calcium Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

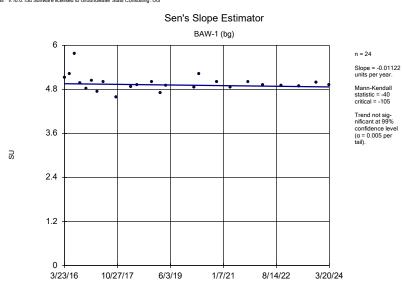


Constituent: Calcium Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

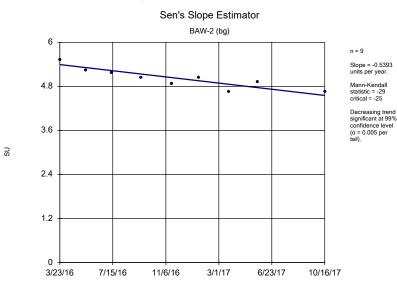

Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Fluoride Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

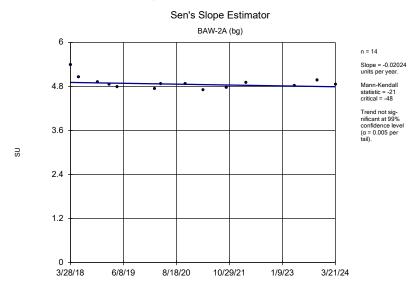
Constituent: Fluoride Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas¹¹ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

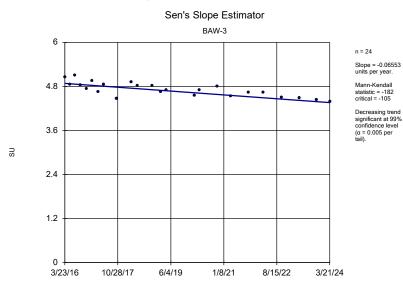


Constituent: Fluoride Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

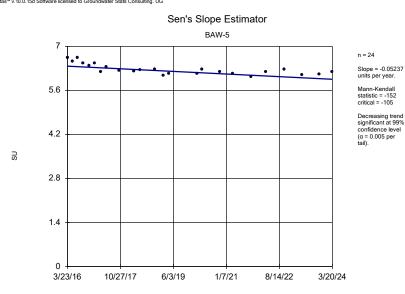

Constituent: Fluoride Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

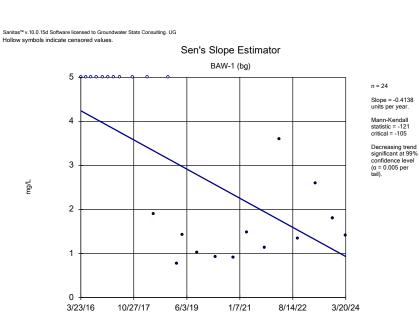

Constituent: pH Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR



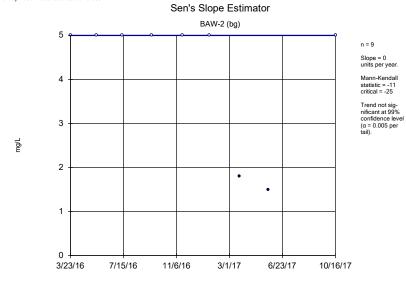
Constituent: pH Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

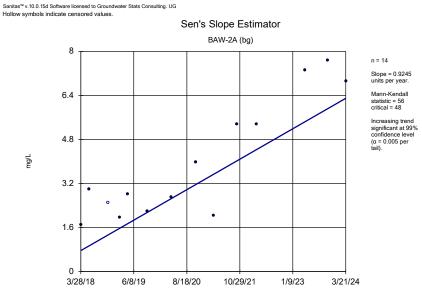


Constituent: pH Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

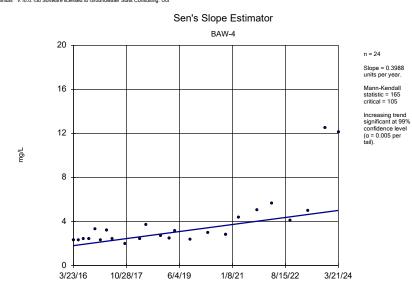


Constituent: pH Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

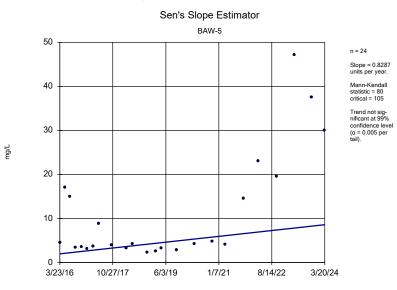

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG


Constituent: pH Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

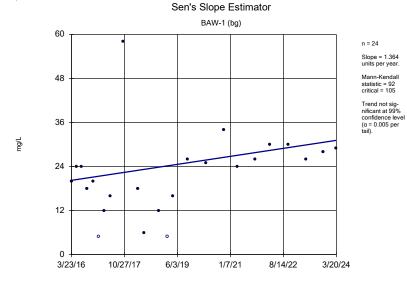
Constituent: Sulfate Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas¹¹ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

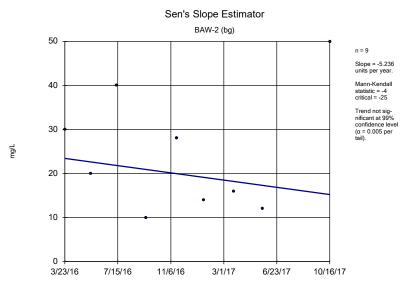


Constituent: Sulfate Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

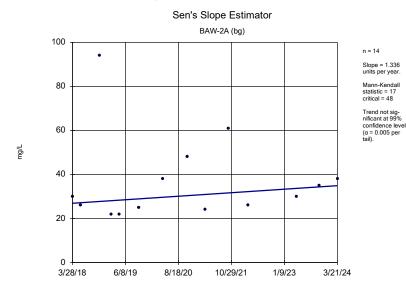

Constituent: Sulfate Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

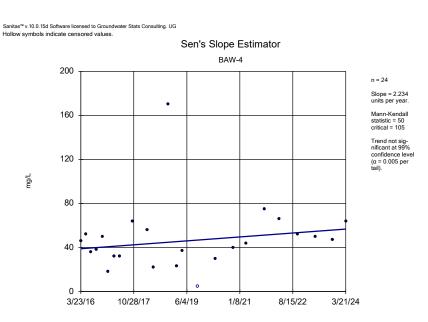

Constituent: Sulfate Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR



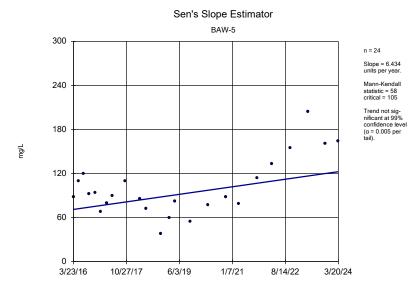
Constituent: Sulfate Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas¹¹ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Total Dissolved Solids Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR



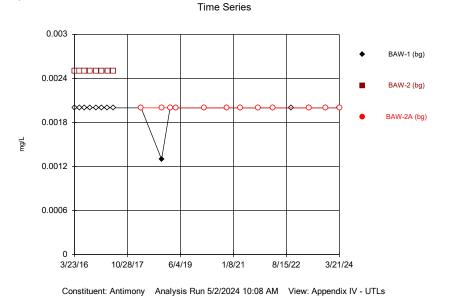
Constituent: Total Dissolved Solids Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Total Dissolved Solids Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

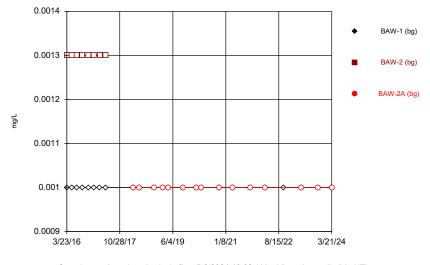
Constituent: Total Dissolved Solids Analysis Run 5/2/2024 10:18 AM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Upper Tolerance Limits

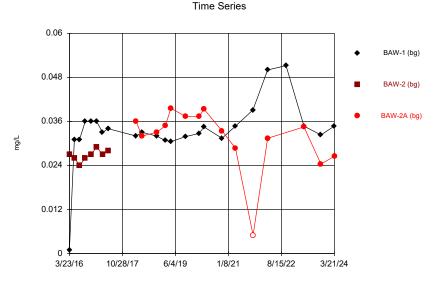
Upper Tolerance Limits

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:09 AM

Constituent	Upper Lim.	Lower Lim.	<u>Bg N</u>	Bg Mean	Std. Dev.	<u>%NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	0.002	n/a	41	n/a	n/a	97.56	n/a	n/a	0.1221	NP Inter(NDs)
Arsenic (mg/L)	0.001	n/a	47	n/a	n/a	100	n/a	n/a	0.08974	NP Inter(NDs)
Barium (mg/L)	0.0512	n/a	47	n/a	n/a	2.128	n/a	n/a	0.08974	NP Inter(normality)
Beryllium (mg/L)	0.001	n/a	43	n/a	n/a	97.67	n/a	n/a	0.1102	NP Inter(NDs)
Cadmium (mg/L)	0.001	n/a	47	n/a	n/a	97.87	n/a	n/a	0.08974	NP Inter(NDs)
Chromium (mg/L)	0.00286	n/a	45	n/a	n/a	91.11	n/a	n/a	0.09944	NP Inter(NDs)
Cobalt (mg/L)	0.001707	n/a	47	0.02914	0.00585	6.383	None	sqrt(x)	0.05	Inter
Combined Radium 226 + 228 (pCi/L)	2.5	n/a	47	n/a	n/a	4.255	n/a	n/a	0.08974	NP Inter(normality)
Fluoride (mg/L)	0.1	n/a	49	n/a	n/a	83.67	n/a	n/a	0.08099	NP Inter(NDs)
Lead (mg/L)	0.001	n/a	45	n/a	n/a	100	n/a	n/a	0.09944	NP Inter(NDs)
Lithium (mg/L)	0.00505	n/a	46	n/a	n/a	67.39	n/a	n/a	0.09447	NP Inter(NDs)
Mercury (mg/L)	0.0002	n/a	39	n/a	n/a	89.74	n/a	n/a	0.1353	NP Inter(NDs)
Molybdenum (mg/L)	0.005	n/a	43	n/a	n/a	90.7	n/a	n/a	0.1102	NP Inter(NDs)
Selenium (mg/L)	0.005	n/a	43	n/a	n/a	86.05	n/a	n/a	0.1102	NP Inter(NDs)
Thallium (mg/L)	0.001	n/a	43	n/a	n/a	95.35	n/a	n/a	0.1102	NP Inter(NDs)

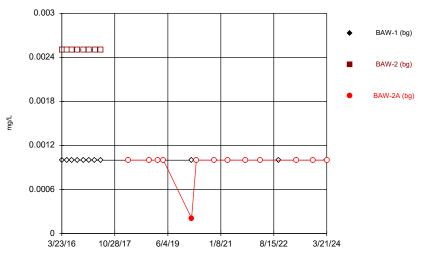

Sanitas^{tw} v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas $^{\rm tw}$ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

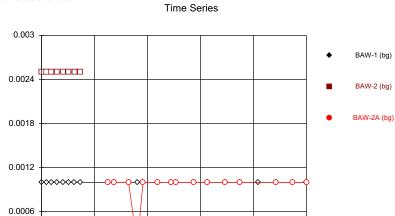
Constituent: Arsenic Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas¹⁸ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



 Constituent: Barium
 Analysis Run 5/2/2024 10:08 AM
 View: Appendix IV - UTLs

 Plant Daniel
 Client: Southern Company
 Data: Bottom Ash CCR


Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

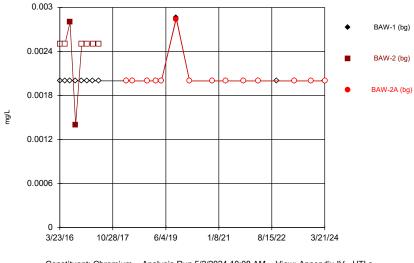
Time Series

Constituent: Beryllium Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas¹⁶ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

mg/L

1/8/21

Client: Southern Company Data: Bottom Ash CCR


Constituent: Cadmium Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs

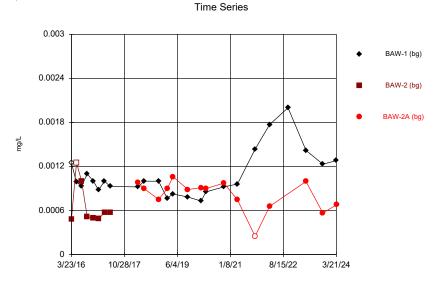
3/21/24

8/15/22

Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

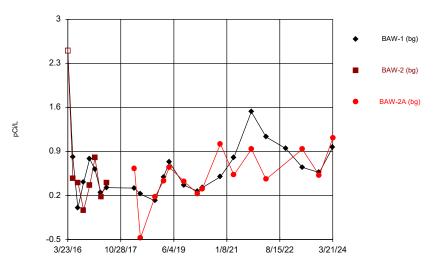
Constituent: Chromium Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas $^{\rm tw}$ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

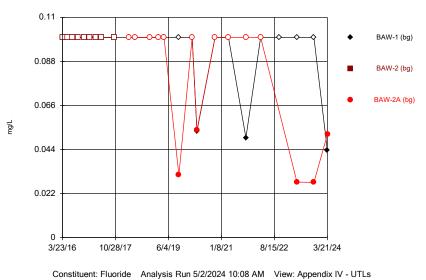

0

3/23/16

10/28/17

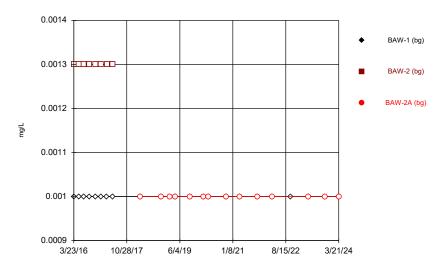

Plant Daniel

6/4/19



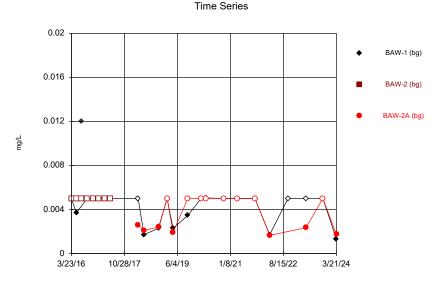
Constituent: Cobalt Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series


Constituent: Combined Radium 226 + 228 Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR $\label{eq:source} Sanitas^{\text{\tiny NM}} v.10.0.15d \mbox{ Software licensed to Groundwater Stats Consulting. UG} Hollow symbols indicate censored values.$

Time Series

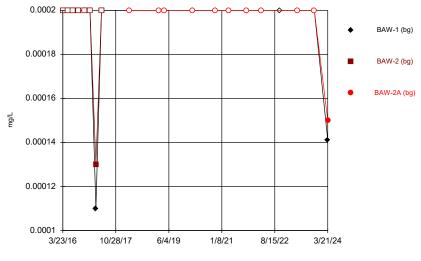
Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas $^{\rm tw}$ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

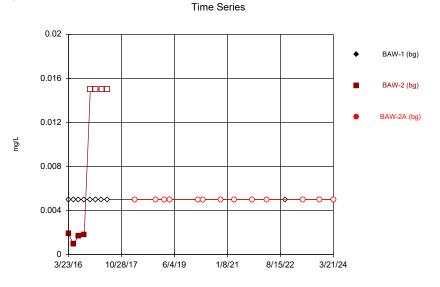
Time Series

Constituent: Lead Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

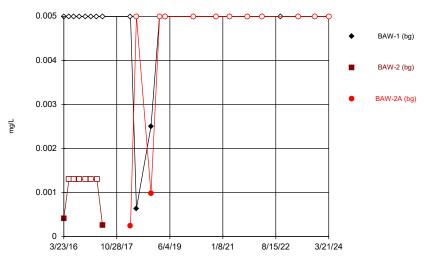
Sanitas¹⁸ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



 Constituent: Lithium
 Analysis Run 5/2/2024 10:08 AM
 View: Appendix IV - UTLs

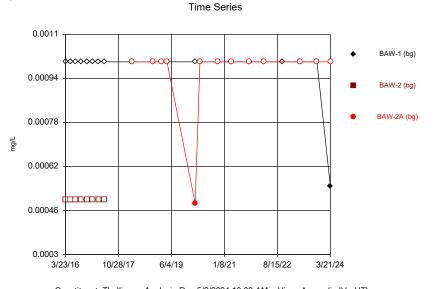

 Plant Daniel
 Client: Southern Company
 Data: Bottom Ash CCR

Sanitas^m v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

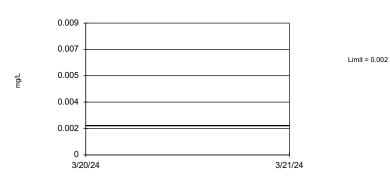


Constituent: Mercury Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas¹⁶ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

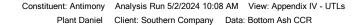
Constituent: Molybdenum Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas¹⁹ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series


Constituent: Selenium Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

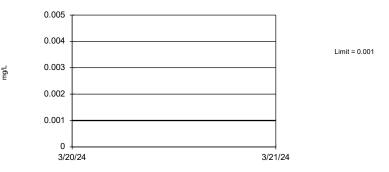
Sanitas^{tte} v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Thallium Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Tolerance Limit Interwell Non-parametric

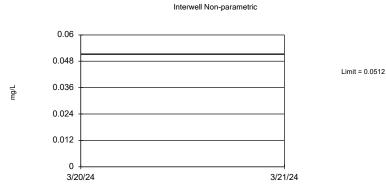
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 41 background values. 97.56% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1221.



Tolerance Limit

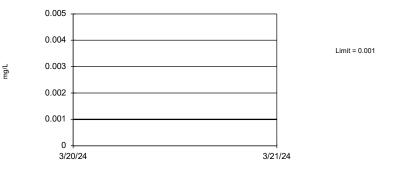
Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Tolerance Limit

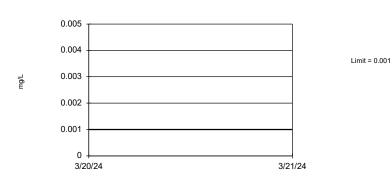

Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 90.82% coverage at alpha=0.01; 93.95% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.08974.

> Constituent: Arsenic Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 47 background values. 2.128% NDs. 90.82% coverage at alpha=0.01; 93.95% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.08974. Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

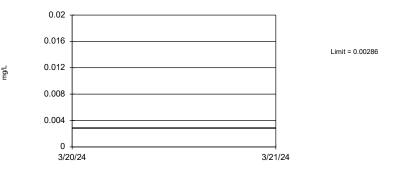

Tolerance Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 43 background values. 97.67% NDs. 90.04% coverage at alpha=0.01; 93.16% coverage at alpha=0.5; 98.24% coverage at alpha=0.5. Report alpha = 0.1102.

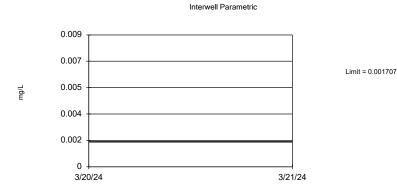
Tolerance Limit

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 47 background values. 97.87% NDs. 90.82% coverage at alpha=0.01; 93.95% coverage at alpha=0.5. Report alpha = 0.08974.


Constituent: Cadmium Analysis Run 5/2/2024 10:08 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

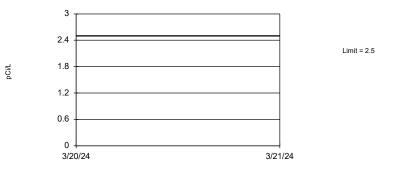
Tolerance Limit

Tolerance Limit

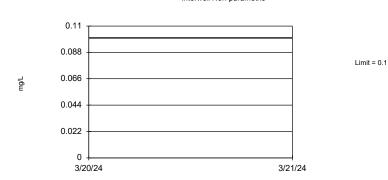

Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 45 background values. 91.11% NDs. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.09944.

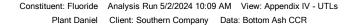
Constituent: Chromium Analysis Run 5/2/2024 10:09 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

95% coverage. Background Data Summary (based on square root transformation): Mean=0.02914, Std. Dev.=0.00585, n=47, 6.383% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9427, critical = 0.928. Report alpha = 0.05. Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG


Tolerance Limit

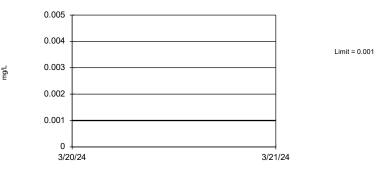
Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 47 background values. 4.255% NDs. 90.82% coverage at alpha=0.01; 93.95% coverage at alpha=0.5. Report alpha = 0.08974.

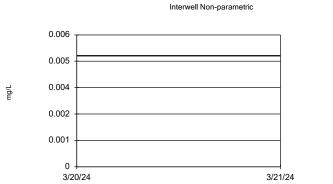
Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 49 background values. 83.67% NDs. 91.21% coverage at alpha=0.01; 93.95% coverage at alpha=0.5, Report alpha = 0.0809.



Tolerance Limit

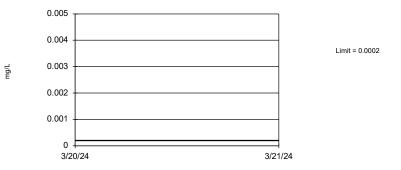
Tolerance Limit


Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.09944.

> Constituent: Lead Analysis Run 5/2/2024 10:09 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

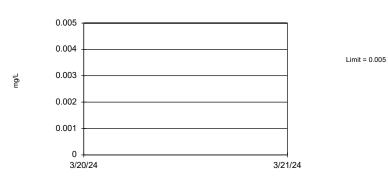


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 46 background values. 67.39% NDs. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.09447.

Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Tolerance Limit

Interwell Non-parametric

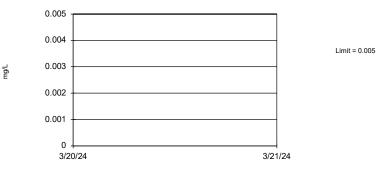


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 39 background values. 89.74% NDs. 88.87% coverage at alpha=0.01; 92.77% coverage at alpha=0.5; 98.24% coverage at alpha=0.5. Report alpha = 0.1353.

Limit = 0.00505

Sanitas¹⁴ v.10.0.15d Software licensed to Groundwater Sta

Tolerance Limit



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 43 background values. 90.7% NDs. 90.04% coverage at alpha=0.01; 93.16% coverage at alpha=0.05; 98.24% coverage at alpha=0.5. Report alpha = 0.1102.

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Tolerance Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 43 background values. 86.05% NDs. 90.04% coverage at alpha=0.01; 93.16% coverage at alpha=0.5. Report alpha = 0.1102.

Constituent: Molybdenum Analysis Run 5/2/2024 10:09 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Tolerance Limit

Constituent: Selenium Analysis Run 5/2/2024 10:09 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Limit = 0.001

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 43 background values. 95.35% NDs. 90.04% coverage at alpha=0.01; 93.16% coverage at alpha=0.5. Report alpha = 0.1102.

Constituent: Thallium Analysis Run 5/2/2024 10:09 AM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Groundwater Protection Standards

PLANT DANIEL BOTTOM ASH GWPS							
		CCR-Rule	Background				
Constituent Name	MCL	Specified	Limit	GWPS			
Antimony, Total (mg/L)	0.006		0.002	0.006			
Arsenic, Total (mg/L)	0.01		0.001	0.01			
Barium, Total (mg/L)	2		0.051	2			
Beryllium, Total (mg/L)	0.004		0.001	0.004			
Cadmium, Total (mg/L)	0.005		0.001	0.005			
Chromium, Total (mg/L)	0.1		0.0029	0.1			
Cobalt, Total (mg/L)	n/a	0.006	0.0017	0.006			
Combined Radium, Total (pCi/L)	5		2.5	5			
Fluoride, Total (mg/L)	4		0.1	4			
Lead, Total (mg/L)	0.015		0.001	0.015			
Lithium, Total (mg/L)	n/a	0.04	0.0051	0.04			
Mercury, Total (mg/L)	0.002		0.0002	0.002			
Molybdenum, Total (mg/L)	n/a	0.1	0.005	0.1			
Selenium, Total (mg/L)	0.05		0.005	0.05			
Thallium, Total (mg/L)	0.002		0.001	0.002			

*MCL = Maximum Contaminant Level

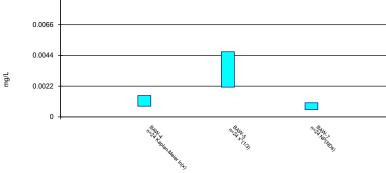
*CCR = Coal Combustion Residuals

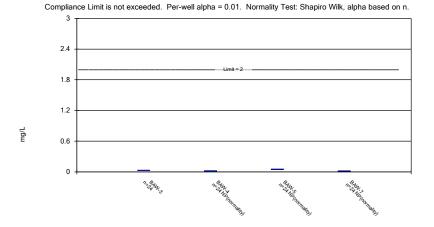
*GWPS = Groundwater Protection Standard

Confidence Interval Summary Table - Significant Results

		Plant Daniel	Client: Sout	thern Company	y Data:	Bottom Ash Co	CR Printed	5/2/202	4, 10:13 AM			
Constituent	Well	Upper Lim.	Lower Lim.	<u>Compliance</u>	<u>Sig. N</u>	Mean	Std. Dev.	<u>%ND</u>	<u>s ND Adj.</u>	Transform	<u>Alpha</u>	Method
Lithium (mg/L)	BAW-5	0.1837	0.1377	0.04	Yes 24	0.1535	0.05393	0	None	x^2	0.01	Param.

Confidence Interval Summary Table - All Results

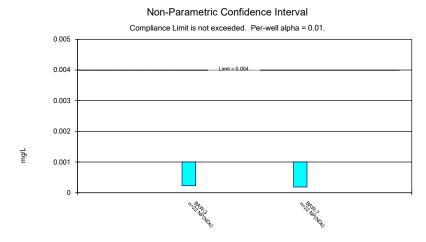

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:13 AM


		Plant Daniel	Client: Sout	hern Company	Data:	Bottom Ash CC	R Printed 5	/2/2024	, 10:13 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	<u>Sig. N</u>	Mean	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	BAW-4	0.001525	0.0007639	0.01	No 24	0.001516	0.001274	16.67	Kaplan-Meier	ln(x)	0.01	Param.
Arsenic (mg/L)	BAW-5	0.004662	0.002135	0.01	No 24	0.003876	0.003196	0	None	x^(1/3)	0.01	Param.
Arsenic (mg/L)	BAW-7	0.001	0.00052	0.01	No 24	0.0009592	0.0001384	91.67	None	No	0.01	NP (NDs)
Barium (mg/L)	BAW-3	0.03274	0.02393	2	No 24	0.02833	0.008638	0	None	No	0.01	Param.
Barium (mg/L)	BAW-4	0.0223	0.0091	2	No 24	0.0142	0.007611	0	None	No	0.01	NP (normality)
Barium (mg/L)	BAW-5	0.055	0.041	2	No 24	0.05227	0.01909	0	None	No	0.01	NP (normality)
Barium (mg/L)	BAW-7	0.02	0.0117	2	No 24	0.01873	0.01745	0	None	No	0.01	NP (normality)
Beryllium (mg/L)	BAW-3	0.001	0.000225	0.004	No 22	0.0009295	0.000228	90.91	None	No	0.01	NP (NDs)
Beryllium (mg/L)	BAW-7	0.001	0.000185	0.004	No 22	0.000963	0.0001738	95.45	None	No	0.01	NP (NDs)
Cadmium (mg/L)	BAW-3	0.0008494	0.0005588	0.005	No 24	0.0007041	0.0002848	4.167	None	No	0.01	Param.
Cadmium (mg/L)	BAW-5	0.001	0.000155	0.005	No 24	0.0009648	0.0001725	95.83	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-3	0.003	0.00165	0.1	No 23	0.002772	0.003566	86.96	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-4	0.002	0.0015	0.1	No 23	0.001917	0.0002289	86.96	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-5	0.0024	0.0012	0.1	No 23	0.002113	0.0006573	86.96	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-7	0.00206	0.002	0.1	No 23	0.002003	0.00001251	95.65	None	No	0.01	NP (NDs)
Cobalt (mg/L)	BAW-3	0.006845	0.005147	0.006	No 24	0.005996	0.001664	0	None	No	0.01	Param.
Cobalt (mg/L)	BAW-4	0.00144	0.00107	0.006	No 24	0.001255	0.0003628	0	None	No	0.01	Param.
Cobalt (mg/L)	BAW-5	0.000802	0.0005	0.006	No 24	0.000711	0.0005099	70.83		No	0.01	NP (NDs)
Cobalt (mg/L)	BAW-7	0.00112	0.00071	0.006	No 24	0.00119	0.0009895	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BAW-3	0.884	0.27	5	No 24	0.6381	0.6789		None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BAW-4	0.7165	0.1361	5	No 24	0.6056	0.7719	12.5	None	x^(1/3)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BAW-5	0.9408	0.4066	5	No 23	0.7426	0.5912	4.348		sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BAW-7	1.014	0.333	5	No 24	0.7977	0.7902	12.5	None	sqrt(x)	0.01	Param.
Fluoride (mg/L)	BAW-3	0.1	0.0537	4	No 25	0.09274	0.0204	88	None	No	0.01	NP (NDs)
Fluoride (mg/L)	BAW-4	0.0578	0.04	4	No 25	0.0572	0.0254	24	None	No	0.01	NP (normality)
Fluoride (mg/L)	BAW-5	0.07424	0.05336	4	No 25	0.06687	0.02828	4	None		0.01	Param.
Fluoride (mg/L)	BAW-5 BAW-7	0.07424	0.03330	4	No 25	0.09189	0.02828	4 88		ln(x) No	0.01	NP (NDs)
					No 23				None			. ,
Lead (mg/L)	BAW-3	0.001	0.000322	0.015		0.0007143	0.000375	60.87	None	No	0.01	NP (NDs)
Lead (mg/L)	BAW-4	0.001	0.00042	0.015	No 23	0.0008763	0.0002803	82.61		No	0.01	NP (NDs)
Lead (mg/L)	BAW-5	0.001	0.000152	0.015	No 23	0.0009631	0.0001768	95.65		No	0.01	NP (NDs)
Lead (mg/L)	BAW-7	0.001	0.000129	0.015	No 23	0.0009621	0.0001816	95.65		No	0.01	NP (NDs)
Lithium (mg/L)	BAW-3	0.005	0.00322	0.04	No 24	0.004271	0.001255		None	No	0.01	NP (NDs)
Lithium (mg/L)	BAW-4	0.02574	0.0176	0.04	No 24	0.02167	0.007973	0	None	No	0.01	Param.
Lithium (mg/L)	BAW-5	0.1837	0.1377	0.04	Yes 24	0.1535	0.05393	0	None	x^2	0.01	Param.
Lithium (mg/L)	BAW-7	0.005	0.0037	0.04	No 24	0.004956	0.002231	50	None	No	0.01	NP (normality)
Mercury (mg/L)	BAW-3	0.000497	0.000133	0.002	No 20	0.0002022	0.00007642	80	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-4	0.0002	0.000135	0.002	No 20	0.0001869	0.00003389		None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-5	0.0002	0.000134	0.002	No 20	0.0001904	0.00003111	90	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-7	0.000235	0.000151	0.002	No 20	0.00024	0.0002284	75	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BAW-4	0.005	0.00109	0.1	No 22	0.003809	0.001845	68.18	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BAW-5	0.003809	0.001686	0.1	No 22	0.006402	0.005683	27.27	Kaplan-Meier	x^(1/3)	0.01	Param.
Molybdenum (mg/L)	BAW-7	0.005	0.0038	0.1	No 22	0.004945	0.0002558	95.45	Kaplan-Meier	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-3	0.005	0.00079	0.05	No 22	0.003563	0.002157	68.18	None	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-5	0.005	0.00033	0.05	No 22	0.004788	0.0009956	95.45	None	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-7	0.005	0.0021	0.05	No 22	0.004013	0.001895	77.27	None	No	0.01	NP (NDs)
Thallium (mg/L)	BAW-3	0.001	0.000276	0.002	No 22	0.0008461	0.0003358	81.82	None	No	0.01	NP (NDs)
Thallium (mg/L)	BAW-7	0.001	0.000153	0.002	No 22	0.0009615	0.0001806	95.45	None	No	0.01	NP (NDs)

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

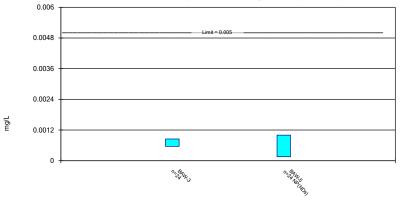
Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n. 0.011 Umit = 0.01 0.0088



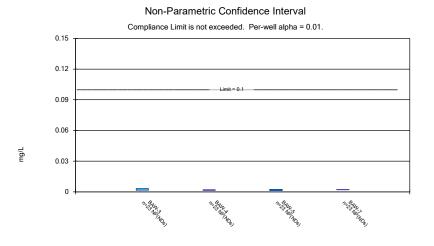
Parametric and Non-Parametric (NP) Confidence Interval

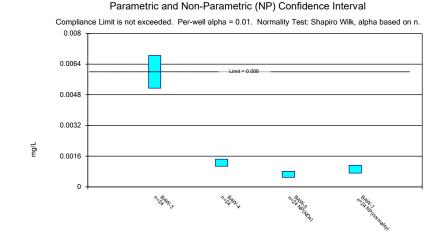
Constituent: Arsenic Analysis Run 5/2/2024 10:12 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Barium Analysis Run 5/2/2024 10:12 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

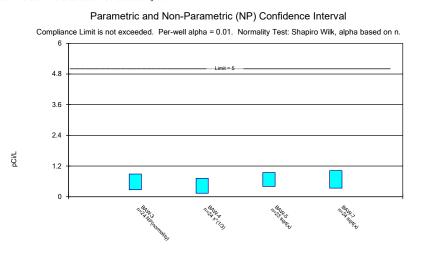
Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

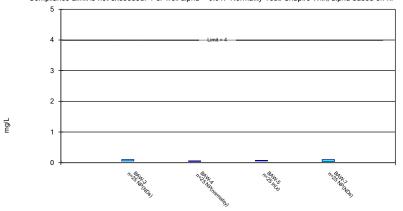

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Beryllium Analysis Run 5/2/2024 10:12 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

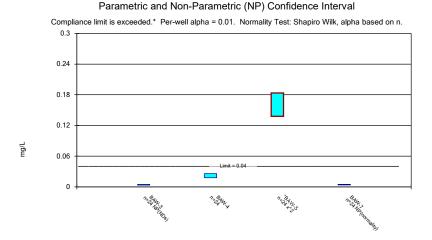


Constituent: Chromium Analysis Run 5/2/2024 10:12 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Constituent: Cobalt Analysis Run 5/2/2024 10:12 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

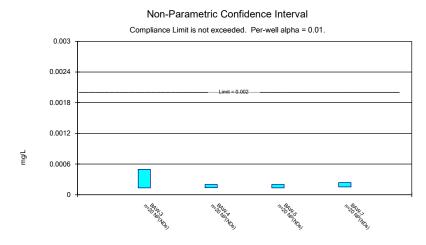
Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

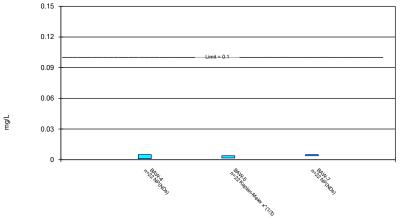
Constituent: Combined Radium 226 + 228 Analysis Run 5/2/2024 10:12 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR Constituent: Fluoride Analysis Run 5/2/2024 10:12 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

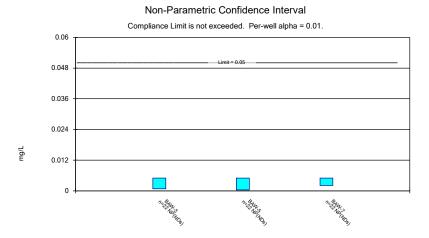
Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

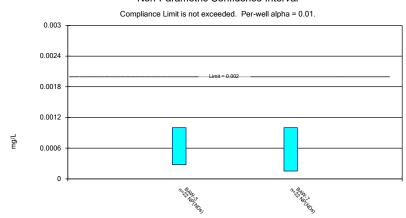

Non-Parametric Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01.

Constituent: Lead Analysis Run 5/2/2024 10:12 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Lithium Analysis Run 5/2/2024 10:12 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG


Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Sanitas[™] v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Constituent: Selenium Analysis Run 5/2/2024 10:12 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR Constituent: Thallium Analysis Run 5/2/2024 10:12 AM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Non-Parametric Confidence Interval

Constituent: Arsenic (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

-				
		BAW-4	BAW-5	BAW-7
	3/23/2016	0.00087 (J)	0.0033	<0.001
	5/17/2016	<0.0013	0.00089 (J)	<0.001
	7/12/2016			<0.001
	7/13/2016	0.00081 (J)	0.0039	
	9/13/2016		0.0039	<0.001
	9/14/2016	0.00069 (J)		
	11/19/2016	0.0013	0.0037	0.0005 (J)
	1/17/2017			<0.001
	1/18/2017	<0.0013	0.0016	
	3/22/2017			0.00052 (J)
	3/23/2017	0.00078 (J)	0.0017	
	5/24/2017	0.001 (J)	0.0021	<0.001
	3/28/2018	<0.0013	0.0011 (J)	
	3/29/2018			<0.001
	6/2/2018	0.00068 (J)	0.0017	<0.001
	11/8/2018	<0.0013		
	11/9/2018		0.0021	<0.001
	2/11/2019	0.000737 (J)	0.00232	
	2/12/2019			<0.001
	4/17/2019	0.000645 (J)	0.00218	
	4/18/2019			<0.001
	9/27/2019			<0.001
	9/30/2019	0.000821 (J)	0.00272	
	2/21/2020			<0.001
	2/22/2020	0.000837 (J)	0.00177	
	4/14/2020	0.000896 (J)	0.00177	<0.001
	10/30/2020	0.000529 (J)	0.0013	
	11/2/2020			<0.001
	3/17/2021	0.000454 (J)	0.00385	
	3/26/2021			<0.001
	10/5/2021	0.00259		<0.001
	10/6/2021		0.0125	
	3/16/2022	0.00411	0.0101	<0.001
	10/5/2022	0.00467		
	10/6/2022		0.0108	<0.001
	4/21/2023	0.00477	0.00683	<0.001
	10/24/2023			<0.001
	10/25/2023	0.00241	0.00575	
	3/20/2024		0.00515	
	3/21/2024	0.00159		<0.001
	Mean	0.001516	0.003876	0.0009592
	Std. Dev.	0.001274	0.003196	0.0001384
	Upper Lim.	0.001525	0.004662	0.001
	Lower Lim.	0.0007639	0.002135	0.00052

Constituent: Barium (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	0.013	0.011	0.044	0.013
5/17/2016		0.0085	0.055	0.012
5/18/2016	0.012			
7/12/2016				0.011
7/13/2016	0.016	0.0073	0.041	
9/13/2016			0.046	0.012
9/14/2016	0.018	0.0095		
11/19/2016	0.021	0.012	0.044	0.012
1/17/2017	0.029			0.014
1/18/2017		0.0096	0.045	
3/22/2017				0.012
3/23/2017	0.024	0.0093	0.038	
5/24/2017	0.022	0.0096	0.046	0.012
3/28/2018	0.026	0.0086	0.043	
3/29/2018				0.011
6/2/2018	0.029	0.0087	0.043	0.011
11/8/2018	0.028	0.0091		
11/9/2018			0.039	0.011
2/11/2019		0.00931	0.0388	
2/12/2019	0.0274			0.0102
4/17/2019	0.0263	0.00888	0.0378	
4/18/2019				0.0101
9/27/2019				0.0121
9/30/2019	0.0343	0.0103	0.0424	0.0117
2/21/2020	0.0304	0.0100	0.0450	0.0117
2/22/2020	0.0225	0.0108	0.0453	0.0124
4/14/2020 10/30/2020	0.0335 0.0349	0.00949 (J) 0.0116	0.0452 0.0428	0.0124
11/2/2020	0.0349	0.0110	0.0428	0.0117
3/17/2021		0.0224	0.0382	0.0117
3/26/2021	0.0253	0.0224	0.0302	0.0184
10/5/2021	0.0200	0.0283		0.02
10/6/2021	0.03	0.0200	0.0493	0.02
3/16/2022	0.037	0.0326	0.0688	0.0245
10/5/2022	0.0415	0.0248		
10/6/2022			0.0747	0.0937
4/20/2023	0.0369			
4/21/2023		0.0223	0.103	0.0355
10/24/2023				0.0274
10/25/2023	0.0427	0.0221	0.0883	
3/20/2024			0.0958	
3/21/2024	0.0418	0.0246		0.0307
Mean	0.02833	0.0142	0.05227	0.01873
Std. Dev.	0.008638	0.007611	0.01909	0.01745
Upper Lim.	0.03274	0.0223	0.055	0.02
Lower Lim.	0.02393	0.0091	0.041	0.0117

Constituent: Beryllium (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

	BAW-3	BAW-7
3/23/2016	<0.001	<0.001
5/17/2016		<0.001
5/18/2016	<0.001	
7/12/2016		<0.001
7/13/2016	<0.001	
9/13/2016		<0.001
9/14/2016	<0.001	
11/19/2016	<0.001	<0.001
1/17/2017	<0.001	<0.001
3/22/2017		<0.001
3/23/2017	<0.001	
5/24/2017	<0.001	<0.001
3/28/2018	<0.001	
3/29/2018		<0.001
11/8/2018	<0.001	
11/9/2018		<0.001
2/12/2019	<0.001	<0.001
4/17/2019	<0.001	
4/18/2019		<0.001
2/21/2020	<0.001	<0.001
4/14/2020	<0.001	<0.001
10/30/2020	<0.001	
11/2/2020		<0.001
3/26/2021	<0.001	<0.001
10/5/2021		0.000185 (J)
10/6/2021	<0.001	
3/16/2022	<0.001	<0.001
10/5/2022	<0.001	
10/6/2022		<0.001
4/20/2023	0.000225 (J)	
4/21/2023		<0.001
10/24/2023		<0.001
10/25/2023	0.000225 (J)	
3/21/2024	<0.001	<0.001
Mean	0.0009295	0.000963
Std. Dev.	0.000228	0.0001738
Upper Lim.	0.001	0.001
Lower Lim.	0.000225	0.000185

Constituent: Cadmium (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

	BAW-3	BAW-5
3/23/2016	0.00041 (J)	<0.001
5/17/2016		<0.001
5/18/2016	<0.0025	
7/13/2016	0.00087 (J)	<0.001
9/13/2016		<0.001
9/14/2016	0.00078 (J)	
11/19/2016	0.00054 (J)	<0.001
1/17/2017	0.00048 (J)	
1/18/2017		<0.001
3/23/2017	0.00059 (J)	<0.001
5/24/2017	0.00081 (J)	<0.001
3/28/2018	0.0008 (J)	<0.001
6/2/2018	0.001 (J)	<0.001
11/8/2018	0.00085 (J)	
11/9/2018		<0.001
2/11/2019		<0.001
2/12/2019	0.000877 (J)	
4/17/2019	0.000915 (J)	<0.001
9/30/2019	0.00112 (J)	0.000155 (J)
2/21/2020	0.000962 (J)	
2/22/2020		<0.001
4/14/2020	0.00107 (J)	<0.001
10/30/2020	0.00084 (J)	<0.001
3/17/2021		<0.001
3/26/2021	0.000615 (J)	
10/6/2021	0.000338 (J)	<0.001
3/16/2022	0.000252 (J)	<0.001
10/5/2022	0.000379 (J)	
10/6/2022		<0.001
4/20/2023	0.0004 (J)	
4/21/2023		<0.001
10/25/2023	0.00035 (J)	<0.001
3/20/2024		<0.001
3/21/2024	0.000401 (J)	
Mean	0.0007041	0.0009648
Std. Dev.	0.0002848	0.0001725
Upper Lim.	0.0008494	0.001
Lower Lim.	0.0005588	0.000155

Constituent: Chromium (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.002	0.0015 (J)	0.0012 (J)	<0.002
5/17/2016		<0.002	<0.002	<0.002
5/18/2016	<0.002			
7/12/2016				<0.002
7/13/2016	0.003	0.0015 (J)	0.0024 (J)	
9/13/2016			<0.002	<0.002
9/14/2016	<0.002	<0.002		
11/19/2016	<0.002	0.0011 (J)	<0.002	<0.002
1/17/2017	<0.002			<0.002
1/18/2017		<0.002	<0.002	
3/22/2017				<0.002
3/23/2017	<0.002	<0.002	<0.002	
5/24/2017	<0.002	<0.002	<0.002	<0.002
3/28/2018	<0.002	<0.002	0.005	
3/29/2018				<0.002
6/2/2018	<0.002	<0.002	<0.002	<0.002
11/8/2018	<0.002	<0.002		
11/9/2018			<0.002	<0.002
2/11/2019		<0.002	<0.002	
2/12/2019	0.00165 (J)			<0.002
4/17/2019	<0.002	<0.002	<0.002	
4/18/2019				<0.002
9/27/2019				0.00206 (J)
9/30/2019	<0.002	<0.002	<0.002	
2/21/2020	<0.002			<0.002
2/22/2020		<0.002	<0.002	
10/30/2020	<0.002	<0.002	<0.002	
11/2/2020				<0.002
3/17/2021		<0.002	<0.002	
3/26/2021	<0.002			<0.002
10/5/2021		<0.002		<0.002
10/6/2021	<0.002		<0.002	
3/16/2022	<0.002	<0.002	<0.002	<0.002
10/5/2022	0.0191	<0.002		
10/6/2022			<0.002	<0.002
4/20/2023	<0.002			
4/21/2023		<0.002	<0.002	<0.002
10/24/2023				<0.002
10/25/2023	<0.002	<0.002	<0.002	
3/20/2024			<0.002	
3/21/2024	<0.002	<0.002		<0.002
Mean	0.002772	0.001917	0.002113	0.002003
Std. Dev.	0.003566	0.0002289	0.0006573	1.251E-05
Upper Lim.	0.003	0.002	0.0024	0.00206
Lower Lim.	0.00165	0.0015	0.0012	0.002

Constituent: Cobalt (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

			Plant Dan	iel Client: Southern Company	Data: Bottom Ash CCR		
	BAW-3	BAW-4	BAW-5	BAW-7			
3/23/2016	0.0055	0.00094 (J)	<0.0005	0.0011 (J)			
5/17/2016		0.0007 (J)	<0.0005	0.001 (J)			
5/18/2016	0.0059						
7/12/2016				0.00091 (J)			
7/13/2016	0.0048	0.0016 (J)	0.00042 (J)				
9/13/2016			<0.0005	0.001 (J)			
9/14/2016	0.0063	0.0011 (J)					
11/19/2016	0.0056	0.0012 (J)	<0.0005	0.00083 (J)			
1/17/2017	0.0046			0.00091 (J)			
1/18/2017		0.0011 (J)	<0.0005				
3/22/2017				0.00098 (J)			
3/23/2017	0.0049	0.0011 (J)	<0.0005				
5/24/2017	0.0052	0.0012 (J)	<0.0005	0.00098 (J)			
3/28/2018	0.0063	0.00095 (J)	<0.0005				
3/29/2018				0.00063 (J)			
6/2/2018	0.0068	0.0012 (J)	<0.0005	0.00087 (J)			
11/8/2018	0.0068	0.0011 (J)					
11/9/2018			<0.0005	0.00076 (J)			
2/11/2019		0.00093 (J)	<0.0005				
2/12/2019	0.00552			0.000661 (J)			
4/17/2019	0.00603	0.00116 (J)	<0.0005				
4/18/2019				0.000705 (J)			
9/27/2019				0.00071 (J)			
9/30/2019	0.0062	0.001 (J)	<0.0005				
2/21/2020	0.00576			0.000634 (J)			
2/22/2020		0.000907 (J)	<0.0005				
4/14/2020	0.00633	0.00105 (J)	<0.0005	0.000684 (J)			
10/30/2020	0.00657	0.00102 (J)	<0.0005				
11/2/2020				0.000729 (J)			
3/17/2021		0.00208	<0.0005				
3/26/2021	0.00339			0.000995			
10/5/2021		0.00187		0.00112			
10/6/2021	0.00336		0.000802				
3/16/2022	0.00289	0.00182	0.000967	0.00141			
10/5/2022	0.00821	0.00121	0.00140	0.00540			
10/6/2022	0.0000		0.00143	0.00548			
4/20/2023	0.0083	0.00140	0.00075	0.00010			
4/21/2023		0.00142		0.00216			
10/24/2023	0.0000	0.00187		0.00143			
10/25/2023	0.0092	0.00187	0.000885				
3/20/2024 3/21/2024	0.00945	0.0016	0.00131	0.00186			
	0.00945 0.005996	0.0016 0.001255		0.00186 0.00119			
Mean Std. Dev.	0.005996	0.001255		0.000119			
Upper Lim.	0.001864	0.0003628		0.0009895			
Lower Lim.	0.005147	0.00144		0.00071			
LUWEI LIIII.	0.000147	0.00107	0.0000	0.00071			

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<5	<5	0.549	<5
5/17/2016		<5	0.551	<5
5/18/2016	<5			
7/12/2016				0.165 (U)
7/13/2016	0.27 (U)	0.0365 (U)	0.859	
9/13/2016			0.367 (U)	0.341 (U)
9/14/2016	-0.0909 (U)	0.3 (U)		
11/19/2016	0.416	<5 (U)	<5 (U)	<5 (U)
1/17/2017	0.412 (U)			0.124 (U)
1/18/2017		0.235 (U)	0.289 (U)	
3/22/2017				0.0719 (U)
3/23/2017	0.0761 (U)	0.168 (U)	0.554	
5/24/2017	0.0415 (U)	-0.0607 (U)	0.831	0.441
3/28/2018	0.398	0.42	0.458	
3/29/2018				0.731
6/2/2018	-0.253 (U)	0.0844 (U)	0.226 (U)	0.303 (U)
11/8/2018	0.343 (U)	0.367 (U)		
11/9/2018			0.298 (U)	0.00226 (U)
2/11/2019		0.0402 (U)	0.15 (U)	
2/12/2019	0.581			0.094 (U)
4/17/2019	0.646	0.493	0.326 (U)	
4/18/2019				0.48
9/27/2019				0.497
9/30/2019	1	0.404		
2/21/2020	0.126 (U)			0.375
2/22/2020		0.53	0.47	
4/14/2020	0.338	0.0408 (U)	0.376 (U)	0.329 (U)
10/30/2020	0.485	0.344	0.528	
11/2/2020				0.535
3/17/2021		0.312 (U)	0.0889 (U)	
3/26/2021	0.78			0.813
10/5/2021		1.06		0.814
10/6/2021	0.503		0.931	
3/16/2022	0.286 (U)	0.314 (U)	1.39	1.39
10/21/2022	1.29	0.562 (U)	1.36	2.03
4/20/2023	0.884			
4/21/2023		0.158 (U)	1.73	0.802
10/24/2023				0.7
10/25/2023	0.857	0.472 (U)	1.49	
3/20/2024			0.758	
3/21/2024	0.926	0.754		0.606
Mean	0.6381	0.6056	0.7426	0.7977
Std. Dev.	0.6789	0.7719	0.5912	0.7902
Upper Lim.	0.884	0.7165	0.9408	1.014
Lower Lim.	0.27	0.1361	0.4066	0.333

Constituent: Fluoride (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.1	0.04 (J)	0.06 (J)	<0.1
5/17/2016		0.04 (J)	0.07 (J)	<0.1
5/18/2016	<0.1			
7/12/2016				<0.1
7/13/2016	<0.1	0.05 (J)	0.08 (J)	
9/13/2016			0.06 (J)	<0.1
9/14/2016	<0.1	0.04 (J)		
11/19/2016	<0.1	0.04 (J)	0.06 (J)	<0.1
1/17/2017	<0.1			<0.1
1/18/2017		<0.1	0.05 (J)	
3/22/2017				<0.1
3/23/2017	<0.1	<0.1	0.05 (J)	
5/24/2017	<0.1	0.04 (J)	0.06 (J)	<0.1 (D)
10/16/2017	<0.1	<0.1	0.06 (J)	<0.1
3/28/2018	<0.1	0.04 (J)	0.06 (J)	
3/29/2018				<0.1
6/2/2018	<0.1	0.05 (J)	0.06 (J)	<0.1
11/8/2018	<0.1	0.05 (J)		
11/9/2018			0.06 (J)	<0.1
2/11/2019		<0.1	0.0368 (J)	
2/12/2019	<0.1			<0.1
4/17/2019	<0.1	0.033 (J)	0.0421 (J)	
4/18/2019				<0.1
9/27/2019				<0.1
9/30/2019	<0.1	<0.1	0.045 (J)	
2/21/2020	<0.1			<0.1
2/22/2020		0.0317 (J)	0.0434 (J)	
4/14/2020	0.034 (J)	0.0508 (J)	0.059 (J)	0.0415 (J)
10/30/2020	<0.1	<0.1	<0.1	
11/2/2020				<0.1
3/17/2021		0.0544 (J)	0.0575 (J)	
3/26/2021	<0.1			<0.1
10/5/2021		0.0505 (J)		<0.1
10/6/2021	<0.1		0.0725 (J)	
3/16/2022	0.0307 (J)	0.0462 (J)	0.176	0.0266 (J)
10/5/2022	<0.1	0.0322 (J)		
10/6/2022			0.0972 (J)	<0.1
4/20/2023	<0.1			
4/21/2023		0.0441 (J)	0.0665 (J)	<0.1
10/24/2023				<0.1
10/25/2023	<0.1	0.0393 (J)	0.0858 (J)	
3/20/2024			0.11	
3/21/2024	0.0537 (J)	0.0578 (J)		0.0292 (J)
Mean	0.09274	0.0572	0.06687	0.09189
Std. Dev.	0.0204	0.0254	0.02828	0.02253
Upper Lim.	0.1	0.0578	0.07424	0.1
Lower Lim.	0.0537	0.04	0.05336	0.0415

Constituent: Lead (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.001	0.00039 (J)	<0.001	<0.001
5/17/2016		<0.001	<0.001	<0.001
5/18/2016	<0.001			
7/12/2016				<0.001
7/13/2016	<0.001	<0.001	<0.001	
9/13/2016			<0.001	<0.001
9/14/2016	0.00056 (J)	<0.001		
11/19/2016	<0.001	0.00042 (J)	<0.001	<0.001
1/17/2017	<0.001			<0.001
1/18/2017		<0.001	<0.001	
3/22/2017				<0.001
3/23/2017	0.00038 (J)	<0.001	<0.001	
5/24/2017	0.00036 (J)	<0.001	<0.001	<0.001
3/28/2018	<0.001	<0.001	<0.001	
3/29/2018				<0.001
11/8/2018	<0.001	<0.001		
11/9/2018			<0.001	<0.001
2/11/2019		<0.001	<0.001	
2/12/2019	0.000139 (J)			<0.001
4/17/2019	<0.001	<0.001	<0.001	
4/18/2019				<0.001
9/27/2019				0.000129 (J)
9/30/2019	0.000322 (J)	0.000191 (J)	0.000152 (J)	
2/21/2020	0.00015 (J)			<0.001
2/22/2020		<0.001	<0.001	
4/14/2020	0.000236 (J)	<0.001	<0.001	<0.001
10/30/2020	0.000136 (J)	<0.001	<0.001	
11/2/2020				<0.001
3/17/2021		0.000153 (J)	<0.001	
3/26/2021	0.000145 (J)			<0.001
10/5/2021		<0.001		<0.001
10/6/2021	<0.001		<0.001	
3/16/2022	<0.001	<0.001	<0.001	<0.001
10/5/2022	<0.001	<0.001		
10/6/2022			<0.001	<0.001
4/20/2023	<0.001			
4/21/2023		<0.001	<0.001	<0.001
10/24/2023				<0.001
10/25/2023	<0.001	<0.001	<0.001	
3/20/2024			<0.001	
3/21/2024	<0.001	<0.001		<0.001
Mean	0.0007143	0.0008763	0.0009631	0.0009621
Std. Dev.	0.000375	0.0002803	0.0001768	0.0001816
Upper Lim.	0.001	0.001	0.001	0.001
Lower Lim.	0.000322	0.00042	0.000152	0.000129

Constituent: Lithium (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.005	0.044	0.17	<0.005
5/17/2016		0.028	0.2	<0.005
5/18/2016	<0.005			
7/12/2016				<0.005
7/13/2016	<0.005	0.026	0.17	
9/13/2016			0.17	<0.005
9/14/2016	<0.005	0.026		
11/19/2016	<0.005	0.026	0.18	0.0035 (J)
1/17/2017	<0.005	0.020	0.10	<0.005
1/18/2017	-0.000	0.027	0.2	-0.000
3/22/2017		0.027	0.2	<0.005
3/23/2017	<0.005	0.024	0.19	-0.000
5/24/2017	<0.005	0.027	0.21	<0.005
3/28/2018	0.0023 (J)	0.021	0.23	-0.000
3/29/2018	0.0023 (3)	0.021	0.23	0.0026 (1)
	0.002 (1)	0.000	0.19	0.0026 (J)
6/2/2018	0.002 (J)	0.022	0.19	0.0029 (J)
11/8/2018	0.0024 (J)	0.025	0.10	0.0007 (1)
11/9/2018		0.0000	0.18	0.0027 (J)
2/11/2019	.0.005	0.0229	0.161	
2/12/2019	<0.005			<0.005
4/17/2019	0.00197 (J)	0.0236	0.174	
4/18/2019				0.00238 (J)
9/27/2019				0.00375 (J)
9/30/2019	0.00687	0.0249	0.166	
2/21/2020	<0.005			<0.005
2/22/2020		0.0211	0.169	
4/14/2020	<0.005	0.0224	0.192	<0.005
10/30/2020	<0.005	0.0267	0.194	
11/2/2020				<0.005
3/17/2021		0.0174	0.12	
3/26/2021	<0.005			<0.005
10/5/2021		0.0127		0.0045 (J)
10/6/2021	<0.005		0.0994	
3/16/2022	0.0038 (J)	0.0112	0.0629	0.00437 (J)
10/5/2022	0.00322 (J)	0.00676		
10/6/2022			0.0534	0.0123
4/20/2023	0.00309 (J)			
4/21/2023		0.0091	0.0564	0.0107
10/24/2023				0.00555
10/25/2023	0.0033 (J)	0.0123	0.0679	
3/20/2024			0.0786	
3/21/2024	0.00355 (J)	0.013		0.0037 (J)
Mean	0.004271	0.02167	0.1535	0.004956
Std. Dev.	0.001255	0.007973	0.05393	0.002231
Upper Lim.	0.005	0.02574	0.1837	0.005
Lower Lim.	0.00322	0.0176	0.1377	0.0037

Constituent: Mercury (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

			Plant I	Daniel Client: Southern Company Data: Bottom Ash CCR
	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	8.4E-05 (JB)	7.3E-05 (JB)	7.4E-05 (JB)	7.1E-05 (JB)
5/17/2016		<0.0002	<0.0002	<0.0002
5/18/2016	<0.0002			
7/12/2016				<0.0002
7/13/2016	<0.0002	<0.0002	<0.0002	
9/13/2016			<0.0002	<0.0002
9/14/2016	<0.0002	<0.0002		
11/19/2016	<0.0002	<0.0002	<0.0002	<0.0002
1/17/2017	<0.0002			<0.0002
1/18/2017		<0.0002	<0.0002	
3/22/2017				<0.0002
3/23/2017	0.00013 (J)	0.00013 (J)	<0.0002	
5/24/2017	<0.0002	<0.0002	<0.0002	<0.0002
3/28/2018	<0.0002	<0.0002	<0.0002	
3/29/2018				<0.0002
2/11/2019		<0.0002	<0.0002	
2/12/2019	<0.0002			<0.0002
4/17/2019	<0.0002	<0.0002	<0.0002	
4/18/2019				<0.0002
2/21/2020	<0.0002			<0.0002
2/22/2020		<0.0002	<0.0002	
10/30/2020	0.000497	<0.0002	<0.0002	
11/2/2020				<0.0002
3/17/2021		<0.0002	<0.0002	
3/26/2021	<0.0002			0.000235
10/5/2021		<0.0002		0.000151 (J)
10/6/2021	<0.0002		<0.0002	
3/16/2022	<0.0002	<0.0002	<0.0002	0.0012
10/5/2022	<0.0002	<0.0002		
10/6/2022			<0.0002	<0.0002
4/20/2023	<0.0002			
4/21/2023		<0.0002	<0.0002	<0.0002
10/24/2023				<0.0002
10/25/2023	<0.0002	<0.0002	<0.0002	
3/20/2024			0.000134 (J)	
3/21/2024	0.000133 (J)	0.000135 (J)		0.000143 (J)
Mean	0.0002022	0.0001869	0.0001904	0.00024
Std. Dev.	7.642E-05	3.389E-05	3.111E-05	0.0002284
Upper Lim.	0.000497	0.0002	0.0002	0.000235
Lower Lim.	0.000133	0.000135	0.000134	0.000151

Constituent: Molybdenum (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

	BAW-4	BAW-5	BAW-7
3/23/2016	<0.005	0.0026 (J)	<0.005
5/17/2016	<0.005	0.0011 (J)	<0.005
7/12/2016			<0.005
7/13/2016	<0.005	0.0079 (J)	
9/13/2016		0.0038 (J)	<0.005
9/14/2016	<0.005		
11/19/2016	<0.005	0.0014 (J)	<0.005
1/17/2017			<0.005
1/18/2017	<0.005	0.001 (J)	
3/22/2017			0.0038 (J)
3/23/2017	<0.005	<0.015	
5/24/2017	<0.005	0.0014 (J)	<0.005
3/28/2018	<0.005	<0.015	
3/29/2018			<0.005
11/8/2018	<0.005		
11/9/2018		<0.015	<0.005
2/11/2019	<0.005	<0.015	
2/12/2019			<0.005
4/17/2019	<0.005	<0.015	
4/18/2019			<0.005
2/21/2020			<0.005
2/22/2020	0.000616 (J)	0.000627 (J)	
4/14/2020	<0.005	0.000747 (J)	<0.005
10/30/2020	<0.005	<0.015	
11/2/2020			<0.005
3/17/2021	0.0032 (J)	0.00328 (J)	
3/26/2021			<0.005
10/5/2021	0.00109 (J)		<0.005
10/6/2021		0.00364 (J)	
3/16/2022	0.000916 (J)	0.00533	<0.005
10/5/2022	0.000939 (J)		
10/6/2022		0.00424 (J)	<0.005
4/21/2023	0.00109 (J)	0.00651	<0.005
10/24/2023			<0.005
10/25/2023	<0.005	0.0036 (J)	
3/20/2024		0.00366 (J)	
3/21/2024	0.000937 (J)		<0.005
Mean	0.003809	0.006402	0.004945
Std. Dev.	0.001845	0.005683	0.0002558
Upper Lim.	0.005	0.003809	0.005
Lower Lim.	0.00109	0.001686	0.0038

Constituent: Selenium (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

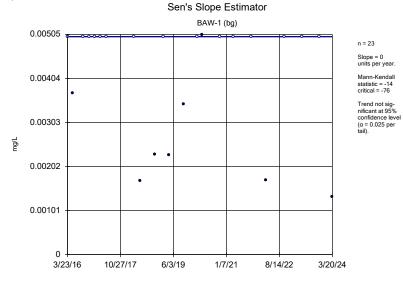
-				
		BAW-3	BAW-5	BAW-7
	3/23/2016	0.00033 (J)	<0.005	<0.005
	5/17/2016		<0.005	0.00026 (J)
	5/18/2016	<0.005		
	7/12/2016			<0.005
	7/13/2016	0.00041 (J)	<0.005	
	9/13/2016		<0.005	0.00031 (J)
	9/14/2016	0.00079 (J)		
	11/19/2016	<0.005	<0.005	<0.005
	1/17/2017	<0.005		<0.005
	1/18/2017		<0.005	
	3/22/2017			0.0021
	3/23/2017	<0.005	<0.005	
	5/24/2017	0.00028 (J)	0.00033 (J)	0.00026 (J)
	3/28/2018	0.00038 (J)	<0.005	
	3/29/2018			0.00036 (J)
	6/2/2018	0.00031 (J)	<0.005	<0.005
	11/8/2018	0.00088 (J)		
	11/9/2018		<0.005	<0.005
	2/11/2019		<0.005	
	2/12/2019	<0.005		<0.005
	4/17/2019	<0.005	<0.005	
	4/18/2019			<0.005
	2/21/2020	<0.005		<0.005
	2/22/2020		<0.005	
	10/30/2020	<0.005	<0.005	
	11/2/2020			<0.005
	3/17/2021		<0.005	
	3/26/2021	<0.005		<0.005
	10/5/2021			<0.005
	10/6/2021	<0.005	<0.005	
	3/16/2022	<0.005	<0.005	<0.005
	10/5/2022	<0.005		
	10/6/2022		<0.005	<0.005
	4/20/2023	<0.005		
	4/21/2023		<0.005	<0.005
	10/24/2023			<0.005
	10/25/2023	<0.005	<0.005	
	3/20/2024		<0.005	
	3/21/2024	<0.005		<0.005
	Mean	0.003563	0.004788	0.004013
	Std. Dev.	0.002157	0.0009956	0.001895
	Upper Lim.	0.005	0.005	0.005
	Lower Lim.	0.00079	0.00033	0.0021

Constituent: Thallium (mg/L) Analysis Run 5/2/2024 10:13 AM View: Confidence Intervals

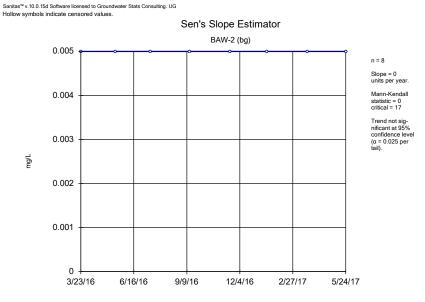
	BAW-3	BAW-7
3/23/2016	<0.001	<0.001
5/17/2016		<0.001
5/18/2016	<0.001	
7/12/2016		<0.001
7/13/2016	<0.001	
9/13/2016		<0.001
9/14/2016	9.5E-05 (J)	
11/19/2016	<0.001	<0.001
1/17/2017	<0.001	<0.001
3/22/2017		<0.001
3/23/2017	<0.001	
5/24/2017	<0.001	<0.001
3/28/2018	<0.001	
3/29/2018		<0.001
11/8/2018	8.5E-05 (J)	
11/9/2018		<0.001
2/12/2019	<0.001	<0.001
4/17/2019	<0.001	
4/18/2019		<0.001
2/21/2020	0.000276 (J)	<0.001
4/14/2020	0.000158 (J)	<0.001
10/30/2020	<0.001	
11/2/2020		<0.001
3/26/2021	<0.001	<0.001
10/5/2021		0.000153 (J)
10/6/2021	<0.001	
3/16/2022	<0.001	<0.001
10/5/2022	<0.001	
10/6/2022		<0.001
4/20/2023	<0.001	
4/21/2023		<0.001
10/24/2023		<0.001
10/25/2023	<0.001	
3/21/2024	<0.001	<0.001
Mean	0.0008461	0.0009615
Std. Dev.	0.0003358	0.0001806
Upper Lim.	0.001	0.001
Lower Lim.	0.000276	0.000153

Trend Tests - Confidence Interval Exceedances

Appendix IV Trend Tests - Confidence Interval Exceedances - Significant Results

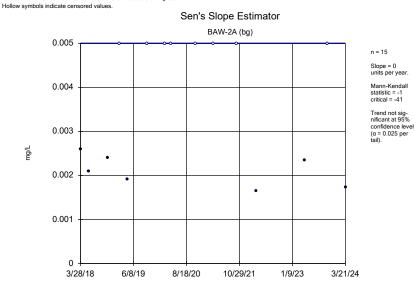

	Plant Daniel	Client: Southern Company	Data: Bottom Ash CCR		Printed 5/2/2024, 10:16 AM						
Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Lithium (mg/L)	BAW-5	-0.01541	-126	-81	Yes	24	0	n/a	n/a	0.05	NP

Appendix IV Trend Tests - Confidence Interval Exceedances - All Results

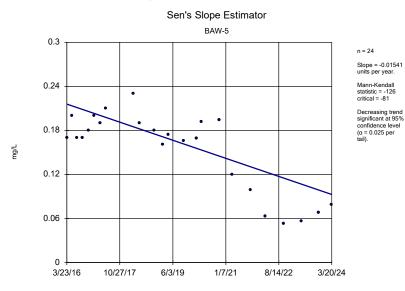

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 5/2/2024, 10:16 AM

Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	N	<u>%NDs</u>	Normality	<u>Xform</u>	Alpha	Method
Lithium (mg/L)	BAW-1 (bg)	0	-14	-76	No	23	65.22	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-2 (bg)	0	0	17	No	8	100	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-2A (bg)	0	-1	-41	No	15	53.33	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-5	-0.01541	-126	-81	Yes	24	0	n/a	n/a	0.05	NP

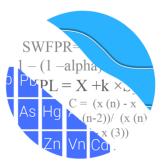
Sanitas^{tee} v.10.0.15d Software licensed to Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Lithium Analysis Run 5/2/2024 10:15 AM View: Appendix IV Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Constituent: Lithium Analysis Run 5/2/2024 10:15 AM View: Appendix IV Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG


Constituent: Lithium Analysis Run 5/2/2024 10:15 AM View: Appendix IV Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.15d Software licensed to Groundwater Stats Consulting. UG

Constituent: Lithium Analysis Run 5/2/2024 10:15 AM View: Appendix IV Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

GROUNDWATER STATS CONSULTING

December 4, 2024

Southern Company Services Attn: Mr. Trey Singleton 3535 Colonnade Parkway Birmingham, AL 35243

Re: Plant Daniel Bottom Ash Pond 2024 Annual Statistical Analysis – October 2024 Sample Event

Dear Mr. Singleton,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of groundwater data for the October 2024 Groundwater Detection and Assessment Monitoring report for Mississippi Power Company's Plant Daniel Bottom Ash Pond. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (CCR Rule, 2015) as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at Daniel Bottom Ash Pond for the CCR program in 2016. The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient wells: BAW-1, BAW-2, and BAW-2A
- **Downgradient wells:** BAW-3, BAW-4, BAW-5, and BAW-7
- **Piezometers:** PZ-8 and PZ-9

Upgradient well BAW-2 was last sampled in October 2017 and has since been abandoned; however, data from this well are included in construction of interwell prediction limits and upper tolerance limits to represent historical groundwater quality upgradient of the ash pond. Replacement upgradient well BAW-2A was first sampled in March 2018 and has since been sampled to supplement existing upgradient data for well BAW-2. Piezometers PZ-8 and PZ-9 were first sampled in October 2024. These wells are included in time series

1

and box plots, but will not be evaluated with confidence intervals for Appendix IV constituents until a minimum of 4 samples are available.

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Andrew Collins, Project Manager for Groundwater Stats Consulting.

The CCR program monitors the constituents listed below. The terms "parameters" and "constituents" are used interchangeably.

- **Appendix III** (Detection Monitoring) boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)
- Appendix IV (Assessment Monitoring) antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A list of Appendix IV downgradient well/constituent pairs containing 100% non-detects follow this letter. For all constituents, a substitution of the most recent reporting limit is used for non-detect data. This generally gives the most conservative limit in each case.

Time series plots for Appendix III and IV parameters are provided for all wells and are used to evaluate concentrations over time. Additionally, box plots are included for all constituents at upgradient and downgradient wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graph. A summary of these values follows this letter. The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

During the previous screening, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods are recommended. Power curves were provided with the screening to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below.

Summary of Statistical Methods

Based on the evaluation for federal regulatory requirements, the following methods were selected for Appendix III constituents:

• Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS

The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. Parametric prediction limits (or tolerance limits or confidence intervals as applicable) are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric prediction limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric prediction limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The following approaches are used for handling non-detects (USEPA, 2009):

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data for parametric limits. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data following each sampling event after careful screening for any new outliers. In some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening Conducted in October 2017

Outlier Analysis

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits. No suspected outliers were observed in any of the proposed background data at upgradient wells. When any values are identified as outliers, the measurements are plotted in a lighter font on the time series graph.

<u>Seasonality</u>

No seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Test Evaluation

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed a couple statistically significant decreasing and increasing trends. All trends noted were relatively low in magnitude when compared to

average concentrations; therefore, no adjustments were made to any of the data sets at that time.

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA showed no variation for calcium, chloride, pH, sulfate, and TDS, making these parameters eligible for interwell methods. Boron and fluoride contained 100% non-detects and, therefore, could not be tested with the ANOVA. These parameters are also eligible for interwell methods since no variation is present. A summary table of the ANOVA results was included with the October 2017 screening.

Statistical Analysis of Appendix III Parameters – October 2024

Prior to constructing interwell prediction limits, data through the October 2024 sample event at upgradient wells were re-evaluated for outliers using visual screening. No additional outliers were suspected or flagged during this analysis. Tukey's outlier test had previously identified an outlier for calcium at well BAW-2 during the November 2019 statistical analysis; however, a similar measurement exists in replacement upgradient well BAW-2A. Therefore, the measurement for calcium is not flagged as an outlier and no outliers are flagged for Appendix III parameters.

Interwell Prediction Limits

Interwell prediction limits, combined with a 1-of-2 resample strategy, were established for each of the Appendix III parameters using pooled historical upgradient well data through October 2024. The reported measurements at downgradient wells for the October 2024 sample event were compared to the interwell prediction limits to determine whether initial exceedances are present.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e., impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary. Complete graphical results of the prediction limits may be found following this letter. Exceedances were identified for the following well/constituent pairs:

- Boron: BAW-5
- Calcium: BAW-4 and BAW-5
- pH: BAW-3 (lower limit) and BAW-5 (upper limit)
- Sulfate: BAW-5
- TDS: BAW-5

Trend Test Evaluation

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test at the 99% confidence level to determine whether concentrations are statistically increasing, decreasing, or stable. Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. The existence of similar trends in both upgradient and downgradient wells is an indication of variability in groundwater that is assumed to be unrelated to practices at the site. Statistically significant trends were identified for the following well/constituent pairs:

Increasing:

- Calcium: BAW-4
- Sulfate: BAW-2A (upgradient)

Decreasing:

- Calcium: BAW-2 (upgradient)
- pH: BAW-2 (upgradient), BAW-3, and BAW-5
- Sulfate: BAW-1 (upgradient)

As mentioned above, upgradient well BAW-2 was abandoned but data from this well are still used for constructing interwell statistical limits.

Statistical Methods – Appendix IV Parameters

Appendix IV parameters are evaluated by statistically comparing the mean of each downgradient well/constituent pair against corresponding Groundwater Protection Standards (GWPS). The GWPS may be either regulatory (MCL or CCR rule-specified limits) or site-specific limits that are based on upgradient groundwater quality. Site-specific background limits are determined using upper tolerance limits, and the comparison of downgradient means or medians to GWPS is performed using confidence intervals. The methods are described below.

Evaluation of Appendix IV Parameters – October 2024

For Appendix IV parameters, confidence intervals for each downgradient well/constituent pair were compared against corresponding Groundwater Protection Standards (GWPS). GWPS were developed as described below. Well/constituent pairs that have 100% nondetects do not require analysis.

Data from upgradient wells for Appendix IV parameters are reassessed for outliers during each analysis. No additional values were flagged during this analysis. Tukey's outlier test had previously identified an outlier for lithium at upgradient well BAW-1 during the November 2019 statistical analysis, and this value remains flagged. A summary of flagged outliers follows this report.

Interwell Upper Tolerance Limits

Parametric upper tolerance limits were used to calculate background limits from pooled upgradient well data through October 2024 when data followed a normal distribution for Appendix IV parameters with a target of 95% confidence and 95% coverage to determine background limits. When data contained greater than 50% non-detects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were constructed. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples.

Groundwater Protection Standards

The interwell upper tolerance limits were compared to the Maximum Contaminant Levels (MCLs), CCR Rule-Specified levels, and background limits in the GWPS table following this letter to determine the highest limit for use as the GWPS in the Confidence Interval comparisons.

Confidence Intervals

Confidence intervals were then constructed on downgradient wells using all data through October 2024 for each of the Appendix IV parameters. The Sanitas software was used to calculate the confidence intervals, either parametric or nonparametric, as appropriate. The lower confidence limit, which is constructed with 99% confidence for parametric confidence intervals, is compared to the GWPS prepared as described above. The confidence level associated with nonparametric confidence intervals is dependent upon the number samples available. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. Complete graphical results of the confidence intervals follow this letter. An exceedance was identified for the following well/constituent pair:

• Lithium: BAW-5

Trend Test Evaluation – Appendix IV

When confidence interval exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable at the 95% confidence level. Utilizing the 95% confidence level for trend tests readily identifies significant trends and is more sensitive than the 99% confidence level without drastically increasing the false negative rate. Upgradient wells are included in the trend analyses for all parameters found to exceed their confidence intervals in downgradient wells. When similar patterns exist upgradient of the site, it is an indication of variability in groundwater which may be unrelated to practices at the site. Statistically significant trends were identified for the following well/constituent pairs:

Increasing:

• None

Decreasing:

• Lithium: BAW-5

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for the Daniel Bottom Ash Pond. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Tristan Clark

Tristan Clark Groundwater Analyst

Allina

Andrew Collins Project Manager

100% Non-Detects: Appendix IV Downgradient

Analysis Run 11/11/2024 3:03 PM View: Appendix IV Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Antimony (mg/L) BAW-3, BAW-4, BAW-5, BAW-7

Arsenic (mg/L) BAW-3

Beryllium (mg/L) BAW-4, BAW-5

Cadmium (mg/L) BAW-4, BAW-7

Molybdenum (mg/L) BAW-3

Selenium (mg/L) BAW-4

Thallium (mg/L) BAW-4, BAW-5

Appendix III - Interwell Prediction Limits - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 2:48 PM

Constituent	Well	Upper Lir	<u>n. Lower L</u>	im. Date	Observ.	<u>Sig.</u> Bg	N <u>%NDs</u>	ND Adj.	Transform	Alpha	Method
Boron (mg/L)	BAW-5	0.0928	n/a	10/2/2024	0.751	Yes 51	82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BAW-4	2.8	n/a	10/2/2024	5.03	Yes 51	3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
Calcium (mg/L)	BAW-5	2.8	n/a	10/2/2024	30.5	Yes 51	3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
pH (SU)	BAW-3	5.77	4.59	10/2/2024	4.52	Yes 49	0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
pH (SU)	BAW-5	5.77	4.59	10/2/2024	6.14	Yes 49	0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-5	7.68	n/a	10/2/2024	40.1	Yes 49	38.78	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	BAW-5	57.74	n/a	10/2/2024	195	Yes 49	4.082	None	sqrt(x)	0.00188	Param Inter 1 of 2

Appendix III - Interwell Prediction Limits - All Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 2:48 PM

Constituent	Well	Upper Li	m. Lower L	<u>im. Date</u>	Observ.	<u>Sig.</u> B	<u>8g N %NDs</u>	ND Adj.	Transform	Alpha	Method
Boron (mg/L)	BAW-3	0.0928	n/a	10/2/2024	0.08ND	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-4	0.0928	n/a	10/2/2024	0.0389J	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-5	0.0928	n/a	10/2/2024	0.751	Yes 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-7	0.0928	n/a	10/2/2024	0.08ND	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BAW-3	2.8	n/a	10/2/2024	0.781	No 5	3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
Calcium (mg/L)	BAW-4	2.8	n/a	10/2/2024	5.03	Yes 5	3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
Calcium (mg/L)	BAW-5	2.8	n/a	10/2/2024	30.5	Yes 5	1 3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
Calcium (mg/L)	BAW-7	2.8	n/a	10/2/2024	1.08	No 5	3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-3	16.4	n/a	10/2/2024	5.35	No 4	9 0	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-4	16.4	n/a	10/2/2024	6.42	No 4	9 0	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-5	16.4	n/a	10/2/2024	10.7	No 4	9 0	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-7	16.4	n/a	10/2/2024	7.43	No 4	9 0	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Fluoride (mg/L)	BAW-3	0.1	n/a	10/2/2024	0.026J	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-4	0.1	n/a	10/2/2024	0.04J	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-5	0.1	n/a	10/2/2024	0.0865J	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-7	0.1	n/a	10/2/2024	0.1ND	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
pH (SU)	BAW-3	5.77	4.59	10/2/2024	4.52	Yes 4	9 0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
pH (SU)	BAW-4	5.77	4.59	10/2/2024	5.51	No 4	9 0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
pH (SU)	BAW-5	5.77	4.59	10/2/2024	6.14	Yes 4	9 0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
pH (SU)	BAW-7	5.77	4.59	10/2/2024	4.87	No 4	9 0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-3	7.68	n/a	10/2/2024	7.63	No 4	9 38.78	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-4	7.68	n/a	10/2/2024	5.89	No 4	9 38.78	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-5	7.68	n/a	10/2/2024	40.1	Yes 4	9 38.78	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-7	7.68	n/a	10/2/2024	1.61	No 4	9 38.78	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	BAW-3	57.74	n/a	10/2/2024	30	No 4	9 4.082	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-4	57.74	n/a	10/2/2024	40	No 4	9 4.082	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-5	57.74	n/a	10/2/2024	195	Yes 4	9 4.082	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-7	57.74	n/a	10/2/2024	33	No 4	9 4.082	None	sqrt(x)	0.00188	Param Inter 1 of 2

Appendix III - Trend Test Summary - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 2:54 PM

Constituent	Well	Slope	Colo	Critical	Sig.	N	%NDs	Normality	Xform	Alpha	Method
Constituent	vven	Slope	Calc.	Unical	<u>Sig.</u>	<u>N</u>	70INDS	Normailty	XIOIIII	Alpha	Method
Calcium (mg/L)	BAW-2 (bg)	-0.5725	-31	-25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-4	0.3324	152	118	Yes	26	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2 (bg)	-0.5393	-29	-25	Yes	9	0	n/a	n/a	0.01	NP
pH (SU)	BAW-3	-0.05979	-196	-111	Yes	25	0	n/a	n/a	0.01	NP
pH (SU)	BAW-5	-0.04626	-164	-111	Yes	25	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-1 (bg)	-0.3965	-127	-111	Yes	25	44	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2A (bg)	0.872	64	53	Yes	15	6.667	n/a	n/a	0.01	NP

Appendix III - Trend Test Summary - All Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 2:54 PM

Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	BAW-1 (bg)	0	5	118	No	26	96.15	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-2 (bg)	0	0	25	No	9	100	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-2A (bg)	-0.002283	-44	-58	No	16	50	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-5	0.02419	82	118	No	26	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-1 (bg)	0.02641	90	118	No	26	3.846	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-2 (bg)	-0.5725	-31	-25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-2A (bg)	-0.04117	-50	-58	No	16	6.25	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-4	0.3324	152	118	Yes	26	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-5	1.022	63	118	No	26	0	n/a	n/a	0.01	NP
pH (SU)	BAW-1 (bg)	-0.008992	-38	-111	No	25	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2 (bg)	-0.5393	-29	-25	Yes	9	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2A (bg)	-0.01118	-13	-53	No	15	0	n/a	n/a	0.01	NP
pH (SU)	BAW-3	-0.05979	-196	-111	Yes	25	0	n/a	n/a	0.01	NP
pH (SU)	BAW-5	-0.04626	-164	-111	Yes	25	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-1 (bg)	-0.3965	-127	-111	Yes	25	44	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2 (bg)	0	-11	-25	No	9	77.78	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2A (bg)	0.872	64	53	Yes	15	6.667	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-5	1.329	102	111	No	25	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-1 (bg)	1.236	105	111	No	25	8	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-2 (bg)	-5.236	-4	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-2A (bg)	1.911	27	53	No	15	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-5	8.394	80	111	No	25	0	n/a	n/a	0.01	NP

Upper Tolerance Limit Summary Table

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 3:00 PM

Constituent	Upper Lim.	Lower Lim.	Date	Observ.	Sig.	Bg I	<u> %NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	0.002	n/a	n/a	n/a	n/a	43	97.67	n/a	n/a	0.1102	NP Inter(NDs)
Arsenic (mg/L)	0.001	n/a	n/a	n/a	n/a	49	100	n/a	n/a	0.08099	NP Inter(NDs)
Barium (mg/L)	0.0512	n/a	n/a	n/a	n/a	49	2.041	n/a	n/a	0.08099	NP Inter(normality)
Beryllium (mg/L)	0.001	n/a	n/a	n/a	n/a	45	97.78	n/a	n/a	0.09944	NP Inter(NDs)
Cadmium (mg/L)	0.001	n/a	n/a	n/a	n/a	49	95.92	n/a	n/a	0.08099	NP Inter(NDs)
Chromium (mg/L)	0.00286	n/a	n/a	n/a	n/a	47	87.23	n/a	n/a	0.08974	NP Inter(NDs)
Cobalt (mg/L)	0.001617	n/a	n/a	n/a	n/a	49	6.122	None	No	0.05	Inter
Combined Radium 226 + 228 (pCi/L)	2.5	n/a	n/a	n/a	n/a	49	4.082	n/a	n/a	0.08099	NP Inter(normality)
Fluoride (mg/L)	0.1	n/a	n/a	n/a	n/a	51	82.35	n/a	n/a	0.0731	NP Inter(NDs)
Lead (mg/L)	0.001	n/a	n/a	n/a	n/a	47	95.74	n/a	n/a	0.08974	NP Inter(NDs)
Lithium (mg/L)	0.00505	n/a	n/a	n/a	n/a	48	66.67	n/a	n/a	0.08526	NP Inter(NDs)
Mercury (mg/L)	0.0002	n/a	n/a	n/a	n/a	41	90.24	n/a	n/a	0.1221	NP Inter(NDs)
Molybdenum (mg/L)	0.005	n/a	n/a	n/a	n/a	45	91.11	n/a	n/a	0.09944	NP Inter(NDs)
Selenium (mg/L)	0.005	n/a	n/a	n/a	n/a	45	86.67	n/a	n/a	0.09944	NP Inter(NDs)
Thallium (mg/L)	0.001	n/a	n/a	n/a	n/a	45	95.56	n/a	n/a	0.09944	NP Inter(NDs)

PLANT D	ANIEL BOT	TOM ASH GW	'PS	
		CCR-Rule	Background	
Constituent Name	MCL	Specified	Limit	GWPS
Antimony, Total (mg/L)	0.006		0.002	0.006
Arsenic, Total (mg/L)	0.01		0.001	0.01
Barium, Total (mg/L)	2		0.051	2
Beryllium, Total (mg/L)	0.004		0.001	0.004
Cadmium, Total (mg/L)	0.005		0.001	0.005
Chromium, Total (mg/L)	0.1		0.0029	0.1
Cobalt, Total (mg/L)	n/a	0.006	0.0016	0.006
Combined Radium, Total (pCi/L)	5		2.5	5
Fluoride, Total (mg/L)	4		0.1	4
Lead, Total (mg/L)	0.015		0.001	0.015
Lithium, Total (mg/L)	n/a	0.04	0.0051	0.04
Mercury, Total (mg/L)	0.002		0.0002	0.002
Molybdenum, Total (mg/L)	n/a	0.1	0.005	0.1
Selenium, Total (mg/L)	0.05		0.005	0.05
Thallium, Total (mg/L)	0.002		0.001	0.002

*MCL = Maximum Contaminant Level

*CCR = Coal Combustion Residuals

*GWPS = Groundwater Protection Standard

Appendix IV - Confidence Intervals - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 3:05 PM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Complianc</u>	eSig.	N	Mean	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Lithium (mg/L)	BAW-5	0.1814	0.1349	0.04	Yes	25	0.1505	0.05495	0	None	x^2	0.01	Param.

Appendix IV - Confidence Intervals - All Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 3:05 PM

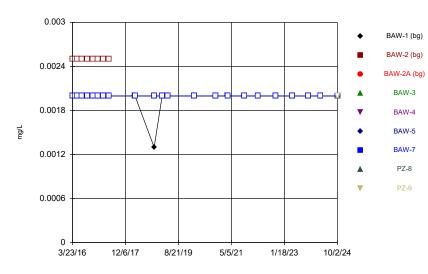
		Plant Danie	ei Chern. Sc		ipany	Dat	a. Dollom Asi	ICCK FIIII	eu 11/11/2	2024, 3.05 PW			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	eSig.	<u>N</u>	Mean	Std. Dev.	<u>%NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	BAW-4	0.001505	0.0007783	0.01	No	25	0.001498	0.001251	16	Kaplan-Meier	ln(x)	0.01	Param.
Arsenic (mg/L)	BAW-5	0.00483	0.00224	0.01	No	25	0.003887	0.00313	0	None	sqrt(x)	0.01	Param.
Arsenic (mg/L)	BAW-7	0.001	0.00052	0.01	No	25	0.0009608	0.0001357	92	None	No	0.01	NP (NDs)
Barium (mg/L)	BAW-3	0.03322	0.02444	2	No	25	0.02883	0.00881	0	None	No	0.01	Param.
Barium (mg/L)	BAW-4	0.0221	0.0093	2	No	25	0.01432	0.007478	0	None	No	0.01	NP (normality)
Barium (mg/L)	BAW-5	0.055	0.0424	2	No	25	0.05458	0.02197	0	None	No	0.01	NP (normality)
Barium (mg/L)	BAW-7	0.02	0.0117	2	No	25	0.01903	0.01715	0	None	No	0.01	NP (normality)
Beryllium (mg/L)	BAW-3	0.001	0.000235	0.004	No	23	0.0008993	0.0002657	86.96	None	No	0.01	NP (NDs)
Beryllium (mg/L)	BAW-7	0.001	0.000185	0.004	No	23	0.0009646	0.0001699	95.65	None	No	0.01	NP (NDs)
Cadmium (mg/L)	BAW-3	0.0008395	0.0005609	0.005	No	25	0.0007002	0.0002795	4	None	No	0.01	Param.
Cadmium (mg/L)	BAW-5	0.001	0.000155	0.005	No	25	0.0009662	0.000169	96	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-3	0.003	0.00165	0.1	No	24	0.002712	0.0035	83.33	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-4	0.002	0.0015	0.1	No	24	0.001923	0.0002253	83.33	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-5	0.0024	0.00175	0.1	No	24	0.002098	0.0006471	83.33	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-7	0.00206	0.00171	0.1	No	24	0.00199	0.00006097	91.67	None	No	0.01	NP (NDs)
Cobalt (mg/L)	BAW-3	0.007104	0.005249	0.006	No	25	0.006176	0.001861	0	None	No	0.01	Param.
Cobalt (mg/L)	BAW-4	0.001451	0.001089	0.006	No	25	0.00127	0.000363	0	None	No	0.01	Param.
Cobalt (mg/L)	BAW-5	0.000802	0.0005	0.006	No	25	0.000753	0.0005414	68	None	No	0.01	NP (NDs)
Cobalt (mg/L)	BAW-7	0.00112	0.000729	0.006	No	25	0.001244	0.001007	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BAW-3	0.857	0.27	5	No	25	0.607	0.6826	8	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BAW-4	0.53	0.158	5	No	25	0.5769	0.7692	12	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BAW-5	0.9563	0.4286	5	No	24	0.7625	0.5863	4.167	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BAW-7	1.005	0.3488	5	No	25	0.7983	0.7736	12	None	sqrt(x)	0.01	Param.
Fluoride (mg/L)	BAW-3	0.1	0.0537	4	No	26	0.09017	0.02389	84.62	None	No	0.01	NP (NDs)
Fluoride (mg/L)	BAW-4	0.0578	0.04	4	No	26	0.05654	0.02512	23.08	None	No	0.01	NP (normality)
Fluoride (mg/L)	BAW-5	0.07485	0.05423	4	No	26	0.06763	0.02797	3.846	None	ln(x)	0.01	Param.
Fluoride (mg/L)	BAW-7	0.1	0.0415	4	No	26	0.0922	0.02213	88.46	None	No	0.01	NP (NDs)
Lead (mg/L)	BAW-3	0.001	0.000322	0.015	No	24	0.0007022	0.0003715	58.33	None	No	0.01	NP (NDs)
Lead (mg/L)	BAW-4	0.001	0.00042	0.015	No	24	0.0008523	0.0002983	79.17	None	No	0.01	NP (NDs)
Lead (mg/L)	BAW-5	0.001	0.00032	0.015	No	24	0.0009363	0.0002171	91.67	None	No	0.01	NP (NDs)
Lead (mg/L)	BAW-7	0.001	0.000345	0.015	No	24	0.0009364	0.0002178	91.67	None	No	0.01	NP (NDs)
Lithium (mg/L)	BAW-3	0.005	0.0033	0.04	No	25	0.00433	0.001264	56	None	No	0.01	NP (NDs)
Lithium (mg/L)	BAW-4	0.02529	0.01727	0.04	No	25	0.02128	0.008046	0	None	No	0.01	Param.
Lithium (mg/L)	BAW-5	0.1814	0.1349	0.04	Yes	25	0.1505	0.05495	0	None	x^2	0.01	Param.
Lithium (mg/L)	BAW-7	0.005	0.00375	0.04	No	25	0.004958	0.002184	52	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-3	0.000497	0.000133	0.002	No	21	0.0002021	0.00007449	80.95	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-4	0.0002	0.000135	0.002	No	21	0.0001875	0.00003316	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-5	0.0002	0.000134	0.002	No	21	0.0001909	0.00003039	90.48	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-7	0.000235	0.000151	0.002	No	21	0.0002381	0.0002228	76.19	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BAW-4	0.005	0.00109	0.1	No	23	0.00369	0.00189	65.22	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BAW-5	0.003795	0.00176	0.1	No	23	0.006269	0.005589	26.09	Kaplan-Meier	x^(1/3)	0.01	Param.
Molybdenum (mg/L)	BAW-7	0.005	0.0038	0.1	No	23	0.004948	0.0002502	95.65	Kaplan-Meier	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-3	0.005	0.00079	0.05	No	23	0.003625	0.002129	69.57	None	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-5	0.005	0.00033	0.05	No	23	0.004797	0.0009738	95.65	None	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-7	0.005	0.0021	0.05	No	23	0.004056	0.001863	78.26	None	No	0.01	NP (NDs)
Thallium (mg/L)	BAW-3	0.001	0.000276	0.002	No	23	0.0008528	0.0003297	82.61	None	No	0.01	NP (NDs)
Thallium (mg/L)	BAW-7	0.001	0.000153	0.002	No	23	0.0009632	0.0001766	95.65	None	No	0.01	NP (NDs)

Appendix IV - Trend Test Summary - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 3:07 PM

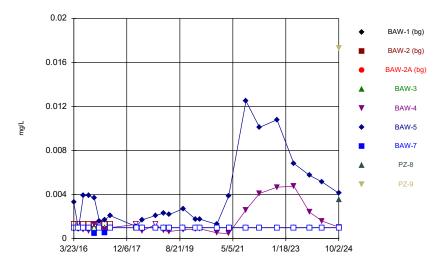
		-									
Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Lithium (mg/L)	BAW-5	-0.01514	-142	-85	Yes	25	0	n/a	n/a	0.05	NP

Appendix IV - Trend Test Summary - All Results

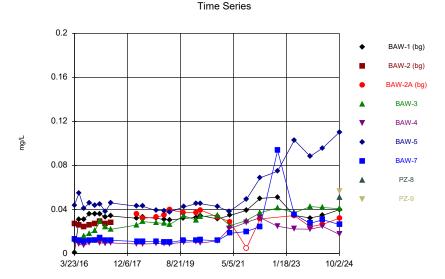

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 3:07 PM

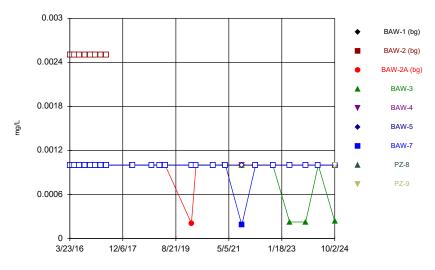
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Lithium (mg/L)	BAW-1 (bg)	0	-8	-81	No	24	66.67	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-2 (bg)	0	0	17	No	8	100	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-2A (bg)	0	-2	-45	No	16	50	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-5	-0.01514	-142	-85	Yes	25	0	n/a	n/a	0.05	NP

Table of Contents

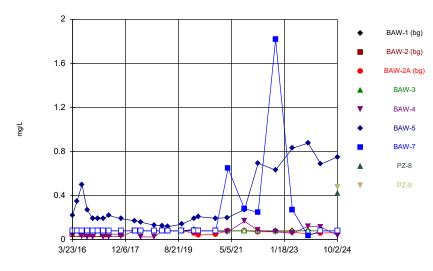

Time Series	22
Box Plots	50
Outlier Summary	57
Interwell Prediction Limits	59
Trend Tests - Prediction Limit Exceedances	71
Upper Tolerance Limits	80
Groundwater Protection Standards	90
Confidence Intervals	92
Trend Tests - Confidence Interval Exceedances	113

Time Series

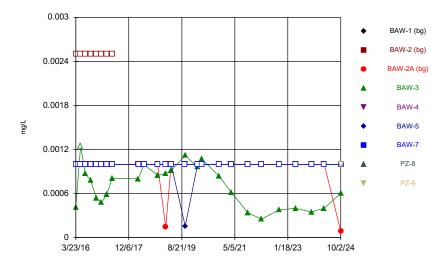

Constituent: Antimony Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

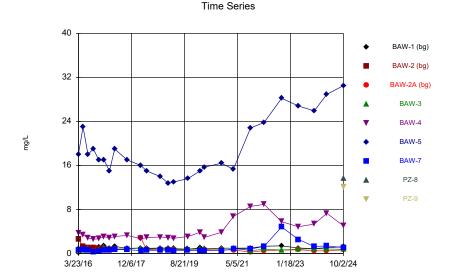

Constituent: Arsenic Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

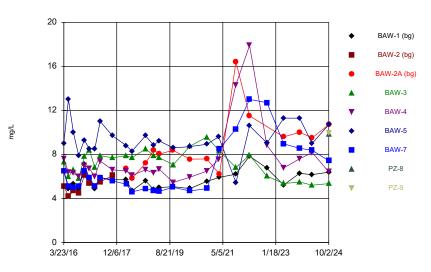
Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Barium Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas $^{\rm W}$ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

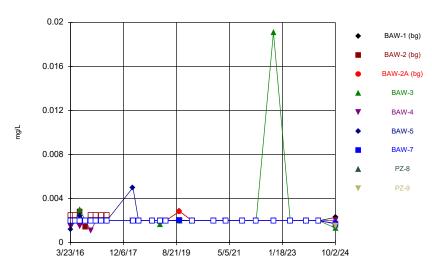
Time Series


Constituent: Beryllium Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Constituent: Boron Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

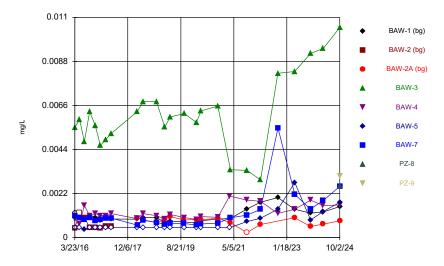

Constituent: Cadmium Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

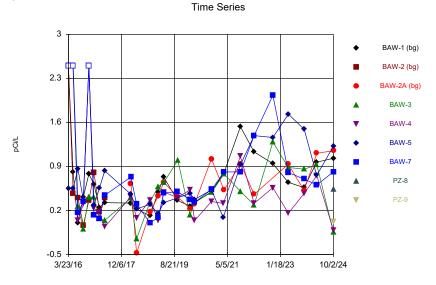


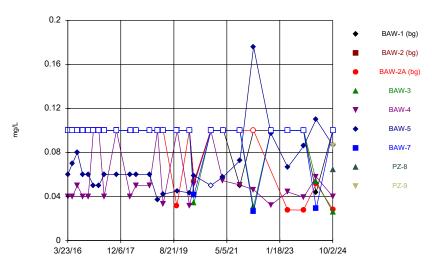
Constituent: Calcium Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Time Series

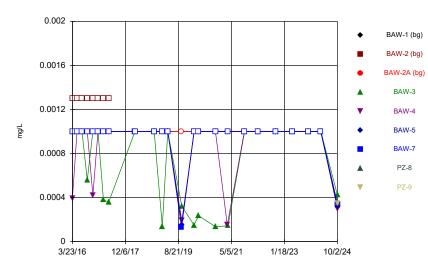

Constituent: Chloride Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Time Series

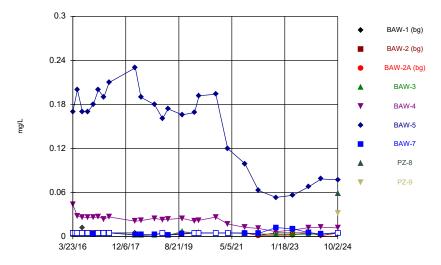

Constituent: Chromium Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Cobalt Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

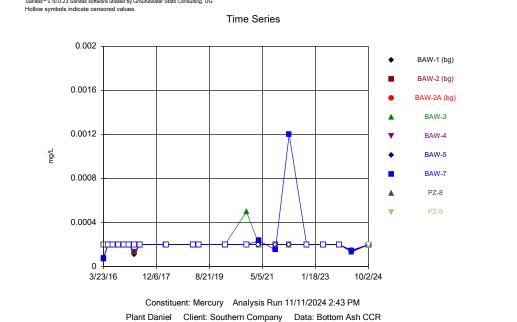
Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

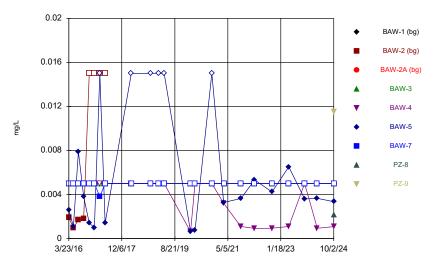

Constituent: Combined Radium 226 + 228 Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas $^{\rm \tiny W}$ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

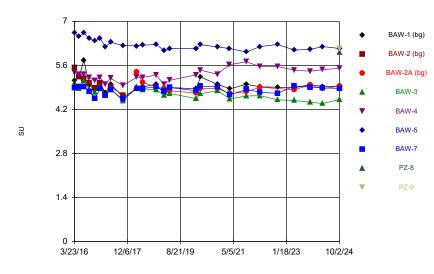

Constituent: Fluoride Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Time Series


Constituent: Lead Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

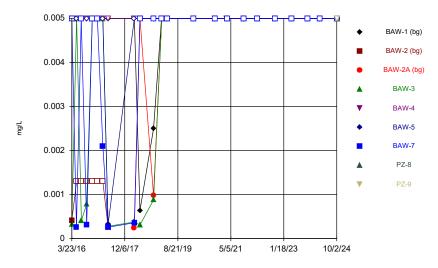

Constituent: Lithium Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

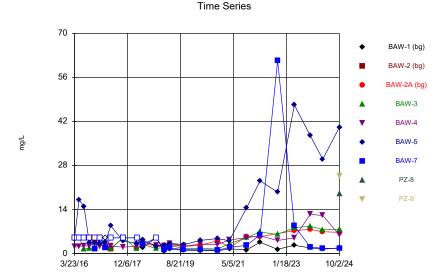


Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

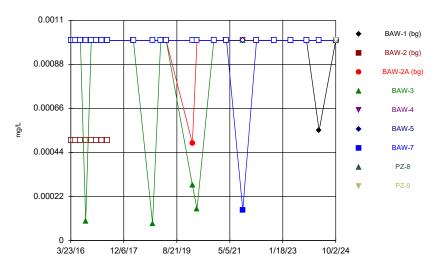
Time Series



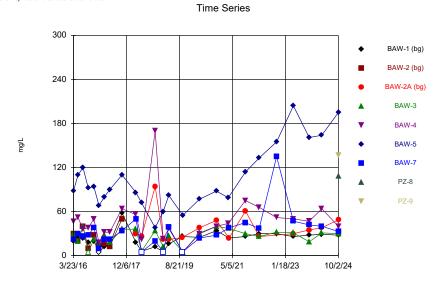
Constituent: Molybdenum Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Constituent: pH Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas w v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series


Constituent: Selenium Analysis Run 11/11/2024 2:43 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas¹¹ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Sulfate Analysis Run 11/11/2024 2:44 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas^{max} v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Thallium Analysis Run 11/11/2024 2:44 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Total Dissolved Solids Analysis Run 11/11/2024 2:44 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Antimony (mg/L) Analysis Run 11/11/2024 2:45 PM

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2016	<0.002	<0.0025		<0.002	<0.002	<0.002	<0.002		
5/17/2016	<0.002				<0.002	<0.002	<0.002		
5/18/2016		<0.0025		<0.002					
7/12/2016	<0.002						<0.002		
7/13/2016		<0.0025		<0.002	<0.002	<0.002			
9/13/2016	<0.002					<0.002	<0.002		
9/14/2016		<0.0025		<0.002	<0.002				
11/19/2016	<0.002	<0.0025		<0.002	<0.002	<0.002	<0.002		
1/17/2017	<0.002	<0.0025		<0.002			<0.002		
1/18/2017					<0.002	<0.002			
3/22/2017	<0.002						<0.002		
3/23/2017		<0.0025		<0.002	<0.002	<0.002			
5/24/2017	<0.002	<0.0025		<0.002	<0.002	<0.002	<0.002		
3/28/2018	<0.002		<0.002	<0.002	<0.002	<0.002			
3/29/2018							<0.002		
11/8/2018	0.0013 (J)			<0.002	<0.002				
11/9/2018			<0.002			<0.002	<0.002		
2/11/2019	<0.002				<0.002	<0.002			
2/12/2019			<0.002	<0.002			<0.002		
4/17/2019	<0.002		<0.002	<0.002	<0.002	<0.002			
4/18/2019							<0.002		
2/21/2020	<0.002		<0.002	<0.002			<0.002		
2/22/2020					<0.002	<0.002			
10/30/2020	<0.002		<0.002	<0.002	<0.002	<0.002			
11/2/2020							<0.002		
3/17/2021					<0.002	<0.002			
3/26/2021	<0.002		<0.002	<0.002			<0.002		
10/5/2021	<0.002				<0.002		<0.002		
10/6/2021			<0.002	<0.002		<0.002			
3/16/2022	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002		
10/5/2022	<0.002			<0.002	<0.002				
10/6/2022						<0.002	<0.002		
4/20/2023	<0.002		<0.002	<0.002					
4/21/2023					<0.002	<0.002	<0.002		
10/24/2023	<0.002		<0.002				<0.002		
10/25/2023				<0.002	<0.002	<0.002			
3/20/2024	<0.002					<0.002			
3/21/2024			<0.002	<0.002	<0.002		<0.002		
10/2/2024	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002

Constituent: Arsenic (mg/L) Analysis Run 11/11/2024 2:45 PM

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9	
3/23/2016	<0.001	<0.0013		<0.001	0.00087 (J)	0.0033	<0.001			
5/17/2016	<0.001				<0.0013	0.00089 (J)	<0.001			
5/18/2016		<0.0013		<0.001						
7/12/2016	<0.001						<0.001			
7/13/2016		<0.0013		<0.001	0.00081 (J)	0.0039				
9/13/2016	<0.001					0.0039	<0.001			
9/14/2016		<0.0013		<0.001	0.00069 (J)					
11/19/2016	<0.001	<0.0013		<0.001	0.0013	0.0037	0.0005 (J)			
1/17/2017	<0.001	<0.0013		<0.001			<0.001			
1/18/2017					<0.0013	0.0016				
3/22/2017	<0.001						0.00052 (J)			
3/23/2017		<0.0013		<0.001	0.00078 (J)	0.0017				
5/24/2017	<0.001	<0.0013		<0.001	0.001 (J)	0.0021	<0.001			
3/28/2018	<0.001		<0.001	<0.001	<0.0013	0.0011 (J)				
3/29/2018							<0.001			
6/2/2018	<0.001		<0.001	<0.001	0.00068 (J)	0.0017	<0.001			
11/8/2018	<0.001			<0.001	<0.0013					
11/9/2018			<0.001			0.0021	<0.001			
2/11/2019	<0.001				0.000737 (J)	0.00232				
2/12/2019			<0.001	<0.001			<0.001			
4/17/2019	<0.001		<0.001	<0.001	0.000645 (J)	0.00218				
4/18/2019							<0.001			
9/27/2019	<0.001		<0.001				<0.001			
9/30/2019				<0.001	0.000821 (J)	0.00272				
2/21/2020	<0.001		<0.001	<0.001			<0.001			
2/22/2020					0.000837 (J)	0.00177				
4/14/2020	<0.001		<0.001	<0.001	0.000896 (J)	0.00177	<0.001			
10/30/2020	<0.001		<0.001	<0.001	0.000529 (J)	0.0013				
11/2/2020							<0.001			
3/17/2021					0.000454 (J)	0.00385				
3/26/2021	<0.001		<0.001	<0.001			<0.001			
10/5/2021	<0.001				0.00259		<0.001			
10/6/2021			<0.001	<0.001		0.0125				
3/16/2022	<0.001		<0.001	<0.001	0.00411	0.0101	<0.001			
10/5/2022	<0.001			<0.001	0.00467					
10/6/2022						0.0108	<0.001			
4/20/2023	<0.001		<0.001	<0.001						
4/21/2023					0.00477	0.00683	<0.001			
10/24/2023	<0.001		<0.001				<0.001			
10/25/2023				<0.001	0.00241	0.00575				
3/20/2024	<0.001					0.00515				
3/21/2024			<0.001	<0.001	0.00159		<0.001			
10/2/2024	<0.001		<0.001	<0.001	0.00105	0.00414	<0.001	0.00353	0.0173	

Constituent: Barium (mg/L) Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

BAW-1 (bg) BAW-2 (bg) BAW-2A (bg) BAW-3 BAW-4 BAW-5 BAW-7 PZ-8 PZ-9 3/23/2016 0.00084 (J) 0.027 0.013 0.011 0.044 0.013 5/17/2016 0.0085 0.031 0.055 0.012 5/18/2016 0.026 0.012 7/12/2016 0.031 0.011 7/13/2016 0.024 0.016 0.0073 0.041 9/13/2016 0.036 0.046 0.012 9/14/2016 0.026 0.018 0.0095 11/19/2016 0.036 0.027 0.021 0.012 0.044 0.012 0.029 1/17/2017 0.036 0.029 0.014 0.0096 1/18/2017 0.045 3/22/2017 0.033 0.012 3/23/2017 0.027 0.024 0.0093 0.038 0.0096 5/24/2017 0.034 0.028 0.022 0.046 0.012 3/28/2018 0.032 0.036 0.026 0.0086 0.043 3/29/2018 0.011 0.0087 6/2/2018 0.033 0.032 0.029 0.043 0.011 11/8/2018 0.032 0.028 0.0091 11/9/2018 0.033 0.039 0.011 2/11/2019 0.0308 0.00931 0.0388 2/12/2019 0.0348 0.0274 0.0102 0.0305 0.0396 0.0263 0.00888 4/17/2019 0.0378 4/18/2019 0.0101 9/27/2019 0.0319 0.0373 0.0121 9/30/2019 0.0343 0.0103 0.0424 2/21/2020 0.0327 0.0373 0.0304 0.0117 2/22/2020 0.0108 0.0453 4/14/2020 0.0345 0.0394 0.0335 0.00949 (J) 0.0452 0.0124 10/30/2020 0.0314 0.0334 0.0349 0.0116 0.0428 0.0117 11/2/2020 3/17/2021 0.0224 0.0382 0.0347 0.0287 0.0253 0.0184 3/26/2021 10/5/2021 0.0391 0.0283 0.02 10/6/2021 <0.01 0.03 0.0493 3/16/2022 0.05 0.0314 0.037 0.0326 0.0688 0.0245 0.0512 0.0248 10/5/2022 0.0415 10/6/2022 0.0747 0.0937 4/20/2023 0.0345 0.0369 0.0347 4/21/2023 0.0223 0.103 0.0355 10/24/2023 0.0244 0.0274 0.0323 0.0427 0.0221 0.0883 10/25/2023 3/20/2024 0.0347 0.0958 3/21/2024 0.0265 0.0418 0.0246 0.0307 10/2/2024 0.0399 0.0322 0.0407 0.0174 0.0264 0.0563 0.11 0.0511

Constituent: Beryllium (mg/L) Analysis Run 11/11/2024 2:45 PM

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2016	<0.001	<0.0025		<0.001	<0.001	<0.001	<0.001		
5/17/2016	<0.001				<0.001	<0.001	<0.001		
5/18/2016		<0.0025		<0.001					
7/12/2016	<0.001						<0.001		
7/13/2016		<0.0025		<0.001	<0.001	<0.001			
9/13/2016	<0.001					<0.001	<0.001		
9/14/2016		<0.0025		<0.001	<0.001				
11/19/2016	<0.001	<0.0025		<0.001	<0.001	<0.001	<0.001		
1/17/2017	<0.001	<0.0025		<0.001			<0.001		
1/18/2017					<0.001	<0.001			
3/22/2017	<0.001						<0.001		
3/23/2017		<0.0025		<0.001	<0.001	<0.001			
5/24/2017	<0.001	<0.0025		<0.001	<0.001	<0.001	<0.001		
3/28/2018	<0.001		<0.001	<0.001	<0.001	<0.001			
3/29/2018							<0.001		
11/8/2018	<0.001			<0.001	<0.001				
11/9/2018			<0.001			<0.001	<0.001		
2/11/2019	<0.001				<0.001	<0.001			
2/12/2019			<0.001	<0.001			<0.001		
4/17/2019	<0.001		<0.001	<0.001	<0.001	<0.001			
4/18/2019							<0.001		
2/21/2020	<0.001		0.000207 (J)	<0.001			<0.001		
2/22/2020					<0.001	<0.001			
4/14/2020	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001		
10/30/2020	<0.001		<0.001	<0.001	<0.001	<0.001			
11/2/2020							<0.001		
3/17/2021					<0.001	<0.001			
3/26/2021	<0.001		<0.001	<0.001			<0.001		
10/5/2021	<0.001				<0.001		0.000185 (J)		
10/6/2021			<0.001	<0.001		<0.001			
3/16/2022	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001		
10/5/2022	<0.001			<0.001	<0.001				
10/6/2022						<0.001	<0.001		
4/20/2023	<0.001		<0.001	0.000225 (J)					
4/21/2023					<0.001	<0.001	<0.001		
10/24/2023	<0.001		<0.001				<0.001		
10/25/2023				0.000225 (J)	<0.001	<0.001			
3/20/2024	<0.001					<0.001			
3/21/2024			<0.001	<0.001	<0.001		<0.001		
10/2/2024	<0.001		<0.001	0.000235 (J)	<0.001	<0.001	<0.001	<0.001	<0.001

Constituent: Boron (mg/L) Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

BAW-1 (bg) BAW-2 (bg) BAW-2A (bg) BAW-3 BAW-4 BAW-5 BAW-7 PZ-8 PZ-9 3/23/2016 <0.08 <0.05 <0.08 0.037 (J) 0.22 <0.08 5/17/2016 <0.08 <0.08 0.35 <0.08 5/18/2016 <0.05 <0.08 7/12/2016 <0.08 <0.08 7/13/2016 <0.05 <0.08 0.032 (J) 0.5 9/13/2016 <0.08 0.27 <0.08 9/14/2016 <0.05 <0.08 0.027 (J) 11/19/2016 <0.08 <0.05 <0.08 0.024 (J) 0.19 <0.08 1/17/2017 <0.08 <0.05 <0.08 <0.08 1/18/2017 <0.08 0.19 3/22/2017 <0.08 <0.08 3/23/2017 < 0.05 <0.08 0.024 (J) 0.19 5/24/2017 <0.08 < 0.05 <0.08 0.027 (J) 0.22 <0.08 10/16/2017 <0.08 <0.05 <0.08 0.03 (J) 0.19 <0.08 3/28/2018 <0.08 <0.08 <0.08 <0.08 0.17 3/29/2018 <0.08 6/2/2018 <0.08 <0.08 <0.08 0.025 (J) 0.16 <0.08 11/8/2018 <0.08 <0.08 0.024 (J) 11/9/2018 <0.08 0.13 <0.08 2/11/2019 <0.08 <0.08 0.126 2/12/2019 <0.08 < 0.08 <0.08 4/17/2019 <0.08 <0.08 <0.08 <0.08 0.118 4/18/2019 <0.08 9/27/2019 <0.08 <0.08 <0.08 9/30/2019 <0.08 <0.08 0.14 2/21/2020 0.0928 0.0589 (J) <0.08 <0.08 2/22/2020 <0.08 0.193 4/14/2020 <0.08 0.0424 (J) <0.08 <0.08 0.209 <0.08 10/30/2020 <0.08 0.0495 (J) <0.08 <0.08 0.194 11/2/2020 <0.08 3/17/2021 0.0673 (J) 0.2 3/26/2021 <0.08 < 0.08 <0.08 0.647 10/5/2021 <0.08 0.168 0.281 10/6/2021 <0.08 <0.08 0.272 3/16/2022 <0.08 0.0717 (J) <0.08 0.084 0.695 0.247 10/5/2022 <0.08 <0.08 0.0714 (J) 10/6/2022 0.631 1.82 4/20/2023 0.0711 (J) <0.08 <0.08 4/21/2023 0.271 0.058 (J) 0.831 0.0502 (J) 0.0336 (J) 10/24/2023 < 0.08 10/25/2023 <0.08 0.122 0.877 3/20/2024 <0.08 0.686 3/21/2024 0.0604 (J) <0.08 0.115 <0.08 10/2/2024 <0.08 0.0647 (J) <0.08 0.0389 (J) 0.751 <0.08 0.421 0.477

Constituent: Cadmium (mg/L) Analysis Run 11/11/2024 2:45 PM

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2016	<0.001	<0.0025		0.00041 (J)	<0.001	<0.001	<0.001		
5/17/2016	<0.001				<0.001	<0.001	<0.001		
5/18/2016		<0.0025		<0.0025					
7/12/2016	<0.001						<0.001		
7/13/2016		<0.0025		0.00087 (J)	<0.001	<0.001			
9/13/2016	<0.001					<0.001	<0.001		
9/14/2016		<0.0025		0.00078 (J)	<0.001				
11/19/2016	<0.001	<0.0025		0.00054 (J)	<0.001	<0.001	<0.001		
1/17/2017	<0.001	<0.0025		0.00048 (J)			<0.001		
1/18/2017					<0.001	<0.001			
3/22/2017	<0.001						<0.001		
3/23/2017		<0.0025		0.00059 (J)	<0.001	<0.001			
5/24/2017	<0.001	<0.0025		0.00081 (J)	<0.001	<0.001	<0.001		
3/28/2018	<0.001		<0.001	0.0008 (J)	<0.001	<0.001			
3/29/2018							<0.001		
6/2/2018	<0.001		<0.001	0.001 (J)	<0.001	<0.001	<0.001		
11/8/2018	<0.001			0.00085 (J)	<0.001				
11/9/2018			<0.001			<0.001	<0.001		
2/11/2019	<0.001				<0.001	<0.001			
2/12/2019			0.000143 (J)	0.000877 (J)			<0.001		
4/17/2019	<0.001		<0.001	0.000915 (J)	<0.001	<0.001			
4/18/2019							<0.001		
9/27/2019	<0.001		<0.001				<0.001		
9/30/2019				0.00112 (J)	<0.001	0.000155 (J)			
2/21/2020	<0.001		<0.001	0.000962 (J)			<0.001		
2/22/2020					<0.001	<0.001			
4/14/2020	<0.001		<0.001	0.00107 (J)	<0.001	<0.001	<0.001		
10/30/2020	<0.001		<0.001	0.00084 (J)	<0.001	<0.001			
11/2/2020							<0.001		
3/17/2021					<0.001	<0.001			
3/26/2021	<0.001		<0.001	0.000615 (J)			<0.001		
10/5/2021	<0.001				<0.001		<0.001		
10/6/2021			<0.001	0.000338 (J)		<0.001			
3/16/2022	<0.001		<0.001	0.000252 (J)	<0.001	<0.001	<0.001		
10/5/2022	<0.001			0.000379 (J)	<0.001				
10/6/2022						<0.001	<0.001		
4/20/2023	<0.001		<0.001	0.0004 (J)					
4/21/2023					<0.001	<0.001	<0.001		
10/24/2023	<0.001		<0.001				<0.001		
10/25/2023				0.00035 (J)	<0.001	<0.001			
3/20/2024	<0.001					<0.001			
3/21/2024			<0.001	0.000401 (J)	<0.001		<0.001		
10/2/2024	<0.001		8.5E-05 (J)	0.000605 (J)	<0.001	<0.001	<0.001	<0.001	<0.001

Constituent: Calcium (mg/L) Analysis Run 11/11/2024 2:45 PM

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9	
3/23/2016	<0.25	2.6		1.1	3.7	18	0.65			
5/17/2016	0.84				3.4	23	0.68			
5/18/2016	i	1.3		0.56						
7/12/2016	0.79						0.62			
7/13/2016	i	1.1		0.95	2.8	18				
9/13/2016	0.42					19	0.25			
9/14/2016	i	1.1		0.4	2.6					
11/19/201	6 1.2	1		0.62	2.7	17	0.36			
1/17/2017	1.4	0.87		1.2			0.66			
1/18/2017	,				3.1	17				
3/22/2017	0.95						0.65			
3/23/2017	,	0.74		0.87	2.8	15				
5/24/2017	1.3	0.84		0.81	3.1	19	0.72			
10/16/201	7 0.93	0.76		0.86	3.3	17	0.7			
3/28/2018	1		2.8	0.97	2.7	16				
3/29/2018	1						0.55			
6/2/2018	0.93		0.71	0.86	2.9	15	0.6			
11/8/2018	1			0.84	3					
11/9/2018	1		0.61			14	0.59			
2/11/2019	1				2.88	12.8				
2/12/2019	l i i i i i i i i i i i i i i i i i i i		0.757	0.856			0.608			
4/17/2019	0.893		0.755	0.711	2.77	13				
4/18/2019	I						0.55			
9/27/2019	0.8		0.663				0.598			
9/30/2019	I			0.826	3.08	13.6				
2/21/2020	1.02		0.648	0.841			0.552			
2/22/2020	l i i i i i i i i i i i i i i i i i i i				3.86	15				
4/14/2020	0.887		0.67	0.811	2.95	15.7	0.532			
10/30/202	0 0.945		0.672	1	3.84	16.4				
11/2/2020	l i i i i i i i i i i i i i i i i i i i						0.535			
3/17/2021					6.69	15.3				
3/26/2021	0.965		0.644	0.937			0.848			
10/5/2021	0.996				8.57		0.829			
10/6/2021			<0.5	0.532		22.8				
3/16/2022	1.32		0.539	0.78	8.94	23.8	1.28			
10/5/2022	1.42			0.647	5.81					
10/6/2022						28.2	4.84			
4/20/2023	0.996		0.685	0.789						
4/21/2023	l				4.87	26.8	2.56			
10/24/202	3 0.918		0.498 (J)				1.3			
10/25/202	3			0.875	5.35	25.9				
3/20/2024	1.05					28.9				
3/21/2024			0.469 (J)	0.818	7.31		1.38			
10/2/2024	1.24		0.681	0.781	5.03	30.5	1.08	13.7	12.1	

Constituent: Chloride (mg/L) Analysis Run 11/11/2024 2:45 PM

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2016	6.5	5.1		7.3	7.6	9	6.5		
5/17/2016	4.9				6.4	13	5.1		
5/18/2016		4.2		6					
7/12/2016	5.3						5		
7/13/2016		4.7		6.6	6.3	10			
9/13/2016	4.8 (F1)					7.9	5.1		
9/14/2016		4.5		5.8	6				
11/19/2016	7.1	6.1		7.8	7	9.3	6.5		
1/17/2017	5.8	5.4		8.4			5.9		
1/18/2017					6.7	8.5			
3/22/2017	4.9						5.1		
3/23/2017		5.1		6.8	6	8.5			
5/24/2017	5.9	5.5		7.9	7.4	11	5.9		
10/16/2017	5.7	6.1		7.7	6.6	9.7	5.6		
3/28/2018	5.7		6.7	7.9	6.5	8.8			
3/29/2018							5.3		
6/2/2018	4.7		5.8	7.7	6.1	8.3	4.6		
11/8/2018	5.6			8.5	6.6				
11/9/2018			7.2			9.7	4.9		
2/11/2019	4.84				6.31	8.84			
2/12/2019			8.4	7.89			4.72		
4/17/2019	4.99		8.03	7.71	6.68	9.24			
4/18/2019							4.64		
9/27/2019	5.08		8.37				5.02		
9/30/2019				7.07	5.45	8.59			
4/14/2020	4.91		7.57	8.75	5.93	8.71	4.68		
10/30/2020	5.55		7.59	9.58	6.49	8.93			
11/2/2020							4.91		
3/17/2021					7.55	9.6			
3/26/2021	5.92		6.21	8.32			8.5		
10/5/2021	6.21				14.3		10.3		
10/6/2021			16.4	6.8		5.44			
3/16/2022	7.85		11.5	7.94	17.9	10.6	13		
10/5/2022	6.75			6.04	8.84				
10/6/2022						9.04	12.7		
4/20/2023	5.22		9.6	5.36					
4/21/2023					6.78	11.3	8.95		
10/24/2023	6.29		10				8.57		
10/25/2023				5.5	7.6	11.3			
3/20/2024	6.17					9			
3/21/2024			9.52	5.21	8.17		8.37		
10/2/2024	6.38		10.7	5.35	6.42	10.7	7.43	9.83	9.97

Constituent: Chromium (mg/L) Analysis Run 11/11/2024 2:45 PM

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2016	<0.002	<0.0025		<0.002	0.0015 (J)	0.0012 (J)	<0.002		
5/17/2016	<0.002				<0.002	<0.002	<0.002		
5/18/2016		<0.0025		<0.002					
7/12/2016	<0.002						<0.002		
7/13/2016		0.0028		0.003	0.0015 (J)	0.0024 (J)			
9/13/2016	<0.002					<0.002	<0.002		
9/14/2016		0.0014 (J)		<0.002	<0.002				
11/19/2016	<0.002	<0.0025		<0.002	0.0011 (J)	<0.002	<0.002		
1/17/2017	<0.002	<0.0025		<0.002			<0.002		
1/18/2017					<0.002	<0.002			
3/22/2017	<0.002						<0.002		
3/23/2017		<0.0025		<0.002	<0.002	<0.002			
5/24/2017	<0.002	<0.0025		<0.002	<0.002	<0.002	<0.002		
3/28/2018	<0.002		<0.002	<0.002	<0.002	0.005			
3/29/2018							<0.002		
6/2/2018	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002		
11/8/2018	<0.002			<0.002	<0.002				
11/9/2018			<0.002			<0.002	<0.002		
2/11/2019	<0.002				<0.002	<0.002			
2/12/2019			<0.002	0.00165 (J)			<0.002		
4/17/2019	<0.002		<0.002	<0.002	<0.002	<0.002			
4/18/2019							<0.002		
9/27/2019	0.00286		0.00284				0.00206 (J)		
9/30/2019				<0.002	<0.002	<0.002			
2/21/2020	<0.002		<0.002	<0.002			<0.002		
2/22/2020					<0.002	<0.002			
10/30/2020	<0.002		<0.002	<0.002	<0.002	<0.002			
11/2/2020							<0.002		
3/17/2021					<0.002	<0.002			
3/26/2021	<0.002		<0.002	<0.002			<0.002		
10/5/2021	<0.002				<0.002		<0.002		
10/6/2021			<0.002	<0.002		<0.002			
3/16/2022	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002		
10/5/2022	<0.002			0.0191	<0.002				
10/6/2022						<0.002	<0.002		
4/20/2023	<0.002		<0.002	<0.002					
4/21/2023					<0.002	<0.002	<0.002		
10/24/2023	<0.002		<0.002				<0.002		
10/25/2023				<0.002	<0.002	<0.002			
3/20/2024	<0.002					<0.002			
3/21/2024			<0.002	<0.002	<0.002		<0.002		
10/2/2024	0.00229		0.00173 (J)	0.00133 (J)	0.00204	0.00175 (J)	0.00171 (J)	0.0016 (J)	0.00154 (J)

Constituent: Cobalt (mg/L) Analysis Run 11/11/2024 2:45 PM

					······				
	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2016	<0.0025	0.00048 (J)		0.0055	0.00094 (J)	<0.0005	0.0011 (J)		
5/17/2016	0.00099 (J)				0.0007 (J)	<0.0005	0.001 (J)		
5/18/2016		<0.0025		0.0059					
7/12/2016	0.00093 (J)						0.00091 (J)		
7/13/2016		0.001 (J)		0.0048	0.0016 (J)	0.00042 (J)			
9/13/2016	0.0011 (J)					<0.0005	0.001 (J)		
9/14/2016		0.00051 (J)		0.0063	0.0011 (J)				
11/19/2016	0.001 (J)	0.0005 (J)		0.0056	0.0012 (J)	<0.0005	0.00083 (J)		
1/17/2017	0.00088 (J)	0.00049 (J)		0.0046			0.00091 (J)		
1/18/2017					0.0011 (J)	<0.0005			
3/22/2017	0.001 (J)						0.00098 (J)		
3/23/2017		0.00057 (J)		0.0049	0.0011 (J)	<0.0005			
5/24/2017	0.00093 (J)	0.00057 (J)		0.0052	0.0012 (J)	<0.0005	0.00098 (J)		
3/28/2018	0.00092 (J)		0.00098 (J)	0.0063	0.00095 (J)	<0.0005			
3/29/2018							0.00063 (J)		
6/2/2018	0.001 (J)		0.0009 (J)	0.0068	0.0012 (J)	<0.0005	0.00087 (J)		
11/8/2018	0.001 (J)			0.0068	0.0011 (J)				
11/9/2018			0.00075 (J)			<0.0005	0.00076 (J)		
2/11/2019	0.000768 (J)				0.00093 (J)	<0.0005			
2/12/2019			0.000896 (J)	0.00552			0.000661 (J)		
4/17/2019	0.000825 (J)		0.00106 (J)	0.00603	0.00116 (J)	<0.0005			
4/18/2019							0.000705 (J)		
9/27/2019	0.000783 (J)		0.000885 (J)				0.00071 (J)		
9/30/2019				0.0062	0.001 (J)	<0.0005			
2/21/2020	0.00073 (J)		0.000909 (J)	0.00576			0.000634 (J)		
2/22/2020					0.000907 (J)	<0.0005			
4/14/2020	0.000853 (J)		0.000899 (J)	0.00633	0.00105 (J)	<0.0005	0.000684 (J)		
10/30/2020	0.000924 (J)		0.000972 (J)	0.00657	0.00102 (J)	<0.0005			
11/2/2020							0.000729 (J)		
3/17/2021					0.00208	<0.0005			
3/26/2021	0.000961		0.000744	0.00339			0.000995		
10/5/2021	0.00143				0.00187		0.00112		
10/6/2021			<0.0005	0.00336		0.000802			
3/16/2022	0.00177		0.000658	0.00289	0.00182	0.000967	0.00141		
10/5/2022	0.002			0.00821	0.00121				
10/6/2022						0.00143	0.00548		
4/20/2023	0.00142		0.000995	0.0083					
4/21/2023					0.00142	0.00275	0.00216		
10/24/2023	0.00123		0.000565				0.00143		
10/25/2023				0.0092	0.00187	0.000885			
3/20/2024	0.00128		0.0000	0.00045	0.0010	0.00131	0.00105		
3/21/2024	0.00455		0.000677	0.00945	0.0016	0.00170	0.00186	0.00055	0.00007
10/2/2024	0.00155		0.000845	0.0105	0.00163	0.00176	0.00256	0.00256	0.00307

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/11/2024 2:45 PM

Data: Bottom Ash CCR

Plant Daniel Client: Southern Company

BAW-1 (bg) BAW-2 (bg) BAW-2A (bg) BAW-3 BAW-4 BAW-5 BAW-7 PZ-8 PZ-9 3/23/2016 <5 <5 0.549 <5 <5 <5 0.813 5/17/2016 <5 0.551 <5 5/18/2016 0.471 <5 7/12/2016 -0.00163 (U) 0.165 (U) 7/13/2016 0.401 0.27 (U) 0.0365 (U) 0.859 9/13/2016 0.41 (U) 0.367 (U) 0.341 (U) 9/14/2016 0.3 (U) -0.033 (U) -0.0909 (U) 11/19/2016 0.783 0.358 0.416 <5 (U) <5 (U) <5 (U) 1/17/2017 0.613 0.799 0.412 (U) 0.124 (U) 1/18/2017 0.235 (U) 0.289 (U) 3/22/2017 0.241 (U) 0.0719 (U) 3/23/2017 0.182 (U) 0.0761 (U) 0.168 (U) 0.554 5/24/2017 0.325 0.404 0.0415 (U) -0.0607 (U) 0.831 0.441 3/28/2018 0.318 (U) 0.629 0.398 0.42 0.458 3/29/2018 0.731 6/2/2018 0.222 (U) -0.478 (U) -0.253 (U) 0.0844 (U) 0.226 (U) 0.303 (U) 11/8/2018 0.117 (U) 0.343 (U) 0.367 (U) 11/9/2018 0.179 (U) 0.298 (U) 0.00226 (U) 2/11/2019 0.493 0.0402 (U) 0.15 (U) 2/12/2019 0.432 0.581 0.094 (U) 0.646 4/17/2019 0.729 0.648 0.493 0.326 (U) 4/18/2019 0.48 9/27/2019 0.36 (U) 0.422 (U) 0.497 9/30/2019 1 0.404 2/21/2020 0.268 (U) 0.23 (U) 0.126 (U) 0.375 2/22/2020 0.53 0.47 4/14/2020 0.324 (U) 0.307 (U) 0.338 0.0408 (U) 0.376 (U) 0.329 (U) 10/30/2020 0.497 0.485 0.344 1.02 0.528 0.535 11/2/2020 3/17/2021 0.312 (U) 0.0889 (U) 0.78 0.813 3/26/2021 0.804 0.526 10/5/2021 1.53 1.06 0.814 10/6/2021 0.937 0.503 0.931 3/16/2022 0.458 0.286 (U) 0.314 (U) 1.13 1.39 1.39 1.29 10/21/2022 0.946 0.562 (U) 1.36 2.03 4/20/2023 0.647 0.935 0.884 4/21/2023 0.802 0.158 (U) 1.73 10/24/2023 0.563 0.521 0.7 10/25/2023 0.857 0.472 (U) 1.49 3/20/2024 0.968 0.758 3/21/2024 1.11 0.926 0.754 0.606 10/2/2024 0.813 0.542 (U) 0.0261 (U) 1.03 1.15 -0.14 (U) -0.111 (U) 1.22

Constituent: Fluoride (mg/L) Analysis Run 11/11/2024 2:45 PM

			T Idine D		iom company Du		·		
	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2016	<0.1	<0.1		<0.1	0.04 (J)	0.06 (J)	<0.1		
5/17/2016	<0.1				0.04 (J)	0.07 (J)	<0.1		
5/18/2016		<0.1		<0.1					
7/12/2016	<0.1						<0.1		
7/13/2016		<0.1		<0.1	0.05 (J)	0.08 (J)			
9/13/2016	<0.1					0.06 (J)	<0.1		
9/14/2016		<0.1		<0.1	0.04 (J)				
11/19/2016	<0.1	<0.1		<0.1	0.04 (J)	0.06 (J)	<0.1		
1/17/2017	<0.1	<0.1		<0.1			<0.1		
1/18/2017					<0.1	0.05 (J)			
3/22/2017	<0.1						<0.1		
3/23/2017		<0.1		<0.1	<0.1	0.05 (J)			
5/24/2017	<0.1	<0.1		<0.1	0.04 (J)	0.06 (J)	<0.1 (D)		
10/16/2017	<0.1	<0.1		<0.1	<0.1	0.06 (J)	<0.1		
3/28/2018	<0.1		<0.1	<0.1	0.04 (J)	0.06 (J)			
3/29/2018							<0.1		
6/2/2018	<0.1		<0.1	<0.1	0.05 (J)	0.06 (J)	<0.1		
11/8/2018	<0.1			<0.1	0.05 (J)				
11/9/2018			<0.1			0.06 (J)	<0.1		
2/11/2019	<0.1				<0.1	0.0368 (J)			
2/12/2019			<0.1	<0.1			<0.1		
4/17/2019	<0.1		<0.1	<0.1	0.033 (J)	0.0421 (J)			
4/18/2019							<0.1		
9/27/2019	<0.1		0.0313 (J)				<0.1		
9/30/2019				<0.1	<0.1	0.045 (J)			
2/21/2020	<0.1		<0.1	<0.1			<0.1		
2/22/2020					0.0317 (J)	0.0434 (J)			
4/14/2020	0.0532 (J)		0.0537 (J)	0.034 (J)	0.0508 (J)	0.059 (J)	0.0415 (J)		
10/30/2020	<0.1		<0.1	<0.1	<0.1	<0.1			
11/2/2020							<0.1		
3/17/2021					0.0544 (J)	0.0575 (J)			
3/26/2021	<0.1		<0.1	<0.1			<0.1		
10/5/2021	0.0499 (J)				0.0505 (J)		<0.1		
10/6/2021			<0.1	<0.1		0.0725 (J)			
3/16/2022	<0.1		<0.1	0.0307 (J)	0.0462 (J)	0.176	0.0266 (J)		
10/5/2022	<0.1			<0.1	0.0322 (J)				
10/6/2022						0.0972 (J)	<0.1		
4/20/2023	<0.1		0.0278 (J)	<0.1					
4/21/2023					0.0441 (J)	0.0665 (J)	<0.1		
10/24/2023	<0.1		0.0276 (J)				<0.1		
10/25/2023				<0.1	0.0393 (J)	0.0858 (J)			
3/20/2024	0.0436 (J)					0.11			
3/21/2024			0.0515 (J)	0.0537 (J)	0.0578 (J)		0.0292 (J)		
10/2/2024	<0.1		0.0284 (J)	0.026 (J)	0.04 (J)	0.0865 (J)	<0.1	0.0642 (J)	0.0861 (J)

Constituent: Lead (mg/L) Analysis Run 11/11/2024 2:45 PM

				i lanti	Daniel Client. 000		ata. Dottoini Asii Coi			
		BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2	016	<0.001	<0.0013		<0.001	0.00039 (J)	<0.001	<0.001		
5/17/2	016	<0.001				<0.001	<0.001	<0.001		
5/18/2	016		<0.0013		<0.001					
7/12/2	016	<0.001						<0.001		
7/13/2	016		<0.0013		<0.001	<0.001	<0.001			
9/13/2	016	<0.001					<0.001	<0.001		
9/14/2	016		<0.0013		0.00056 (J)	<0.001				
11/19/	2016	<0.001	<0.0013		<0.001	0.00042 (J)	<0.001	<0.001		
1/17/2	017	<0.001	<0.0013		<0.001			<0.001		
1/18/2	2017					<0.001	<0.001			
3/22/2	2017	<0.001						<0.001		
3/23/2	2017		<0.0013		0.00038 (J)	<0.001	<0.001			
5/24/2	2017	<0.001	<0.0013		0.00036 (J)	<0.001	<0.001	<0.001		
3/28/2	018	<0.001		<0.001	<0.001	<0.001	<0.001			
3/29/2	018							<0.001		
11/8/2	018	<0.001			<0.001	<0.001				
11/9/2	018			<0.001			<0.001	<0.001		
2/11/2	019	<0.001				<0.001	<0.001			
2/12/2	019			<0.001	0.000139 (J)			<0.001		
4/17/2	019	<0.001		<0.001	<0.001	<0.001	<0.001			
4/18/2	019							<0.001		
9/27/2	019	<0.001		<0.001				0.000129 (J)		
9/30/2	019				0.000322 (J)	0.000191 (J)	0.000152 (J)			
2/21/2	2020	<0.001		<0.001	0.00015 (J)			<0.001		
2/22/2	2020					<0.001	<0.001			
4/14/2	2020	<0.001		<0.001	0.000236 (J)	<0.001	<0.001	<0.001		
10/30/	2020	<0.001		<0.001	0.000136 (J)	<0.001	<0.001			
11/2/2	2020							<0.001		
3/17/2	2021					0.000153 (J)	<0.001			
3/26/2	2021	<0.001		<0.001	0.000145 (J)			<0.001		
10/5/2	2021	<0.001				<0.001		<0.001		
10/6/2	2021			<0.001	<0.001		<0.001			
3/16/2	022	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001		
10/5/2	022	<0.001			<0.001	<0.001				
10/6/2	022						<0.001	<0.001		
4/20/2	023	<0.001		<0.001	<0.001					
4/21/2	023					<0.001	<0.001	<0.001		
10/24/	2023	<0.001		<0.001				<0.001		
10/25/	2023				<0.001	<0.001	<0.001			
3/20/2	2024	<0.001					<0.001			
3/21/2	2024			<0.001	<0.001	<0.001		<0.001		
10/2/2	2024	0.00035 (J)		0.00032 (J)	0.000425 (J)	0.0003 (J)	0.00032 (J)	0.000345 (J)	0.000355 (J)	0.00035 (J)

Constituent: Lithium (mg/L) Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

BAW-1 (bg) BAW-2 (bg) BAW-2A (bg) BAW-3 BAW-4 BAW-5 BAW-7 PZ-8 PZ-9 3/23/2016 <0.005 <0.005 < 0.005 0.044 0.17 <0.005 0.0037 (J) 5/17/2016 0.028 0.2 <0.005 5/18/2016 <0.005 < 0.005 0.012 (o) 7/12/2016 <0.005 7/13/2016 <0.005 < 0.005 0.026 0.17 9/13/2016 <0.005 0.17 <0.005 9/14/2016 0.026 < 0.005 < 0.005 11/19/2016 <0.005 <0.005 <0.005 0.026 0.18 0.0035 (J) 1/17/2017 <0.005 <0.005 < 0.005 <0.005 1/18/2017 0.027 0.2 3/22/2017 <0.005 <0.005 3/23/2017 < 0.005 < 0.005 0.024 0.19 5/24/2017 <0.005 < 0.005 < 0.005 0.027 0.21 <0.005 3/28/2018 <0.005 0.0026 (J) 0.0023 (J) 0.021 0.23 3/29/2018 0.0026 (J) 6/2/2018 0.0017 (J) 0.0021 (J) 0.002 (J) 0.022 0.19 0.0029 (J) 0.0023 (J) 0.0024 (J) 0.025 11/8/2018 11/9/2018 0.0024 (J) 0.18 0.0027 (J) 2/11/2019 <0.005 0.0229 0.161 2/12/2019 <0.005 < 0.005 <0.005 0.00191 (J) 4/17/2019 0.00229 (J) 0.00197 (J) 0.0236 0.174 4/18/2019 0.00238 (J) 9/27/2019 0.00346 (J) <0.005 0.00375 (J) 9/30/2019 0.00687 0.0249 0.166 2/21/2020 <0.005 <0.005 <0.005 <0.005 2/22/2020 0.0211 0.169 4/14/2020 0.00505 <0.005 <0.005 0.0224 <0.005 0.192 <0.005 <0.005 <0.005 0.0267 10/30/2020 0.194 <0.005 11/2/2020 3/17/2021 0.0174 0.12 <0.005 3/26/2021 <0.005 <0.005 <0.005 10/5/2021 <0.005 0.0127 0.0045 (J) 10/6/2021 <0.005 <0.005 0.0994 3/16/2022 0.00165 (J) 0.0038 (J) 0.0112 0.0629 0.00437 (J) 0.00171 (J) 0.00676 10/5/2022 <0.005 0.00322 (J) 10/6/2022 0.0534 0.0123 4/20/2023 <0.005 0.00235 (J) 0.00309 (J) 0.0091 0.0564 0.0107 4/21/2023 <0.005 0.00555 10/24/2023 <0.005 0.0123 10/25/2023 0.0033 (J) 0.0679 3/20/2024 0.00133 (J) 0.0786 3/21/2024 0.00174 (J) 0.00355 (J) 0.013 0.0037 (J) 10/2/2024 0.00485 (J) 0.00575 0.0119 <0.005 0.032 <0.005 0.0774 0.0589

Constituent: Mercury (mg/L) Analysis Run 11/11/2024 2:45 PM

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2016	<0.0002	<0.0002		8.4E-05 (JB)	7.3E-05 (JB)	7.4E-05 (JB)	7.1E-05 (JB)		
5/17/2016	<0.0002				<0.0002	<0.0002	<0.0002		
5/18/2016		<0.0002		<0.0002					
7/12/2016	<0.0002						<0.0002		
7/13/2016		<0.0002		<0.0002	<0.0002	<0.0002			
9/13/2016	<0.0002					<0.0002	<0.0002		
9/14/2016		<0.0002		<0.0002	<0.0002				
11/19/2016	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002		
1/17/2017	<0.0002	<0.0002		<0.0002			<0.0002		
1/18/2017					<0.0002	<0.0002			
3/22/2017	0.00011 (J)						<0.0002		
3/23/2017		0.00013 (J)		0.00013 (J)	0.00013 (J)	<0.0002			
5/24/2017	<0.0002	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002		
3/28/2018	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002			
3/29/2018							<0.0002		
2/11/2019	<0.0002				<0.0002	<0.0002			
2/12/2019			<0.0002	<0.0002			<0.0002		
4/17/2019	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002			
4/18/2019							<0.0002		
2/21/2020	<0.0002		<0.0002	<0.0002			<0.0002		
2/22/2020					<0.0002	<0.0002			
10/30/2020	<0.0002		<0.0002	0.000497	<0.0002	<0.0002			
11/2/2020							<0.0002		
3/17/2021					<0.0002	<0.0002			
3/26/2021	<0.0002		<0.0002	<0.0002			0.000235		
10/5/2021	<0.0002				<0.0002		0.000151 (J)		
10/6/2021			<0.0002	<0.0002		<0.0002			
3/16/2022	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	0.0012		
10/5/2022	<0.0002			<0.0002	<0.0002				
10/6/2022						<0.0002	<0.0002		
4/20/2023	<0.0002		<0.0002	<0.0002					
4/21/2023					<0.0002	<0.0002	<0.0002		
10/24/2023	<0.0002		<0.0002				<0.0002		
10/25/2023				<0.0002	<0.0002	<0.0002			
3/20/2024	0.000141 (J)					0.000134 (J)			
3/21/2024			0.00015 (J)	0.000133 (J)	0.000135 (J)		0.000143 (J)		
10/2/2024	<0.0002		<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002

Constituent: Molybdenum (mg/L) Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

BAW-1 (bg) BAW-2 (bg) BAW-2A (bg) BAW-3 BAW-4 BAW-5 BAW-7 PZ-8 PZ-9 3/23/2016 <0.005 0.0019 (J) < 0.005 <0.005 0.0026 (J) <0.005 <0.005 5/17/2016 <0.005 0.0011 (J) <0.005 5/18/2016 0.00096 (J) < 0.005 7/12/2016 <0.005 <0.005 7/13/2016 0.0017 (J) < 0.005 <0.005 0.0079 (J) 9/13/2016 <0.005 0.0038 (J) <0.005 9/14/2016 <0.005 0.0018 (J) < 0.005 11/19/2016 <0.005 <0.015 <0.005 <0.005 0.0014 (J) <0.005 1/17/2017 <0.005 <0.015 < 0.005 <0.005 1/18/2017 <0.005 0.001 (J) 3/22/2017 <0.005 0.0038 (J) 3/23/2017 <0.015 < 0.005 < 0.005 <0.015 5/24/2017 <0.005 <0.015 < 0.005 < 0.005 0.0014 (J) <0.005 3/28/2018 <0.005 <0.005 <0.005 <0.005 <0.015 3/29/2018 <0.005 11/8/2018 <0.005 <0.005 <0.005 11/9/2018 <0.005 <0.015 <0.005 2/11/2019 <0.005 <0.005 <0.015 2/12/2019 <0.005 <0.005 <0.005 4/17/2019 <0.005 <0.005 <0.005 <0.005 <0.015 4/18/2019 < 0.005 2/21/2020 <0.005 <0.005 <0.005 <0.005 0.000616 (J) 2/22/2020 0.000627 (J) 4/14/2020 < 0.005 < 0.005 < 0.005 < 0.005 0.000747 (J) < 0.005 10/30/2020 <0.005 <0.005 <0.005 <0.005 <0.015 11/2/2020 <0.005 0.0032 (J) 0.00328 (J) 3/17/2021 3/26/2021 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 10/5/2021 0.00109 (J) 10/6/2021 <0.005 <0.005 0.00364 (J) <0.005 <0.005 0.00533 3/16/2022 <0.005 0.000916 (J) <0.005 10/5/2022 <0.005 < 0.005 0.000939 (J) 10/6/2022 0.00424 (J) <0.005 4/20/2023 <0.005 <0.005 < 0.005 4/21/2023 0.00109 (J) 0.00651 <0.005 10/24/2023 <0.005 <0.005 <0.005 10/25/2023 <0.005 0.0036 (J) < 0.005 3/20/2024 <0.005 0.00366 (J) 3/21/2024 <0.005 <0.005 0.000937 (J) <0.005 10/2/2024 0.0115 <0.005 <0.005 < 0.005 0.00108 (J) <0.005 0.00213 (J) 0.00335 (J)

Constituent: pH (SU) Analysis Run 11/11/2024 2:45 PM

		BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
з	3/23/2016	5.12	5.52		5.05	5.38	6.64	4.89		
5	5/17/2016	5.23				5.32	6.52	4.92		
5	5/18/2016		5.24		4.86					
7	7/12/2016	5.77						4.93		
7	7/13/2016		5.17		5.11	5.31	6.63			
g	9/13/2016	4.98					6.46	4.76		
g	9/14/2016		5.04		4.84	5.21				
1	1/19/2016	4.82	4.88		4.74	5.12	6.38	4.56		
1	/17/2017	5.04	5.04		4.95			4.86		
1	/18/2017					5.22	6.47			
З	3/22/2017	4.73						4.66		
3	3/23/2017		4.66		4.66	5.01	6.19			
5	5/24/2017	5.01	4.93		4.86	5.19	6.34	4.83		
1	0/16/2017	4.59	4.65		4.47	4.96	6.23	4.53		
З	3/28/2018	4.87		5.39	4.93	5.23	6.22			
З	3/29/2018							4.87		
e	6/2/2018	4.92		5.06	4.83	5.22	6.24	4.87		
1	1/8/2018	5			4.83	5.29				
1	1/9/2018			4.92			6.27	4.92		
2	2/11/2019	4.7				5	6.08			
2	2/12/2019			4.86	4.65			4.79		
4	1/17/2019	4.9		4.79	4.71	5.13	6.14			
4	/18/2019							4.9		
2	2/21/2020	4.86		4.73	4.55			4.8		
2	2/22/2020					5.3	6.13			
4	l/14/2020	5.23		4.87	4.7	5.45	6.26	4.94		
1	0/30/2020	5		4.87	4.8	5.32	6.19			
1	1/2/2020							4.92		
З	3/17/2021					5.62	6.14			
З	3/26/2021	4.86		4.7	4.54			4.67		
1	0/5/2021	5				5.72		4.84		
1	0/6/2021			4.77	4.63		6.03			
3	3/16/2022	4.92		4.91	4.64	5.56	6.2	4.75		
	0/5/2022	4.91			4.51	5.57				
1	0/6/2022						6.27	4.71		
4	/20/2023	4.89		4.83	4.49					
	/21/2023					5.45	6.09	4.95		
	0/24/2023	4.99		4.98				4.91		
	0/25/2023				4.43	5.42	6.11			
	3/20/2024	4.93					6.2			
	8/21/2024			4.86	4.39	5.47		4.89		
1	0/2/2024	4.94		4.95	4.52	5.51	6.14	4.87	6.02	6.14

Constituent: Selenium (mg/L) Analysis Run 11/11/2024 2:45 PM

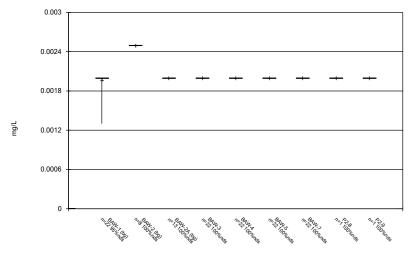
	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2016	<0.005	0.00041 (J)		0.00033 (J)	<0.005	<0.005	<0.005		
5/17/2016	<0.005				<0.005	<0.005	0.00026 (J)		
5/18/2016		<0.0013		<0.005					
7/12/2016	<0.005						<0.005		
7/13/2016		<0.0013		0.00041 (J)	<0.005	<0.005			
9/13/2016	<0.005					<0.005	0.00031 (J)		
9/14/2016		<0.0013		0.00079 (J)	<0.005				
11/19/2016	<0.005	<0.0013		<0.005	<0.005	<0.005	<0.005		
1/17/2017	<0.005	<0.0013		<0.005			<0.005		
1/18/2017					<0.005	<0.005			
3/22/2017	<0.005						0.0021		
3/23/2017		<0.0013		<0.005	<0.005	<0.005			
5/24/2017	<0.005	0.00026 (J)		0.00028 (J)	<0.005	0.00033 (J)	0.00026 (J)		
3/28/2018	<0.005		0.00024 (J)	0.00038 (J)	<0.005	<0.005			
3/29/2018							0.00036 (J)		
6/2/2018	0.00064 (J)		<0.005	0.00031 (J)	<0.005	<0.005	<0.005		
11/8/2018	0.0025			0.00088 (J)	<0.005				
11/9/2018			0.00098 (J)			<0.005	<0.005		
2/11/2019	<0.005				<0.005	<0.005			
2/12/2019			<0.005	<0.005			<0.005		
4/17/2019	<0.005		<0.005	<0.005	<0.005	<0.005			
4/18/2019							<0.005		
2/21/2020	<0.005		<0.005	<0.005			<0.005		
2/22/2020					<0.005	<0.005			
10/30/2020	<0.005		<0.005	<0.005	<0.005	<0.005			
11/2/2020							<0.005		
3/17/2021					<0.005	<0.005			
3/26/2021	<0.005		<0.005	<0.005			<0.005		
10/5/2021	<0.005				<0.005		<0.005		
10/6/2021			<0.005	<0.005		<0.005			
3/16/2022	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005		
10/5/2022	<0.005			<0.005	<0.005				
10/6/2022						<0.005	<0.005		
4/20/2023	<0.005		<0.005	<0.005					
4/21/2023					<0.005	<0.005	<0.005		
10/24/2023	<0.005		<0.005				<0.005		
10/25/2023				<0.005	<0.005	<0.005			
3/20/2024	<0.005					<0.005			
3/21/2024			<0.005	<0.005	<0.005		<0.005		
10/2/2024	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Constituent: Sulfate (mg/L) Analysis Run 11/11/2024 2:45 PM

				1 Idini		dulient company	Bulu. Bollonn in Oc			
		BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23	/2016	<5	<5		<5	2.3 (J)	4.5 (J)	<5		
5/17	/2016	<5				2.3 (J)	17	<5		
5/18	/2016		<5		<5					
7/12	/2016	<5						<5		
7/13	/2016		<5		1.5 (J)	2.4 (J)	15			
9/13	/2016	<5					3.4 (J)	<5		
9/14	/2016		<5		1.6 (J)	2.4 (J)				
11/1	9/2016	<5	<5		1.8 (J)	3.3 (J)	3.5 (J)	1.5 (J)		
1/17	/2017	<5	<5		<5			<5		
1/18	/2017					2.3 (J)	3.2 (J)			
3/22	/2017	<5						1.9 (J)		
3/23	/2017		1.8 (J)		2.3 (J)	3.2 (J)	3.7 (J)			
5/24	/2017	<5	1.5 (J)		1.6 (J)	2.4 (J)	8.8	<5		
10/1	6/2017	<5	<5		<5	2 (J)	4 (J)	<5		
3/28	/2018	<5		1.7 (J)	1.6 (J)	2.4 (J)	3.3 (J)			
3/29	/2018							<5		
6/2/2	2018	1.9 (J)		3 (J)	2.9 (J)	3.7 (J)	4.3 (J)	2.8 (J)		
11/8	/2018	<5			1.6 (J)	2.7 (J)				
11/9	/2018			<5			2.3 (J)	<5		
2/11	/2019	0.774 (J)				2.5	2.64			
2/12	/2019			1.97	1.97			1.35		
4/17	/2019	1.43		2.82	2.5	3.15	3.27			
4/18	/2019							1.82		
9/27	/2019	1.03		2.19				1.22		
9/30	/2019				1.64	2.34	2.82			
4/14	/2020	0.928 (J)		2.71	1.62	2.99	4.2	1.18		
10/3	0/2020	0.91 (J)		3.97	1.44	2.84	4.76			
11/2	/2020							1.08		
3/17	/2021					4.35	4.07			
3/26	/2021	1.49		2.04	3.25			2		
10/5	/2021	1.13				5.02		2.55		
10/6	/2021			5.37	5.07		14.5			
3/16	/2022	3.6		5.37	6.85	5.64	23.1	5.93		
10/5	/2022	1.34			6.07	4.12				
10/6	/2022						19.5	61.4		
4/20	/2023	2.6		7.32	8.2					
4/21	/2023					5	47.2	8.82		
10/2	4/2023	1.8		7.68				2.11		
10/2	5/2023				8.72	12.5	37.5			
3/20	/2024	1.41					30			
3/21	/2024			6.92	7.6	12.1		1.66		
10/2	/2024	1.79		6.73	7.63	5.89	40.1	1.61	19	24.6

Constituent: Thallium (mg/L) Analysis Run 11/11/2024 2:45 PM

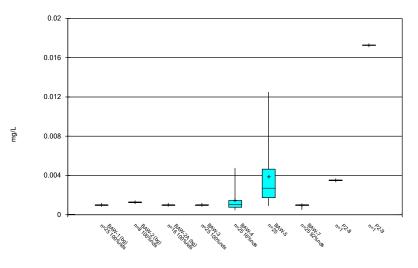
	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2016	<0.001	<0.0005		<0.001	<0.001	<0.001	<0.001		
5/17/2016	<0.001				<0.001	<0.001	<0.001		
5/18/2016		<0.0005		<0.001					
7/12/2016	<0.001						<0.001		
7/13/2016		<0.0005		<0.001	<0.001	<0.001			
9/13/2016	<0.001					<0.001	<0.001		
9/14/2016		<0.0005		9.5E-05 (J)	<0.001				
11/19/2016	<0.001	<0.0005		<0.001	<0.001	<0.001	<0.001		
1/17/2017	<0.001	<0.0005		<0.001			<0.001		
1/18/2017					<0.001	<0.001			
3/22/2017	<0.001						<0.001		
3/23/2017		<0.0005		<0.001	<0.001	<0.001			
5/24/2017	<0.001	<0.0005		<0.001	<0.001	<0.001	<0.001		
3/28/2018	<0.001		<0.001	<0.001	<0.001	<0.001			
3/29/2018							<0.001		
11/8/2018	<0.001			8.5E-05 (J)	<0.001				
11/9/2018			<0.001			<0.001	<0.001		
2/11/2019	<0.001				<0.001	<0.001			
2/12/2019			<0.001	<0.001			<0.001		
4/17/2019	<0.001		<0.001	<0.001	<0.001	<0.001			
4/18/2019							<0.001		
2/21/2020	<0.001		0.000486 (J)	0.000276 (J)			<0.001		
2/22/2020					<0.001	<0.001			
4/14/2020	<0.001		<0.001	0.000158 (J)	<0.001	<0.001	<0.001		
10/30/2020	<0.001		<0.001	<0.001	<0.001	<0.001			
11/2/2020							<0.001		
3/17/2021					<0.001	<0.001			
3/26/2021	<0.001		<0.001	<0.001			<0.001		
10/5/2021	<0.001				<0.001		0.000153 (J)		
10/6/2021			<0.001	<0.001		<0.001			
3/16/2022	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001		
10/5/2022	<0.001			<0.001	<0.001				
10/6/2022						<0.001	<0.001		
4/20/2023	<0.001		<0.001	<0.001					
4/21/2023					<0.001	<0.001	<0.001		
10/24/2023	<0.001		<0.001				<0.001		
10/25/2023				<0.001	<0.001	<0.001			
3/20/2024	0.000549 (J)					<0.001			
3/21/2024			<0.001	<0.001	<0.001		<0.001		
10/2/2024	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001


Constituent: Total Dissolved Solids (mg/L) Analysis Run 11/11/2024 2:45 PM

	BAW-1 (bg)	BAW-2 (bg)	BAW-2A (bg)	BAW-3	BAW-4	BAW-5	BAW-7	PZ-8	PZ-9
3/23/2016	20	30		30	46	88	22		
5/17/2016	24				52	110	30		
5/18/2016		20		20					
7/12/2016	24						26		
7/13/2016		40		40	36	120			
9/13/2016	18					92	28		
9/14/2016		10		<10	38				
11/19/2016	20	28		22	50	94	38		
1/17/2017	<10	14		14			10		
1/18/2017					18	68			
3/22/2017	12						22		
3/23/2017		16		28	32	80			
5/24/2017	16 (D)	12		18	32	90	22		
10/16/2017	58	50		36	64	110	34		
3/28/2018	18		30	36	56	86			
3/29/2018							50		
6/2/2018	6		26	6	22	72	<10		
11/8/2018	12			34	170				
11/9/2018			94			38	20		
2/11/2019	<10				23	60			
2/12/2019			22	12			<10		
4/17/2019	16		22	27	37	82			
4/18/2019							39		
9/27/2019	26		25				<10		
9/30/2019				<10	<10	55			
4/14/2020	25		38	31	30	77	24		
10/30/2020	34		48	40	40	88			
11/2/2020							28		
3/17/2021					44	79			
3/26/2021	24		24	37			38		
10/5/2021	26				75		45		
10/6/2021			61	30		114			
3/16/2022	30		26	26	66	133	37		
10/5/2022	30			32	52				
10/6/2022						155	135		
4/20/2023	26		30	31					
4/21/2023					50	204	47		
10/24/2023	28		35				42		
10/25/2023				19	47	161			
3/20/2024	29					164			
3/21/2024			38	31	64		40		
10/2/2024	28		49	30	40	195	33	108	137

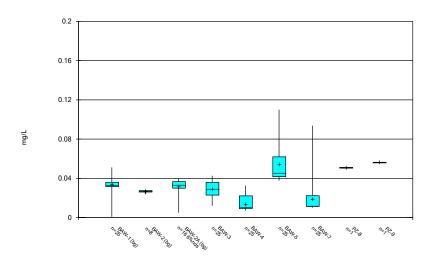
Box Plots

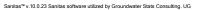
Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

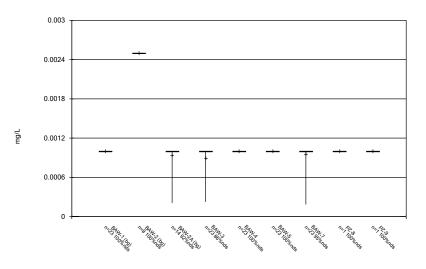
Constituent: Antimony Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

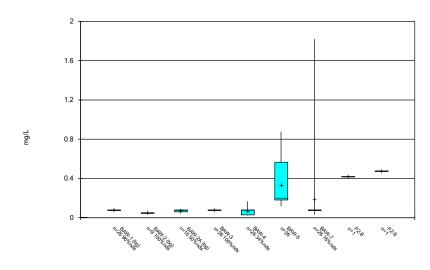

Constituent: Arsenic Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

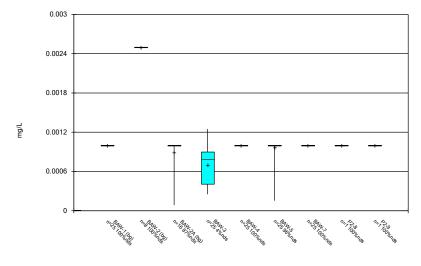

Box & Whiskers Plot

Constituent: Barium Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

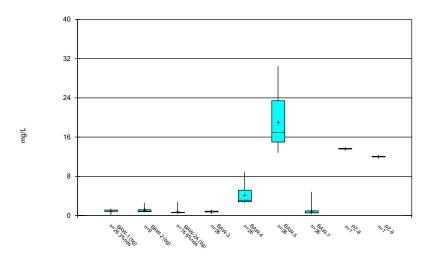
Box & Whiskers Plot



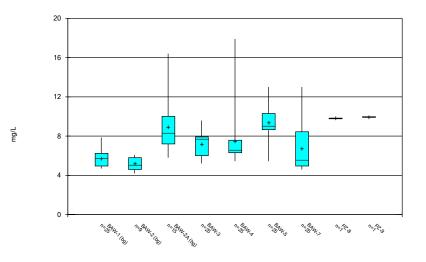
Constituent: Beryllium Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot


Constituent: Boron Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

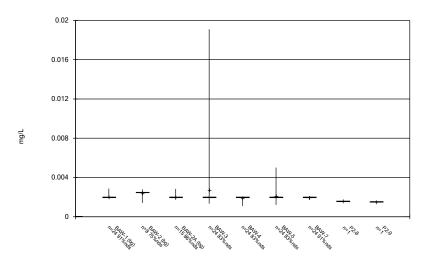
Constituent: Cadmium Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

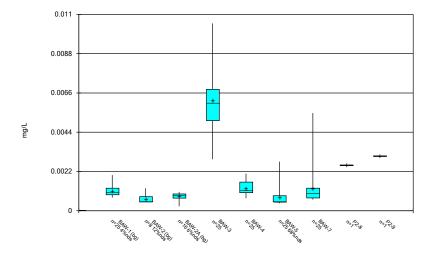
Constituent: Calcium Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot



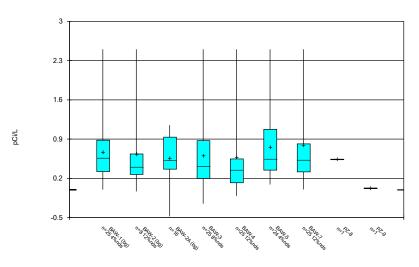
Constituent: Chloride Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

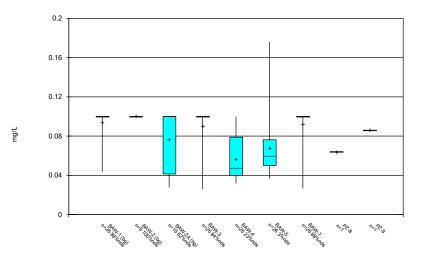

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Box & Whiskers Plot

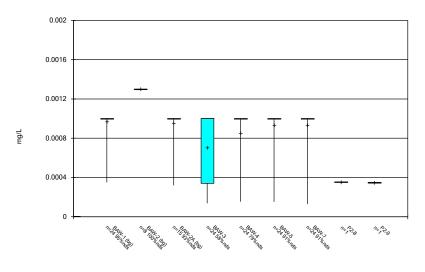

Constituent: Chromium Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Cobalt Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

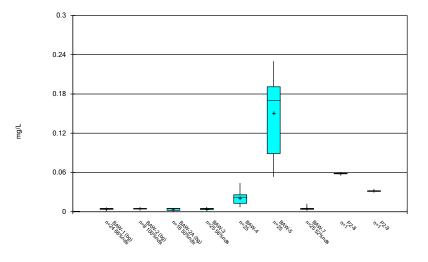

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Combined Radium 226 + 228 Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

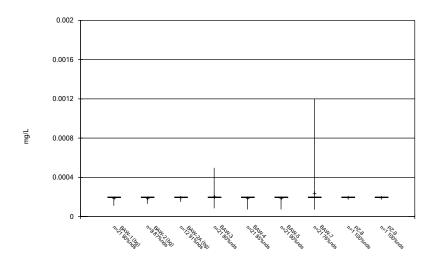

Box & Whiskers Plot

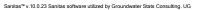
Constituent: Fluoride Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG


Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

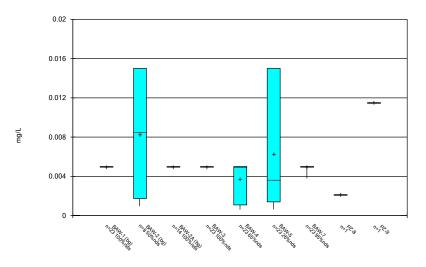
Box & Whiskers Plot

Box & Whiskers Plot

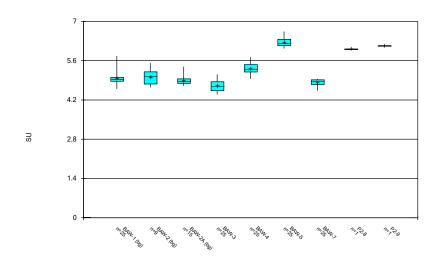

Constituent: Lead Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

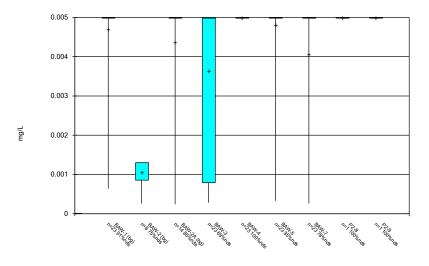

Constituent: Lithium Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Mercury Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Box & Whiskers Plot

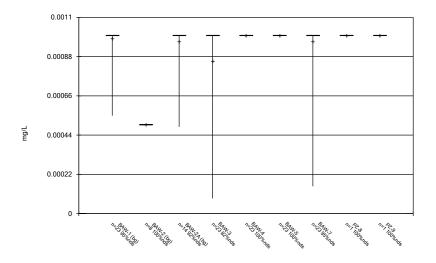

Constituent: Molybdenum Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

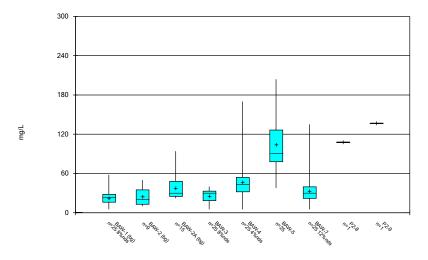
Box & Whiskers Plot


Box & Whiskers Plot

Constituent: Selenium Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Sulfate Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Thallium Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: pH Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Total Dissolved Solids Analysis Run 11/11/2024 2:45 PM Plant Daniel Client: Southern Company Data: Bottom Ash CCR **Outlier Summary**

Outlier Summary

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 2:39 PM

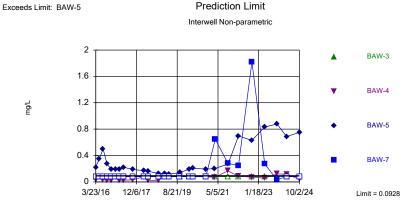
BAW-1 Lithium (mg/L)

7/12/2016 0.012 (o)

Prediction Limits - Interwell

Appendix III - Interwell Prediction Limits - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 2:48 PM


Constituent	Well	Upper Lir	<u>n. Lower L</u>	im. Date	Observ.	<u>Sig.</u> Bg	N <u>%NDs</u>	ND Adj.	Transform	Alpha	Method
Boron (mg/L)	BAW-5	0.0928	n/a	10/2/2024	0.751	Yes 51	82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BAW-4	2.8	n/a	10/2/2024	5.03	Yes 51	3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
Calcium (mg/L)	BAW-5	2.8	n/a	10/2/2024	30.5	Yes 51	3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
pH (SU)	BAW-3	5.77	4.59	10/2/2024	4.52	Yes 49	0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
pH (SU)	BAW-5	5.77	4.59	10/2/2024	6.14	Yes 49	0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-5	7.68	n/a	10/2/2024	40.1	Yes 49	38.78	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	BAW-5	57.74	n/a	10/2/2024	195	Yes 49	4.082	None	sqrt(x)	0.00188	Param Inter 1 of 2

Appendix III - Interwell Prediction Limits - All Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 2:48 PM

Constituent	Well	Upper Li	m. Lower L	<u>im. Date</u>	Observ.	<u>Sig.</u> B	<u>8g N %NDs</u>	ND Adj.	Transform	Alpha	Method
Boron (mg/L)	BAW-3	0.0928	n/a	10/2/2024	0.08ND	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-4	0.0928	n/a	10/2/2024	0.0389J	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-5	0.0928	n/a	10/2/2024	0.751	Yes 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Boron (mg/L)	BAW-7	0.0928	n/a	10/2/2024	0.08ND	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Calcium (mg/L)	BAW-3	2.8	n/a	10/2/2024	0.781	No 5	3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
Calcium (mg/L)	BAW-4	2.8	n/a	10/2/2024	5.03	Yes 5	3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
Calcium (mg/L)	BAW-5	2.8	n/a	10/2/2024	30.5	Yes 5	1 3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
Calcium (mg/L)	BAW-7	2.8	n/a	10/2/2024	1.08	No 5	3.922	n/a	n/a	0.0007231	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-3	16.4	n/a	10/2/2024	5.35	No 4	9 0	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-4	16.4	n/a	10/2/2024	6.42	No 4	9 0	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-5	16.4	n/a	10/2/2024	10.7	No 4	9 0	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Chloride (mg/L)	BAW-7	16.4	n/a	10/2/2024	7.43	No 4	9 0	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Fluoride (mg/L)	BAW-3	0.1	n/a	10/2/2024	0.026J	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-4	0.1	n/a	10/2/2024	0.04J	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-5	0.1	n/a	10/2/2024	0.0865J	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	BAW-7	0.1	n/a	10/2/2024	0.1ND	No 5	1 82.35	n/a	n/a	0.0007231	NP Inter (NDs) 1 of 2
pH (SU)	BAW-3	5.77	4.59	10/2/2024	4.52	Yes 4	9 0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
pH (SU)	BAW-4	5.77	4.59	10/2/2024	5.51	No 4	9 0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
pH (SU)	BAW-5	5.77	4.59	10/2/2024	6.14	Yes 4	9 0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
pH (SU)	BAW-7	5.77	4.59	10/2/2024	4.87	No 4	9 0	n/a	n/a	0.001569	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-3	7.68	n/a	10/2/2024	7.63	No 4	9 38.78	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-4	7.68	n/a	10/2/2024	5.89	No 4	9 38.78	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-5	7.68	n/a	10/2/2024	40.1	Yes 4	9 38.78	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Sulfate (mg/L)	BAW-7	7.68	n/a	10/2/2024	1.61	No 4	9 38.78	n/a	n/a	0.0007847	NP Inter (normality) 1 of 2
Total Dissolved Solids (mg/L)	BAW-3	57.74	n/a	10/2/2024	30	No 4	9 4.082	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-4	57.74	n/a	10/2/2024	40	No 4	9 4.082	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-5	57.74	n/a	10/2/2024	195	Yes 4	9 4.082	None	sqrt(x)	0.00188	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	BAW-7	57.74	n/a	10/2/2024	33	No 4	9 4.082	None	sqrt(x)	0.00188	Param Inter 1 of 2

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

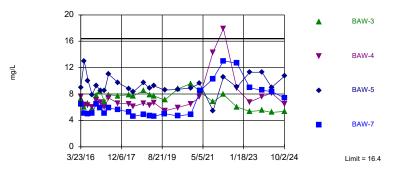
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 51 background values. 82.35% NDs. Annual per-constituent alpha = 0.00577. Individual comparing 4 points to limit.

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Exceeds Limit: BAW-4, BAW-5

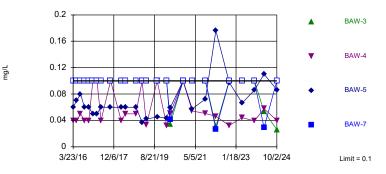
Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. 3.922% NDs. Annual perconstituent alpha = 0.00577. Individual comparison alpha = 0.0007231 (1 of 2). Comparing 4 points to limit.


Constituent: Boron Analysis Run 11/11/2024 2:47 PM View: Interwell Plant Daniel Client: Southern Company Data: Bottom Ash CCR

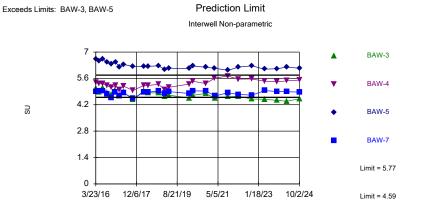
Constituent: Calcium Analysis Run 11/11/2024 2:47 PM View: Interwell Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG


Within Limit

Prediction Limit Interwell Non-parametric

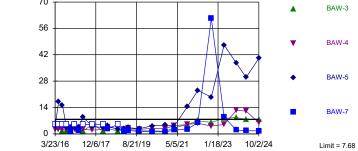
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 49 background values. Annual per-constituent alpha = 0.006261. Individual comparison alpha = 0.0007847 (1 of 2). Comparing 4 points to limit. Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit Prediction



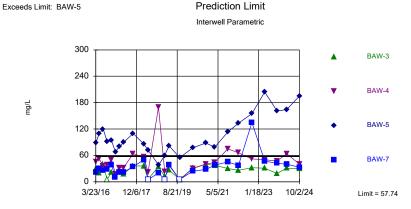
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 51 background values. 82.35% NDs. Annual per-constituent alpha = 0.00577. Individual comparison alpha = 0.0007231 (1 of 2). Comparing 4 points to limit.

Constituent: Chloride Analysis Run 11/11/2024 2:47 PM View: Interwell Plant Daniel Client: Southern Company Data: Bottom Ash CCR Constituent: Fluoride Analysis Run 11/11/2024 2:47 PM View: Interwell Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG


Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 49 background values. Annual perconstituent alpha = 0.01252. Individual comparison alpha = 0.001569 (1 of 2). Comparing 4 points to limit.



mg/L

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 49 background values. 38.78% NDs. Annual perconstituent alpha = 0.006261. Individual comparison alpha = 0.0007847 (1 of 2). Comparing 4 points to limit.

Constituent: pH Analysis Run 11/11/2024 2:47 PM View: Interwell Plant Daniel Client: Southern Company Data: Bottom Ash CCR Constituent: Sulfate Analysis Run 11/11/2024 2:47 PM View: Interwell Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Background Data Summary (based on square root transformation): Mean=5.056, Std. Dev.=1.409, n=49, 4.082% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9578, critical = 0.929. Kappa = 1.805 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.00188. Comparing 4 points to limit.

Constituent: Total Dissolved Solids Analysis Run 11/11/2024 2:47 PM View: Interwell Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Boron (mg/L) Analysis Run 11/11/2024 2:48 PM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	<0.08	<0.08	0.22	<0.08	<0.08	0.037 (J)	
5/17/2016	<0.08	<0.08	0.35			<0.08	
5/18/2016				<0.08	<0.08		
7/12/2016	<0.08	<0.08					
7/13/2016			0.5	<0.08	<0.08	0.032 (J)	
9/13/2016	<0.08	<0.08	0.27				
9/14/2016				<0.08	<0.08	0.027 (J)	
11/19/2016	<0.08	<0.08	0.19	<0.08	<0.08	0.024 (J)	
1/17/2017	<0.08	<0.08		<0.08	<0.08		
1/18/2017			0.19			<0.08	
3/22/2017	<0.08	<0.08					
3/23/2017			0.19	<0.08	<0.08	0.024 (J)	
5/24/2017	<0.08	<0.08	0.22	<0.08	<0.08	0.027 (J)	
10/16/2017	<0.08	<0.08	0.19	<0.08	<0.08	0.03 (J)	
3/28/2018	<0.08		0.17	<0.08		<0.08	<0.08
3/29/2018		<0.08					
6/2/2018	<0.08	<0.08	0.16	<0.08		0.025 (J)	<0.08
11/8/2018	<0.08			<0.08		0.024 (J)	
11/9/2018		<0.08	0.13				<0.08
2/11/2019	<0.08		0.126			<0.08	
2/12/2019		<0.08		<0.08			<0.08
4/17/2019	<0.08		0.118	<0.08		<0.08	<0.08
4/18/2019		<0.08					
9/27/2019	<0.08	<0.08					<0.08
9/30/2019			0.14	<0.08		<0.08	
2/21/2020	0.0928	<0.08		<0.08			0.0589 (J)
2/22/2020			0.193			<0.08	
4/14/2020	<0.08	<0.08	0.209	<0.08		<0.08	0.0424 (J)
10/30/2020	<0.08		0.194	<0.08		<0.08	0.0495 (J)
11/2/2020		<0.08					
3/17/2021			0.2			0.0673 (J)	
3/26/2021	<0.08	0.647		<0.08			<0.08
10/5/2021	<0.08	0.281				0.168	
10/6/2021			0.272	<0.08			<0.08
3/16/2022	<0.08	0.247	0.695	<0.08		0.084	0.0717 (J)
10/5/2022	<0.08	1.00	0.001	<0.08		0.0714 (J)	
10/6/2022	-0.00	1.82	0.631	-0.00			0.0711 (1)
4/20/2023	<0.08	0.074	0.001	<0.08		0.050 (1)	0.0711 (J)
4/21/2023	-0.00	0.271	0.831			0.058 (J)	0.0500 (1)
10/24/2023	<0.08	0.0336 (J)	0.977	-0.08		0.100	0.0502 (J)
10/25/2023	<0.08		0.877	<0.08		0.122	
3/20/2024 3/21/2024	<0.08	<0.08	0.686	<0.08		0.115	0.0604 (J)
3/21/2024 10/2/2024	<0.08	<0.08 <0.08	0.751	<0.08 <0.08		0.0389 (J)	0.0647 (J)
10/2/2024	-0.00	-0.00	0.701	-0.00		0.0009 (0)	0.0077 (0)

Constituent: Calcium (mg/L) Analysis Run 11/11/2024 2:48 PM View: Interwell

2/22/22/2	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	<0.5	0.65	18	1.1	2.6	3.7	
5/17/2016	0.84	0.68	23	0.56	1.2	3.4	
5/18/2016	0.70	0.62		0.56	1.3		
7/12/2016	0.79	0.62	10	0.05	1 1	2.8	
7/13/2016 9/13/2016	0.42	0.25	18 19	0.95	1.1	2.8	
9/14/2016	0.42	0.25	19	0.4	1.1	2.6	
9/14/2010 11/19/2016	1.2	0.36	17	0.62	1.1	2.0	
1/17/2017	1.2	0.66	17	1.2	0.87	2.7	
1/18/2017	1.4	0.00	17	1.2	0.87	3.1	
3/22/2017	0.95	0.65	17			5.1	
3/23/2017	0.00	0.00	15	0.87	0.74	2.8	
5/24/2017	1.3	0.72	19	0.81	0.84	3.1	
10/16/2017	0.93	0.7	17	0.86	0.76	3.3	
3/28/2018	1		16	0.97		2.7	2.8
3/29/2018		0.55		,			
6/2/2018	0.93	0.6	15	0.86		2.9	0.71
11/8/2018	1			0.84		3	
11/9/2018		0.59	14				0.61
2/11/2019	1		12.8			2.88	
2/12/2019		0.608		0.856			0.757
4/17/2019	0.893		13	0.711		2.77	0.755
4/18/2019		0.55					
9/27/2019	0.8	0.598					0.663
9/30/2019			13.6	0.826		3.08	
2/21/2020	1.02	0.552		0.841			0.648
2/22/2020			15			3.86	
4/14/2020	0.887	0.532	15.7	0.811		2.95	0.67
10/30/2020	0.945		16.4	1		3.84	0.672
11/2/2020		0.535					
3/17/2021			15.3			6.69	
3/26/2021	0.965	0.848		0.937			0.644
10/5/2021	0.996	0.829				8.57	
10/6/2021			22.8	0.532			<0.5
3/16/2022	1.32	1.28	23.8	0.78		8.94	0.539
10/5/2022	1.42			0.647		5.81	
10/6/2022		4.84	28.2				
4/20/2023	0.996			0.789			0.685
4/21/2023		2.56	26.8			4.87	
10/24/2023	0.918	1.3					0.498 (J)
10/25/2023			25.9	0.875		5.35	
3/20/2024	1.05		28.9				
3/21/2024		1.38		0.818		7.31	0.469 (J)
10/2/2024	1.24	1.08	30.5	0.781		5.03	0.681

Constituent: Chloride (mg/L) Analysis Run 11/11/2024 2:48 PM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	6.5	6.5	9	7.3	5.1	7.6	
5/17/2016	4.9	5.1	13			6.4	
5/18/2016				6	4.2		
7/12/2016	5.3	5					
7/13/2016			10	6.6	4.7	6.3	
9/13/2016	4.8 (F1)	5.1	7.9				
9/14/2016				5.8	4.5	6	
11/19/2016	7.1	6.5	9.3	7.8	6.1	7	
1/17/2017	5.8	5.9		8.4	5.4		
1/18/2017			8.5			6.7	
3/22/2017	4.9	5.1					
3/23/2017			8.5	6.8	5.1	6	
5/24/2017	5.9	5.9	11	7.9	5.5	7.4	
10/16/2017	5.7	5.6	9.7	7.7	6.1	6.6	
3/28/2018	5.7		8.8	7.9		6.5	6.7
3/29/2018		5.3					
6/2/2018	4.7	4.6	8.3	7.7		6.1	5.8
11/8/2018	5.6			8.5		6.6	
11/9/2018		4.9	9.7				7.2
2/11/2019	4.84		8.84			6.31	
2/12/2019		4.72		7.89			8.4
4/17/2019	4.99		9.24	7.71		6.68	8.03
4/18/2019		4.64					
9/27/2019	5.08	5.02					8.37
9/30/2019			8.59	7.07		5.45	
4/14/2020	4.91	4.68	8.71	8.75		5.93	7.57
10/30/2020	5.55		8.93	9.58		6.49	7.59
11/2/2020		4.91					
3/17/2021			9.6			7.55	
3/26/2021	5.92	8.5		8.32			6.21
10/5/2021	6.21	10.3				14.3	
10/6/2021			5.44	6.8			16.4
3/16/2022	7.85	13	10.6	7.94		17.9	11.5
10/5/2022	6.75			6.04		8.84	
10/6/2022		12.7	9.04				
4/20/2023	5.22			5.36			9.6
4/21/2023		8.95	11.3			6.78	
10/24/2023	6.29	8.57					10
10/25/2023			11.3	5.5		7.6	
3/20/2024	6.17		9				
3/21/2024		8.37		5.21		8.17	9.52
10/2/2024	6.38	7.43	10.7	5.35		6.42	10.7

Constituent: Fluoride (mg/L) Analysis Run 11/11/2024 2:48 PM View: Interwell

					. ,		
	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	<0.1	<0.1	0.06 (J)	<0.1	<0.1	0.04 (J)	
5/17/2016	<0.1	<0.1	0.07 (J)			0.04 (J)	
5/18/2016				<0.1	<0.1		
7/12/2016	<0.1	<0.1					
7/13/2016			0.08 (J)	<0.1	<0.1	0.05 (J)	
9/13/2016	<0.1	<0.1	0.06 (J)				
9/14/2016				<0.1	<0.1	0.04 (J)	
11/19/2016	<0.1	<0.1	0.06 (J)	<0.1	<0.1	0.04 (J)	
1/17/2017	<0.1	<0.1		<0.1	<0.1		
1/18/2017			0.05 (J)			<0.1	
3/22/2017	<0.1	<0.1					
3/23/2017			0.05 (J)	<0.1	<0.1	<0.1	
5/24/2017	<0.1	<0.1 (D)	0.06 (J)	<0.1	<0.1	0.04 (J)	
10/16/2017	<0.1	<0.1	0.06 (J)	<0.1	<0.1	<0.1	
3/28/2018	<0.1		0.06 (J)	<0.1		0.04 (J)	<0.1
3/29/2018		<0.1					
6/2/2018	<0.1	<0.1	0.06 (J)	<0.1		0.05 (J)	<0.1
11/8/2018	<0.1			<0.1		0.05 (J)	
11/9/2018		<0.1	0.06 (J)				<0.1
2/11/2019	<0.1		0.0368 (J)			<0.1	
2/12/2019		<0.1		<0.1			<0.1
4/17/2019	<0.1		0.0421 (J)	<0.1		0.033 (J)	<0.1
4/18/2019		<0.1					
9/27/2019	<0.1	<0.1					0.0313 (J)
9/30/2019			0.045 (J)	<0.1		<0.1	
2/21/2020	<0.1	<0.1		<0.1			<0.1
2/22/2020			0.0434 (J)			0.0317 (J)	
4/14/2020	0.0532 (J)	0.0415 (J)	0.059 (J)	0.034 (J)		0.0508 (J)	0.0537 (J)
10/30/2020	<0.1		<0.1	<0.1		<0.1	<0.1
11/2/2020		<0.1					
3/17/2021			0.0575 (J)			0.0544 (J)	
3/26/2021	<0.1	<0.1		<0.1			<0.1
10/5/2021	0.0499 (J)	<0.1				0.0505 (J)	
10/6/2021			0.0725 (J)	<0.1			<0.1
3/16/2022	<0.1	0.0266 (J)	0.176	0.0307 (J)		0.0462 (J)	<0.1
10/5/2022	<0.1			<0.1		0.0322 (J)	
10/6/2022		<0.1	0.0972 (J)				
4/20/2023	<0.1			<0.1			0.0278 (J)
4/21/2023		<0.1	0.0665 (J)			0.0441 (J)	
10/24/2023	<0.1	<0.1					0.0276 (J)
10/25/2023	0.0400.0		0.0858 (J)	<0.1		0.0393 (J)	
3/20/2024	0.0436 (J)	0.0000 ("	0.11	0.0507 (**		0.0570 ("	
3/21/2024	-0.1	0.0292 (J)	0.0005 ())	0.0537 (J)		0.0578 (J)	0.0515 (J)
10/2/2024	<0.1	<0.1	0.0865 (J)	0.026 (J)		0.04 (J)	0.0284 (J)

Constituent: pH (SU) Analysis Run 11/11/2024 2:48 PM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)	
3/23/2016	5.12	4.89	6.64	5.05	5.52	5.38		
5/17/2016	5.23	4.92	6.52			5.32		
5/18/2016				4.86	5.24			
7/12/2016	5.77	4.93						
7/13/2016			6.63	5.11	5.17	5.31		
9/13/2016	4.98	4.76	6.46					
9/14/2016				4.84	5.04	5.21		
11/19/2016	4.82	4.56	6.38	4.74	4.88	5.12		
1/17/2017	5.04	4.86		4.95	5.04			
1/18/2017			6.47			5.22		
3/22/2017	4.73	4.66						
3/23/2017			6.19	4.66	4.66	5.01		
5/24/2017	5.01	4.83	6.34	4.86	4.93	5.19		
10/16/2017	4.59	4.53	6.23	4.47	4.65	4.96		
3/28/2018	4.87		6.22	4.93		5.23	5.39	
3/29/2018		4.87						
6/2/2018	4.92	4.87	6.24	4.83		5.22	5.06	
11/8/2018	5			4.83		5.29		
11/9/2018		4.92	6.27				4.92	
2/11/2019	4.7		6.08			5		
2/12/2019		4.79		4.65			4.86	
4/17/2019	4.9		6.14	4.71		5.13	4.79	
4/18/2019		4.9						
2/21/2020	4.86	4.8		4.55			4.73	
2/22/2020			6.13			5.3		
4/14/2020	5.23	4.94	6.26	4.7		5.45	4.87	
10/30/2020	5		6.19	4.8		5.32	4.87	
11/2/2020		4.92						
3/17/2021			6.14			5.62		
3/26/2021	4.86	4.67		4.54			4.7	
10/5/2021	5	4.84				5.72		
10/6/2021			6.03	4.63			4.77	
3/16/2022	4.92	4.75	6.2	4.64		5.56	4.91	
10/5/2022	4.91			4.51		5.57		
10/6/2022		4.71	6.27					
4/20/2023	4.89			4.49			4.83	
4/21/2023		4.95	6.09			5.45		
10/24/2023	4.99	4.91					4.98	
10/25/2023			6.11	4.43		5.42		
3/20/2024	4.93		6.2					
3/21/2024		4.89		4.39		5.47	4.86	
10/2/2024	4.94	4.87	6.14	4.52		5.51	4.95	

Constituent: Sulfate (mg/L) Analysis Run 11/11/2024 2:48 PM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	<5	<5	4.5 (J)	<5	<5	2.3 (J)	
5/17/2016	<5	<5	17			2.3 (J)	
5/18/2016				<5	<5		
7/12/2016	<5	<5					
7/13/2016			15	1.5 (J)	<5	2.4 (J)	
9/13/2016	<5	<5	3.4 (J)				
9/14/2016				1.6 (J)	<5	2.4 (J)	
11/19/2016	<5	1.5 (J)	3.5 (J)	1.8 (J)	<5	3.3 (J)	
1/17/2017	<5	<5		<5	<5		
1/18/2017			3.2 (J)			2.3 (J)	
3/22/2017	<5	1.9 (J)					
3/23/2017			3.7 (J)	2.3 (J)	1.8 (J)	3.2 (J)	
5/24/2017	<5	<5	8.8	1.6 (J)	1.5 (J)	2.4 (J)	
10/16/2017	<5	<5	4 (J)	<5	<5	2 (J)	
3/28/2018	<5		3.3 (J)	1.6 (J)		2.4 (J)	1.7 (J)
3/29/2018		<5					
6/2/2018	1.9 (J)	2.8 (J)	4.3 (J)	2.9 (J)		3.7 (J)	3 (J)
11/8/2018	<5			1.6 (J)		2.7 (J)	
11/9/2018		<5	2.3 (J)				<5
2/11/2019	0.774 (J)		2.64			2.5	
2/12/2019		1.35		1.97			1.97
4/17/2019	1.43		3.27	2.5		3.15	2.82
4/18/2019		1.82					
9/27/2019	1.03	1.22					2.19
9/30/2019			2.82	1.64		2.34	
4/14/2020	0.928 (J)	1.18	4.2	1.62		2.99	2.71
10/30/2020	0.91 (J)		4.76	1.44		2.84	3.97
11/2/2020		1.08					
3/17/2021			4.07			4.35	
3/26/2021	1.49	2		3.25			2.04
10/5/2021	1.13	2.55				5.02	
10/6/2021			14.5	5.07			5.37
3/16/2022	3.6	5.93	23.1	6.85		5.64	5.37
10/5/2022	1.34			6.07		4.12	
10/6/2022		61.4	19.5				
4/20/2023	2.6			8.2			7.32
4/21/2023		8.82	47.2			5	
10/24/2023	1.8	2.11					7.68
10/25/2023			37.5	8.72		12.5	
3/20/2024	1.41		30				
3/21/2024		1.66		7.6		12.1	6.92
10/2/2024	1.79	1.61	40.1	7.63		5.89	6.73

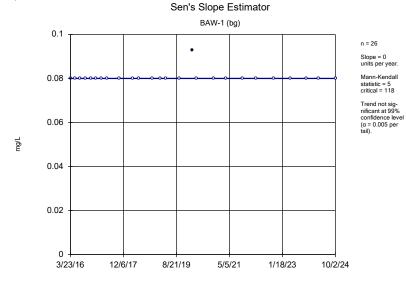
Constituent: Total Dissolved Solids (mg/L) Analysis Run 11/11/2024 2:48 PM View: Interwell

	BAW-1 (bg)	BAW-7	BAW-5	BAW-3	BAW-2 (bg)	BAW-4	BAW-2A (bg)
3/23/2016	20	22	88	30	30	46	
5/17/2016	24	30	110			52	
5/18/2016				20	20		
7/12/2016	24	26					
7/13/2016			120	40	40	36	
9/13/2016	18	28	92				
9/14/2016				<10	10	38	
11/19/2016	20	38	94	22	28	50	
1/17/2017	<10	10		14	14		
1/18/2017			68			18	
3/22/2017	12	22					
3/23/2017			80	28	16	32	
5/24/2017	16 (D)	22	90	18	12	32	
10/16/2017	58	34	110	36	50	64	
3/28/2018	18		86	36		56	30
3/29/2018		50					
6/2/2018	6	<10	72	6		22	26
11/8/2018	12			34		170	
11/9/2018		20	38				94
2/11/2019	<10		60			23	
2/12/2019		<10		12			22
4/17/2019	16		82	27		37	22
4/18/2019		39					
9/27/2019	26	<10					25
9/30/2019			55	<10		<10	
4/14/2020	25	24	77	31		30	38
10/30/2020	34		88	40		40	48
11/2/2020		28					
3/17/2021			79			44	
3/26/2021	24	38		37			24
10/5/2021	26	45				75	
10/6/2021			114	30			61
3/16/2022	30	37	133	26		66	26
10/5/2022	30			32		52	
10/6/2022		135	155				
4/20/2023	26			31			30
4/21/2023		47	204			50	
10/24/2023	28	42					35
10/25/2023			161	19		47	
3/20/2024	29		164				
3/21/2024		40	105	31		64	38
10/2/2024	28	33	195	30		40	49

Trend Tests - Prediction Limit Exceedances

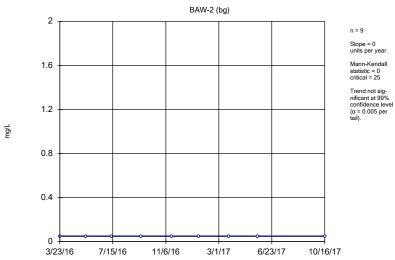
Appendix III - Trend Test Summary - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 2:54 PM

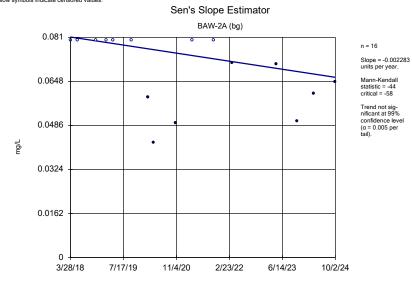

Constituent	Well	Slope	Colo	Critical	Sig.	N	%NDs	Normality	Xform	Alpha	Method
Constituent	vven	Slope	Calc.	Cilical	<u>Sig.</u>	<u>N</u>	70INDS	Normailty	<u>XIOIIII</u>	Alpha	Method
Calcium (mg/L)	BAW-2 (bg)	-0.5725	-31	-25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-4	0.3324	152	118	Yes	26	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2 (bg)	-0.5393	-29	-25	Yes	9	0	n/a	n/a	0.01	NP
pH (SU)	BAW-3	-0.05979	-196	-111	Yes	25	0	n/a	n/a	0.01	NP
pH (SU)	BAW-5	-0.04626	-164	-111	Yes	25	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-1 (bg)	-0.3965	-127	-111	Yes	25	44	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2A (bg)	0.872	64	53	Yes	15	6.667	n/a	n/a	0.01	NP

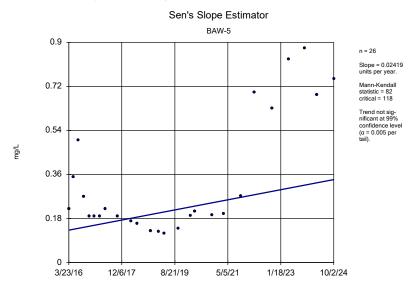
Appendix III - Trend Test Summary - All Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 2:54 PM


Constituent	Well	Slope	Calc.	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	BAW-1 (bg)	0	5	118	No	26	96.15	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-2 (bg)	0	0	25	No	9	100	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-2A (bg)	-0.002283	-44	-58	No	16	50	n/a	n/a	0.01	NP
Boron (mg/L)	BAW-5	0.02419	82	118	No	26	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-1 (bg)	0.02641	90	118	No	26	3.846	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-2 (bg)	-0.5725	-31	-25	Yes	9	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-2A (bg)	-0.04117	-50	-58	No	16	6.25	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-4	0.3324	152	118	Yes	26	0	n/a	n/a	0.01	NP
Calcium (mg/L)	BAW-5	1.022	63	118	No	26	0	n/a	n/a	0.01	NP
pH (SU)	BAW-1 (bg)	-0.008992	-38	-111	No	25	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2 (bg)	-0.5393	-29	-25	Yes	9	0	n/a	n/a	0.01	NP
pH (SU)	BAW-2A (bg)	-0.01118	-13	-53	No	15	0	n/a	n/a	0.01	NP
pH (SU)	BAW-3	-0.05979	-196	-111	Yes	25	0	n/a	n/a	0.01	NP
pH (SU)	BAW-5	-0.04626	-164	-111	Yes	25	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-1 (bg)	-0.3965	-127	-111	Yes	25	44	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2 (bg)	0	-11	-25	No	9	77.78	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-2A (bg)	0.872	64	53	Yes	15	6.667	n/a	n/a	0.01	NP
Sulfate (mg/L)	BAW-5	1.329	102	111	No	25	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-1 (bg)	1.236	105	111	No	25	8	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-2 (bg)	-5.236	-4	-25	No	9	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-2A (bg)	1.911	27	53	No	15	0	n/a	n/a	0.01	NP
Total Dissolved Solids (mg/L)	BAW-5	8.394	80	111	No	25	0	n/a	n/a	0.01	NP

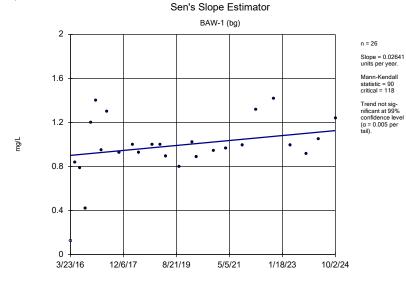
Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Boron Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR



Constituent: Boron Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

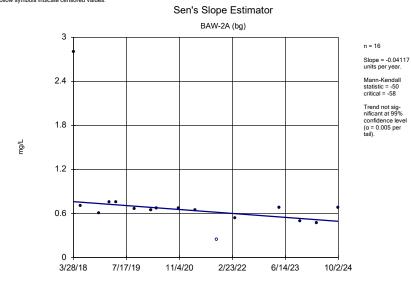
Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



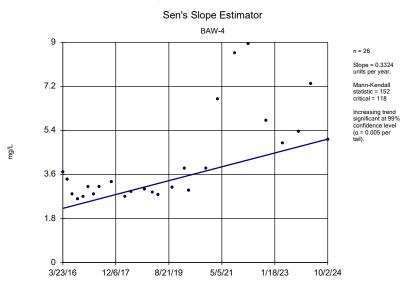
Constituent: Boron Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Boron Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

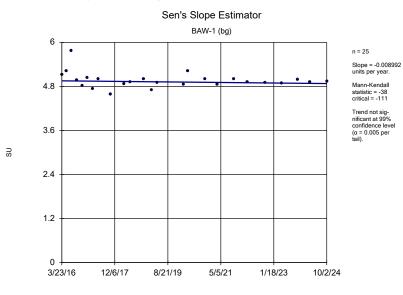


Constituent: Calcium Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

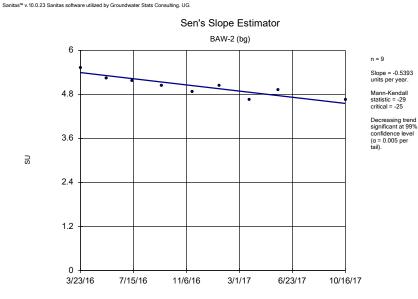

Constituent: Calcium Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

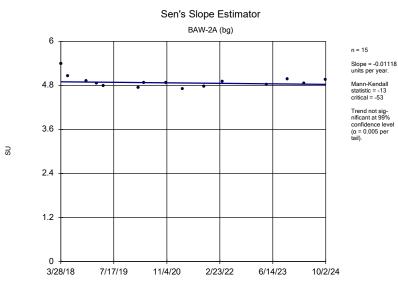
Constituent: Calcium Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR



Constituent: Calcium Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

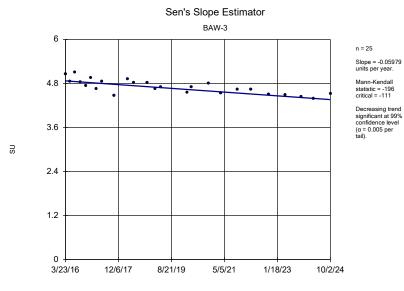


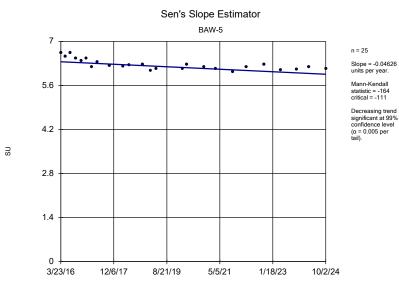
Constituent: Calcium Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR



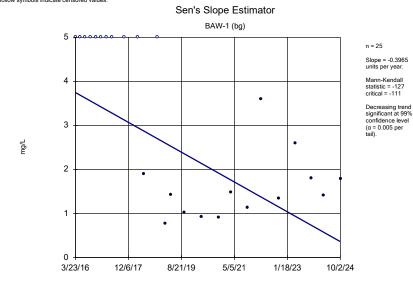
Constituent: pH Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: pH Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

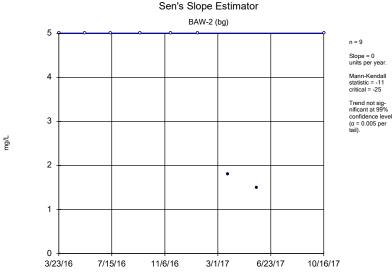



Constituent: pH Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

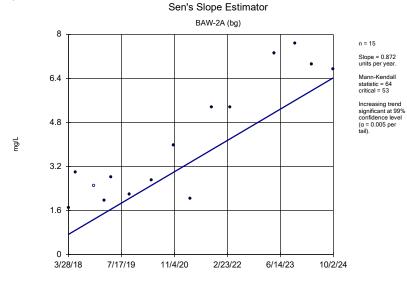
Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

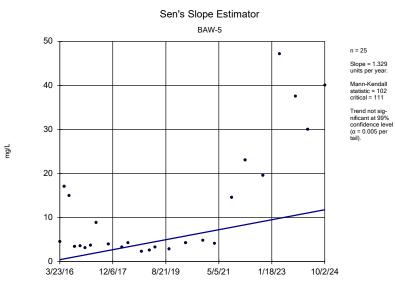


Constituent: pH Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

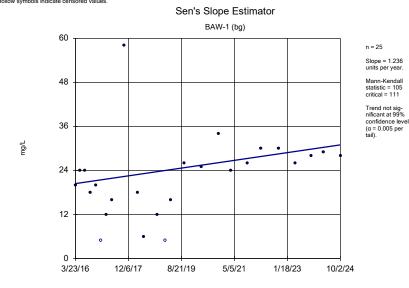

Constituent: pH Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

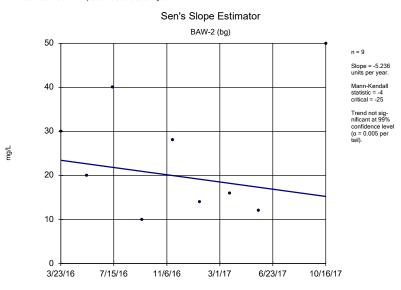

Constituent: Sulfate Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR



Constituent: Sulfate Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

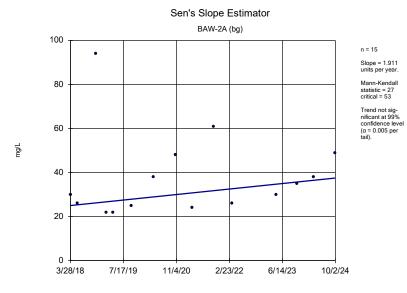


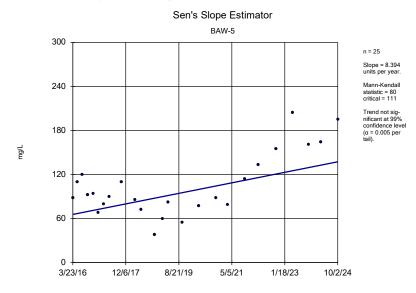
Constituent: Sulfate Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Constituent: Sulfate Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Total Dissolved Solids Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

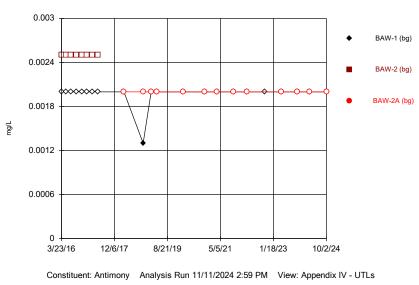

Constituent: Total Dissolved Solids Analysis Run 11/11/2024 2:53 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Total Dissolved Solids Analysis Run 11/11/2024 2:54 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

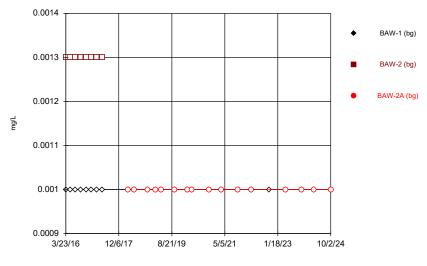
Constituent: Total Dissolved Solids Analysis Run 11/11/2024 2:54 PM View: Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Upper Tolerance Limits

Upper Tolerance Limit Summary Table

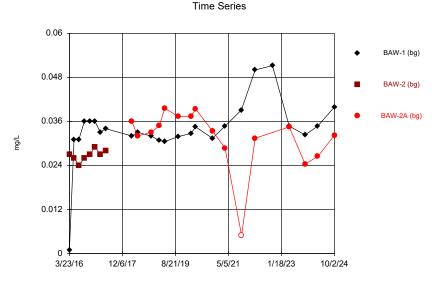
Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 3:00 PM

Constituent	Upper Lim.	Lower Lim.	Date	Observ.	Sig.	Bg I	<u> %NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Antimony (mg/L)	0.002	n/a	n/a	n/a	n/a	43	97.67	n/a	n/a	0.1102	NP Inter(NDs)
Arsenic (mg/L)	0.001	n/a	n/a	n/a	n/a	49	100	n/a	n/a	0.08099	NP Inter(NDs)
Barium (mg/L)	0.0512	n/a	n/a	n/a	n/a	49	2.041	n/a	n/a	0.08099	NP Inter(normality)
Beryllium (mg/L)	0.001	n/a	n/a	n/a	n/a	45	97.78	n/a	n/a	0.09944	NP Inter(NDs)
Cadmium (mg/L)	0.001	n/a	n/a	n/a	n/a	49	95.92	n/a	n/a	0.08099	NP Inter(NDs)
Chromium (mg/L)	0.00286	n/a	n/a	n/a	n/a	47	87.23	n/a	n/a	0.08974	NP Inter(NDs)
Cobalt (mg/L)	0.001617	n/a	n/a	n/a	n/a	49	6.122	None	No	0.05	Inter
Combined Radium 226 + 228 (pCi/L)	2.5	n/a	n/a	n/a	n/a	49	4.082	n/a	n/a	0.08099	NP Inter(normality)
Fluoride (mg/L)	0.1	n/a	n/a	n/a	n/a	51	82.35	n/a	n/a	0.0731	NP Inter(NDs)
Lead (mg/L)	0.001	n/a	n/a	n/a	n/a	47	95.74	n/a	n/a	0.08974	NP Inter(NDs)
Lithium (mg/L)	0.00505	n/a	n/a	n/a	n/a	48	66.67	n/a	n/a	0.08526	NP Inter(NDs)
Mercury (mg/L)	0.0002	n/a	n/a	n/a	n/a	41	90.24	n/a	n/a	0.1221	NP Inter(NDs)
Molybdenum (mg/L)	0.005	n/a	n/a	n/a	n/a	45	91.11	n/a	n/a	0.09944	NP Inter(NDs)
Selenium (mg/L)	0.005	n/a	n/a	n/a	n/a	45	86.67	n/a	n/a	0.09944	NP Inter(NDs)
Thallium (mg/L)	0.001	n/a	n/a	n/a	n/a	45	95.56	n/a	n/a	0.09944	NP Inter(NDs)


Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

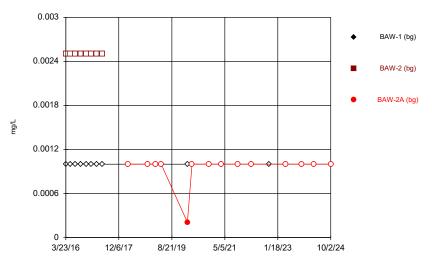
Time Series

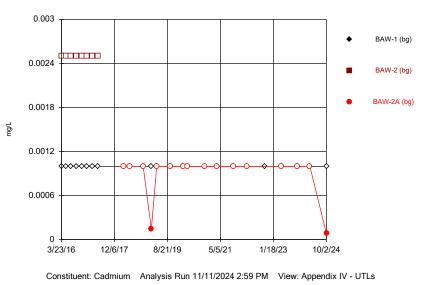
Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas $^{\rm w}$ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

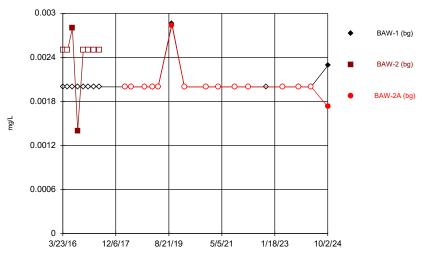
Constituent: Arsenic Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Barium Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

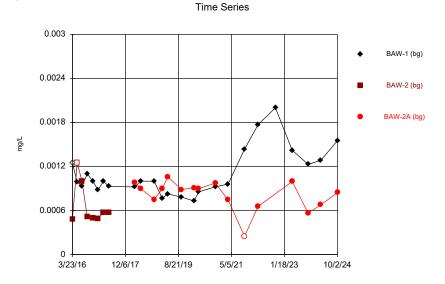
Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Beryllium Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas¹¹ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



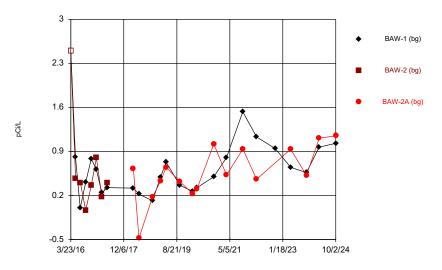
Time Series

Plant Daniel Client: Southern Company Data: Bottom Ash CCR

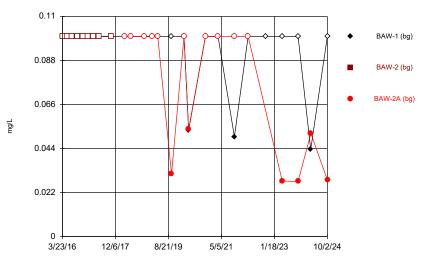

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Chromium Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas¹¹ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



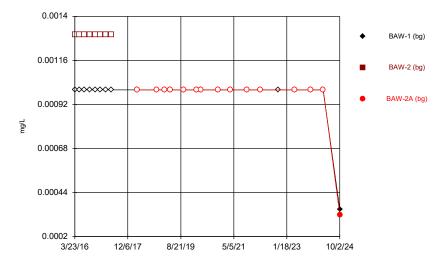
 Constituent: Cobalt
 Analysis Run 11/11/2024 2:59 PM
 View: Appendix IV - UTLs


 Plant Daniel
 Client: Southern Company
 Data: Bottom Ash CCR

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

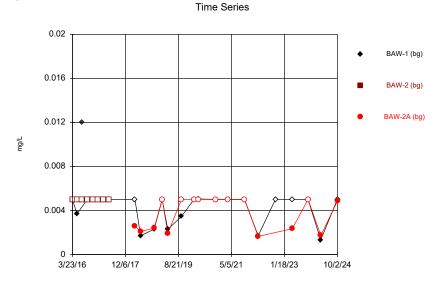
Time Series

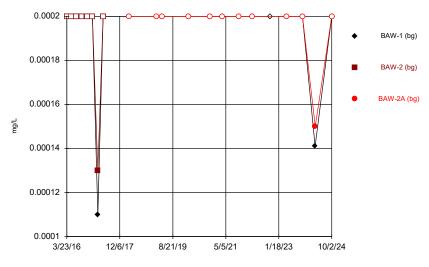
Constituent: Combined Radium 226 + 228 Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



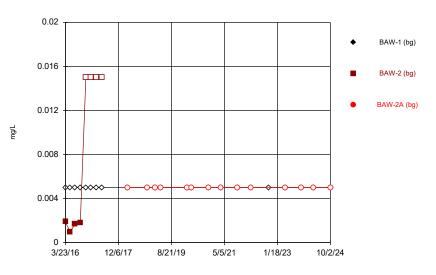
Time Series

Constituent: Fluoride Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

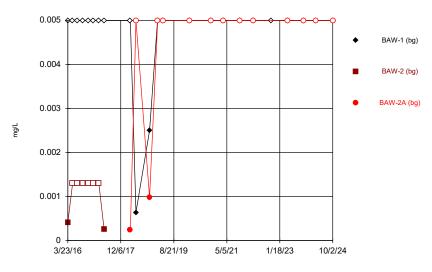

Sanitas $^{\rm w}$ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Constituent: Lead Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas¹¹ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

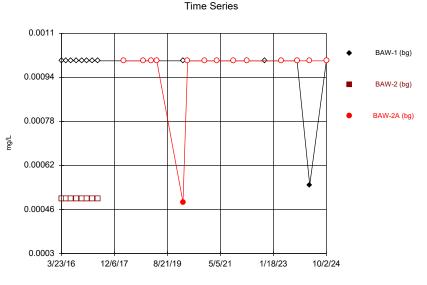


Constituent: Lithium Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

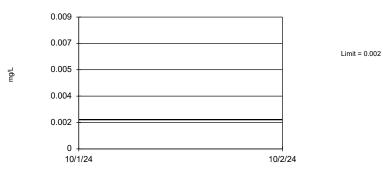

Constituent: Mercury Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas¹¹ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Molybdenum Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas¹⁹ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

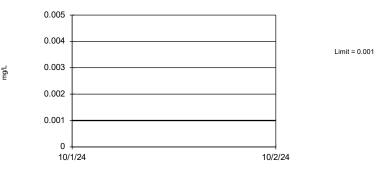

Constituent: Selenium Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Thallium Analysis Run 11/11/2024 2:59 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Tolerance Limit

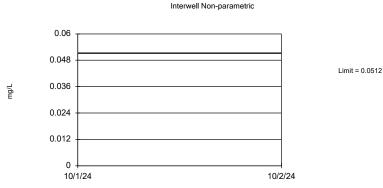
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 43 background values. 97.67% NDs. 90.04% coverage at alpha=0.01; 93.16% coverage at alpha=0.5. Report alpha = 0.1102.


Constituent: Antimony Analysis Run 11/11/2024 2:58 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Tolerance Limit

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

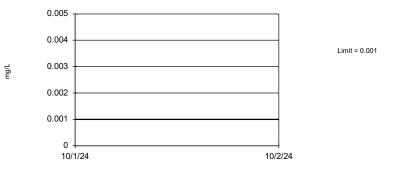
Tolerance Limit


Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. All background values were censored; limit is most recent reporting limit. 91.21% coverage at alpha=0.01; 93.95% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.08099.

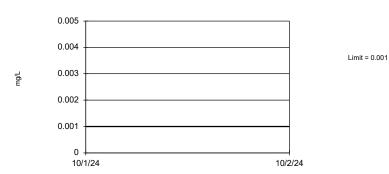
> Constituent: Arsenic Analysis Run 11/11/2024 2:58 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG



Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 49 background values. 2.041% NDs. 91.21% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.08099.

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

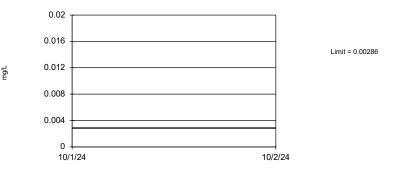

Tolerance Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 45 background values. 97.78% NDs. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.5; 98.63% coverage at alpha=0.5. Report alpha = 0.09944.

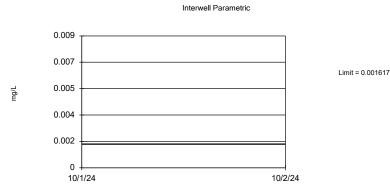
Tolerance Limit

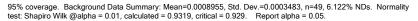
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 49 background values. 95.92% NDs. 91.21% coverage at alpha=0.01; 93.95% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.08099.


Constituent: Cadmium Analysis Run 11/11/2024 2:58 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Tolerance Limit

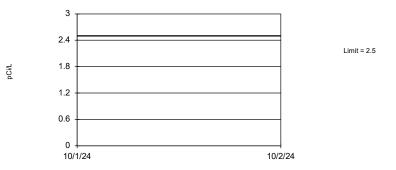
Tolerance Limit

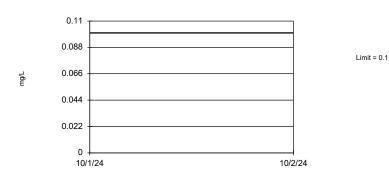

Interwell Non-parametric



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 47 background values. 87.23% NDs. 90.82% coverage at alpha=0.01; 93.95% coverage at alpha=0.5. Report alpha = 0.08974.

Constituent: Chromium Analysis Run 11/11/2024 2:58 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

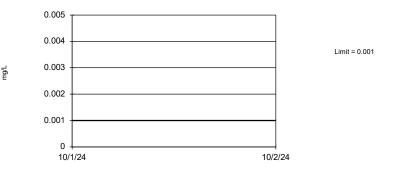

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Tolerance Limit

Non-parametric test used in lieu of parametric tolerance limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 49 background values. 4.082% NDs. 91.21% coverage at alpha=0.01; 93.95% coverage at alpha=0.5; 98.63% coverage at alpha=0.5. Report alpha = 0.08099.

Tolerance Limit Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 51 background values. 82.35% NDs. 91.21% coverage at alpha=0.01; 94.34% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.0731.


Constituent: Fluoride Analysis Run 11/11/2024 2:58 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Tolerance Limit

Tolerance Limit

Interwell Non-parametric

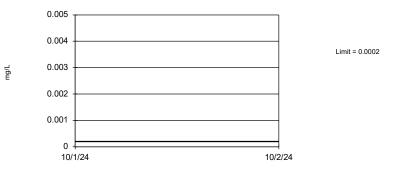
Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 47 background values. 95.74% NDs. 90.82% coverage at alpha=0.01; 93.95% coverage at alpha=0.5. Report alpha = 0.08974.

Constituent: Lead Analysis Run 11/11/2024 2:58 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

10/1/24

Limit = 0.00505


Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 48 background values. 66.67% NDs. 90.82% coverage at alpha=0.01; 93.95% coverage at alpha=0.5. Report alpha = 0.08526.

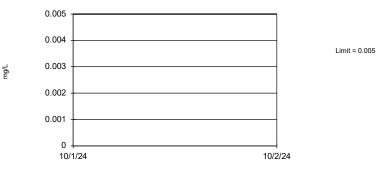
10/2/24

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Tolerance Limit

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 41 background values. 90.24% NDs. 89.26% coverage at alpha=0.01; 92.77% coverage at alpha=0.5; 98.24% coverage at alpha=0.5. Report alpha = 0.1221.

Tolerance Limit



Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 45 background values. 91.11% NDs. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.09944.

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Tolerance Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 45 background values. 86.67% NDs. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.09944.

Constituent: Molybdenum Analysis Run 11/11/2024 2:58 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR Constituent: Selenium Analysis Run 11/11/2024 2:58 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

0.001

0 + 10/1/24

mg/L

 Tolerance Limit

 Interwell Non-parametric

 0.005

 0.004

 0.003

 0.002

Limit = 0.001

Non-parametric test used in lieu of parametric tolerance limit because censored data exceeded 50%. Limit is highest of 45 background values. 95.56% NDs. 90.43% coverage at alpha=0.01; 93.55% coverage at alpha=0.05; 98.63% coverage at alpha=0.5. Report alpha = 0.09944.

10/2/24

Constituent: Thallium Analysis Run 11/11/2024 2:58 PM View: Appendix IV - UTLs Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Groundwater Protection Standards

PLANT DANIEL BOTTOM ASH GWPS									
		CCR-Rule	Background						
Constituent Name	MCL	Specified	Limit	GWPS					
Antimony, Total (mg/L)	0.006		0.002	0.006					
Arsenic, Total (mg/L)	0.01		0.001	0.01					
Barium, Total (mg/L)	2		0.051	2					
Beryllium, Total (mg/L)	0.004		0.001	0.004					
Cadmium, Total (mg/L)	0.005		0.001	0.005					
Chromium, Total (mg/L)	0.1		0.0029	0.1					
Cobalt, Total (mg/L)	n/a	0.006	0.0016	0.006					
Combined Radium, Total (pCi/L)	5		2.5	5					
Fluoride, Total (mg/L)	4		0.1	4					
Lead, Total (mg/L)	0.015		0.001	0.015					
Lithium, Total (mg/L)	n/a	0.04	0.0051	0.04					
Mercury, Total (mg/L)	0.002		0.0002	0.002					
Molybdenum, Total (mg/L)	n/a	0.1	0.005	0.1					
Selenium, Total (mg/L)	0.05		0.005	0.05					
Thallium, Total (mg/L)	0.002		0.001	0.002					

*MCL = Maximum Contaminant Level

*CCR = Coal Combustion Residuals

*GWPS = Groundwater Protection Standard

Appendix IV - Confidence Intervals - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 3:05 PM

Constituent	Well	Upper Lim.	Lower Lim.	<u>Complianc</u>	eSig.	N	Mean	Std. Dev.	<u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Lithium (mg/L)	BAW-5	0.1814	0.1349	0.04	Yes	25	0.1505	0.05495	0	None	x^2	0.01	Param.

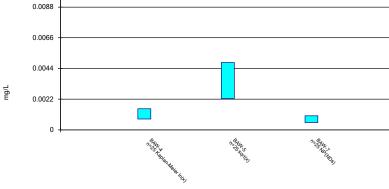
Appendix IV - Confidence Intervals - All Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 3:05 PM

	Plant Daniel Client. Southern Compan				ipany	iy Data. Bottom Ash CCR Philled 11/11/2024, 3.05 PM							
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	eSig.	<u>N</u>	Mean	Std. Dev.	<u>%NDs</u>	<u>ND Adj.</u>	Transform	<u>Alpha</u>	Method
Arsenic (mg/L)	BAW-4	0.001505	0.0007783	0.01	No	25	0.001498	0.001251	16	Kaplan-Meier	ln(x)	0.01	Param.
Arsenic (mg/L)	BAW-5	0.00483	0.00224	0.01	No	25	0.003887	0.00313	0	None	sqrt(x)	0.01	Param.
Arsenic (mg/L)	BAW-7	0.001	0.00052	0.01	No	25	0.0009608	0.0001357	92	None	No	0.01	NP (NDs)
Barium (mg/L)	BAW-3	0.03322	0.02444	2	No	25	0.02883	0.00881	0	None	No	0.01	Param.
Barium (mg/L)	BAW-4	0.0221	0.0093	2	No	25	0.01432	0.007478	0	None	No	0.01	NP (normality)
Barium (mg/L)	BAW-5	0.055	0.0424	2	No	25	0.05458	0.02197	0	None	No	0.01	NP (normality)
Barium (mg/L)	BAW-7	0.02	0.0117	2	No	25	0.01903	0.01715	0	None	No	0.01	NP (normality)
Beryllium (mg/L)	BAW-3	0.001	0.000235	0.004	No	23	0.0008993	0.0002657	86.96	None	No	0.01	NP (NDs)
Beryllium (mg/L)	BAW-7	0.001	0.000185	0.004	No	23	0.0009646	0.0001699	95.65	None	No	0.01	NP (NDs)
Cadmium (mg/L)	BAW-3	0.0008395	0.0005609	0.005	No	25	0.0007002	0.0002795	4	None	No	0.01	Param.
Cadmium (mg/L)	BAW-5	0.001	0.000155	0.005	No	25	0.0009662	0.000169	96	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-3	0.003	0.00165	0.1	No	24	0.002712	0.0035	83.33	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-4	0.002	0.0015	0.1	No	24	0.001923	0.0002253	83.33	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-5	0.0024	0.00175	0.1	No	24	0.002098	0.0006471	83.33	None	No	0.01	NP (NDs)
Chromium (mg/L)	BAW-7	0.00206	0.00171	0.1	No	24	0.00199	0.00006097	91.67	None	No	0.01	NP (NDs)
Cobalt (mg/L)	BAW-3	0.007104	0.005249	0.006	No	25	0.006176	0.001861	0	None	No	0.01	Param.
Cobalt (mg/L)	BAW-4	0.001451	0.001089	0.006	No	25	0.00127	0.000363	0	None	No	0.01	Param.
Cobalt (mg/L)	BAW-5	0.000802	0.0005	0.006	No	25	0.000753	0.0005414	68	None	No	0.01	NP (NDs)
Cobalt (mg/L)	BAW-7	0.00112	0.000729	0.006	No	25	0.001244	0.001007	0	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BAW-3	0.857	0.27	5	No	25	0.607	0.6826	8	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BAW-4	0.53	0.158	5	No	25	0.5769	0.7692	12	None	No	0.01	NP (normality)
Combined Radium 226 + 228 (pCi/L)	BAW-5	0.9563	0.4286	5	No	24	0.7625	0.5863	4.167	None	sqrt(x)	0.01	Param.
Combined Radium 226 + 228 (pCi/L)	BAW-7	1.005	0.3488	5	No	25	0.7983	0.7736	12	None	sqrt(x)	0.01	Param.
Fluoride (mg/L)	BAW-3	0.1	0.0537	4	No	26	0.09017	0.02389	84.62	None	No	0.01	NP (NDs)
Fluoride (mg/L)	BAW-4	0.0578	0.04	4	No	26	0.05654	0.02512	23.08	None	No	0.01	NP (normality)
Fluoride (mg/L)	BAW-5	0.07485	0.05423	4	No	26	0.06763	0.02797	3.846	None	ln(x)	0.01	Param.
Fluoride (mg/L)	BAW-7	0.1	0.0415	4	No	26	0.0922	0.02213	88.46	None	No	0.01	NP (NDs)
Lead (mg/L)	BAW-3	0.001	0.000322	0.015	No	24	0.0007022	0.0003715	58.33	None	No	0.01	NP (NDs)
Lead (mg/L)	BAW-4	0.001	0.00042	0.015	No	24	0.0008523	0.0002983	79.17	None	No	0.01	NP (NDs)
Lead (mg/L)	BAW-5	0.001	0.00032	0.015	No	24	0.0009363	0.0002171	91.67	None	No	0.01	NP (NDs)
Lead (mg/L)	BAW-7	0.001	0.000345	0.015	No	24	0.0009364	0.0002178	91.67	None	No	0.01	NP (NDs)
Lithium (mg/L)	BAW-3	0.005	0.0033	0.04	No	25	0.00433	0.001264	56	None	No	0.01	NP (NDs)
Lithium (mg/L)	BAW-4	0.02529	0.01727	0.04	No	25	0.02128	0.008046	0	None	No	0.01	Param.
Lithium (mg/L)	BAW-5	0.1814	0.1349	0.04	Yes	25	0.1505	0.05495	0	None	x^2	0.01	Param.
Lithium (mg/L)	BAW-7	0.005	0.00375	0.04	No	25	0.004958	0.002184	52	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-3	0.000497	0.000133	0.002	No	21	0.0002021	0.00007449	80.95	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-4	0.0002	0.000135	0.002	No	21	0.0001875	0.00003316	85.71	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-5	0.0002	0.000134	0.002	No	21	0.0001909	0.00003039	90.48	None	No	0.01	NP (NDs)
Mercury (mg/L)	BAW-7	0.000235	0.000151	0.002	No	21	0.0002381	0.0002228	76.19	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BAW-4	0.005	0.00109	0.1	No	23	0.00369	0.00189	65.22	None	No	0.01	NP (NDs)
Molybdenum (mg/L)	BAW-5	0.003795	0.00176	0.1	No	23	0.006269	0.005589	26.09	Kaplan-Meier	x^(1/3)	0.01	Param.
Molybdenum (mg/L)	BAW-7	0.005	0.0038	0.1	No	23	0.004948	0.0002502	95.65	Kaplan-Meier	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-3	0.005	0.00079	0.05	No	23	0.003625	0.002129	69.57	None	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-5	0.005	0.00033	0.05	No	23	0.004797	0.0009738	95.65	None	No	0.01	NP (NDs)
Selenium (mg/L)	BAW-7	0.005	0.0021	0.05	No	23	0.004056	0.001863	78.26	None	No	0.01	NP (NDs)
Thallium (mg/L)	BAW-3	0.001	0.000276	0.002	No	23	0.0008528	0.0003297	82.61	None	No	0.01	NP (NDs)
Thallium (mg/L)	BAW-7	0.001	0.000153	0.002	No	23	0.0009632	0.0001766	95.65	None	No	0.01	NP (NDs)

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

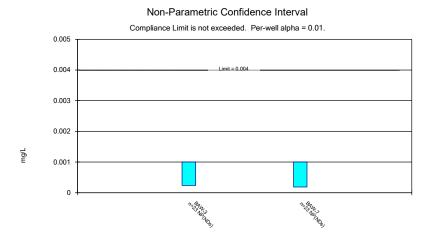

mg/L

0.6

0

7.874

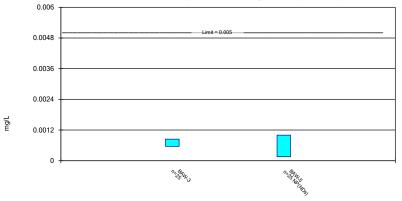
Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n. 0.011 Limit = 0.01 Limit = 0.01 Limit = 0.01


3 2.4 1.8 1.2

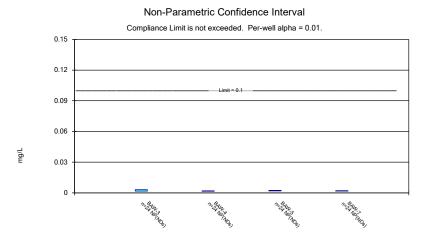
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR Constituent: Barium Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

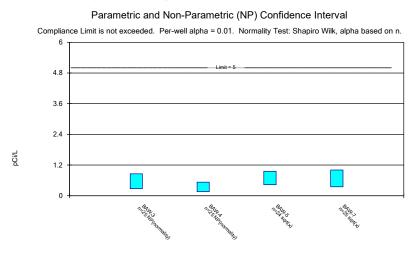
Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval

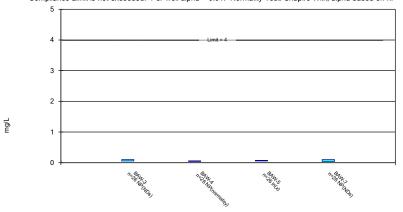
Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Beryllium Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

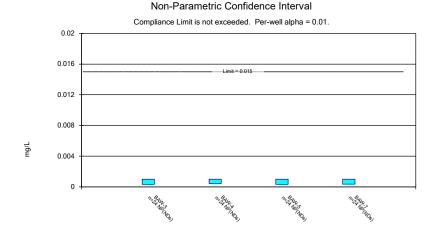


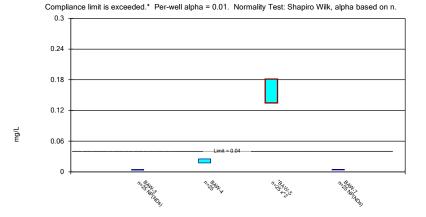
Constituent: Chromium Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Constituent: Cobalt Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

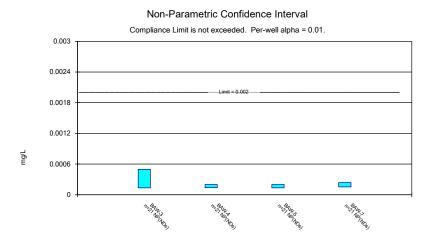

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Combined Radium 226 + 228 Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR Constituent: Fluoride Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

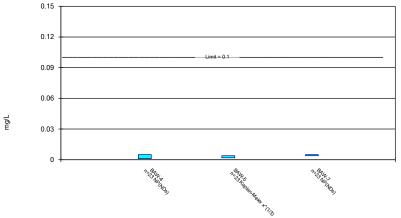
Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Parametric and Non-Parametric (NP) Confidence Interval

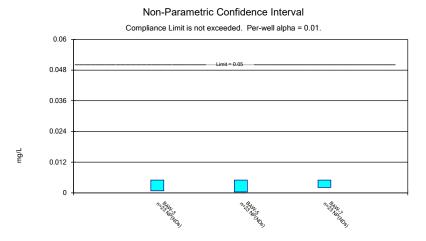


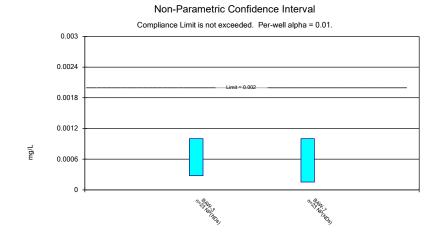
Constituent: Lead Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Lithium Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG


Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Selenium Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR Constituent: Thallium Analysis Run 11/11/2024 3:04 PM View: Confidence Intervals Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Constituent: Arsenic (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

	BAW-4	BAW-5	BAW-7
3/23/2016	0.00087 (J)	0.0033	<0.001
5/17/2016	<0.0013	0.00089 (J)	<0.001
7/12/2016			<0.001
7/13/2016	0.00081 (J)	0.0039	
9/13/2016		0.0039	<0.001
9/14/2016	0.00069 (J)		
11/19/2016	0.0013	0.0037	0.0005 (J)
1/17/2017			<0.001
1/18/2017	<0.0013	0.0016	
3/22/2017			0.00052 (J)
3/23/2017	0.00078 (J)	0.0017	
5/24/2017	0.001 (J)	0.0021	<0.001
3/28/2018	<0.0013	0.0011 (J)	
3/29/2018			<0.001
6/2/2018	0.00068 (J)	0.0017	<0.001
11/8/2018	<0.0013		
11/9/2018		0.0021	<0.001
2/11/2019	0.000737 (J)	0.00232	
2/12/2019			<0.001
4/17/2019	0.000645 (J)	0.00218	
4/18/2019			<0.001
9/27/2019			<0.001
9/30/2019	0.000821 (J)	0.00272	
2/21/2020			<0.001
2/22/2020	0.000837 (J)	0.00177	
4/14/2020	0.000896 (J)	0.00177	<0.001
10/30/2020	0.000529 (J)	0.0013	
11/2/2020			<0.001
3/17/2021	0.000454 (J)	0.00385	
3/26/2021			<0.001
10/5/2021	0.00259		<0.001
10/6/2021		0.0125	
3/16/2022	0.00411	0.0101	<0.001
10/5/2022	0.00467		
10/6/2022		0.0108	<0.001
4/21/2023	0.00477	0.00683	<0.001
10/24/2023			<0.001
10/25/2023	0.00241	0.00575	
3/20/2024		0.00515	
3/21/2024	0.00159		<0.001
10/2/2024	0.00105	0.00414	<0.001
Mean	0.001498	0.003887	0.0009608
Std. Dev.	0.001251	0.00313	0.0001357
Upper Lim.	0.001505	0.00483	0.001
Lower Lim.	0.0007783	0.00224	0.00052

Constituent: Barium (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	0.013	0.011	0.044	0.013
5/17/2016		0.0085	0.055	0.012
5/18/2016	0.012			
7/12/2016				0.011
7/13/2016	0.016	0.0073	0.041	
9/13/2016			0.046	0.012
9/14/2016	0.018	0.0095		
11/19/2016	0.021	0.012	0.044	0.012
1/17/2017	0.029			0.014
1/18/2017		0.0096	0.045	
3/22/2017				0.012
3/23/2017	0.024	0.0093	0.038	
5/24/2017	0.022	0.0096	0.046	0.012
3/28/2018	0.026	0.0086	0.043	
3/29/2018				0.011
6/2/2018	0.029	0.0087	0.043	0.011
11/8/2018	0.028	0.0091		
11/9/2018			0.039	0.011
2/11/2019		0.00931	0.0388	
2/12/2019	0.0274			0.0102
4/17/2019	0.0263	0.00888	0.0378	
4/18/2019				0.0101
9/27/2019				0.0121
9/30/2019	0.0343	0.0103	0.0424	
2/21/2020	0.0304			0.0117
2/22/2020		0.0108	0.0453	
4/14/2020	0.0335	0.00949 (J)	0.0452	0.0124
10/30/2020	0.0349	0.0116	0.0428	
11/2/2020				0.0117
3/17/2021		0.0224	0.0382	
3/26/2021	0.0253			0.0184
10/5/2021		0.0283		0.02
10/6/2021	0.03		0.0493	
3/16/2022	0.037	0.0326	0.0688	0.0245
10/5/2022	0.0415	0.0248		
10/6/2022			0.0747	0.0937
4/20/2023	0.0369			
4/21/2023		0.0223	0.103	0.0355
10/24/2023				0.0274
10/25/2023	0.0427	0.0221	0.0883	
3/20/2024			0.0958	
3/21/2024	0.0418	0.0246		0.0307
10/2/2024	0.0407	0.0174	0.11	0.0264
Mean	0.02883	0.01432	0.05458	0.01903
Std. Dev.	0.00881	0.007478	0.02197	0.01715
Upper Lim.	0.03322	0.0221	0.055	0.02
Lower Lim.	0.02444	0.0093	0.0424	0.0117

Constituent: Beryllium (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

	BAW-3	BAW-7
3/23/2016	<0.001	<0.001
5/17/2016		<0.001
5/18/2016	<0.001	
7/12/2016		<0.001
7/13/2016	<0.001	
9/13/2016		<0.001
9/14/2016	<0.001	
11/19/2016	<0.001	<0.001
1/17/2017	<0.001	<0.001
3/22/2017		<0.001
3/23/2017	<0.001	
5/24/2017	<0.001	<0.001
3/28/2018	<0.001	
3/29/2018		<0.001
11/8/2018	<0.001	
11/9/2018		<0.001
2/12/2019	<0.001	<0.001
4/17/2019	<0.001	
4/18/2019		<0.001
2/21/2020	<0.001	<0.001
4/14/2020	<0.001	<0.001
10/30/2020	<0.001	
11/2/2020		<0.001
3/26/2021	<0.001	<0.001
10/5/2021		0.000185 (J)
10/6/2021	<0.001	
3/16/2022	<0.001	<0.001
10/5/2022	<0.001	
10/6/2022		<0.001
4/20/2023	0.000225 (J)	
4/21/2023		<0.001
10/24/2023		<0.001
10/25/2023	0.000225 (J)	
3/21/2024	<0.001	<0.001
10/2/2024	0.000235 (J)	<0.001
Mean	0.0008993	0.0009646
Std. Dev.	0.0002657	0.0001699
Upper Lim.	0.001	0.001
Lower Lim.	0.000235	0.000185

Constituent: Cadmium (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

	BAW-3	BAW-5
3/23/2016	0.00041 (J)	<0.001
5/17/2016		<0.001
5/18/2016	<0.0025	
7/13/2016	0.00087 (J)	<0.001
9/13/2016		<0.001
9/14/2016	0.00078 (J)	
11/19/2016	0.00054 (J)	<0.001
1/17/2017	0.00048 (J)	
1/18/2017		<0.001
3/23/2017	0.00059 (J)	<0.001
5/24/2017	0.00081 (J)	<0.001
3/28/2018	0.0008 (J)	<0.001
6/2/2018	0.001 (J)	<0.001
11/8/2018	0.00085 (J)	
11/9/2018		<0.001
2/11/2019		<0.001
2/12/2019	0.000877 (J)	
4/17/2019	0.000915 (J)	<0.001
9/30/2019	0.00112 (J)	0.000155 (J)
2/21/2020	0.000962 (J)	
2/22/2020		<0.001
4/14/2020	0.00107 (J)	<0.001
10/30/2020	0.00084 (J)	<0.001
3/17/2021		<0.001
3/26/2021	0.000615 (J)	
10/6/2021	0.000338 (J)	<0.001
3/16/2022	0.000252 (J)	<0.001
10/5/2022	0.000379 (J)	
10/6/2022		<0.001
4/20/2023	0.0004 (J)	
4/21/2023		<0.001
10/25/2023	0.00035 (J)	<0.001
3/20/2024		<0.001
3/21/2024	0.000401 (J)	
10/2/2024	0.000605 (J)	<0.001
Mean	0.0007002	0.0009662
Std. Dev.	0.0002795	0.000169
Upper Lim.	0.0008395	0.001
Lower Lim.	0.0005609	0.000155

Constituent: Chromium (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.002	0.0015 (J)	0.0012 (J)	<0.002
5/17/2016		<0.002	<0.002	<0.002
5/18/2016	<0.002			
7/12/2016				<0.002
7/13/2016	0.003	0.0015 (J)	0.0024 (J)	
9/13/2016			<0.002	<0.002
9/14/2016	<0.002	<0.002		
11/19/2016	<0.002	0.0011 (J)	<0.002	<0.002
1/17/2017	<0.002			<0.002
1/18/2017		<0.002	<0.002	
3/22/2017				<0.002
3/23/2017	<0.002	<0.002	<0.002	
5/24/2017	<0.002	<0.002	<0.002	<0.002
3/28/2018	<0.002	<0.002	0.005	
3/29/2018				<0.002
6/2/2018	<0.002	<0.002	<0.002	<0.002
11/8/2018	<0.002	<0.002		
11/9/2018			<0.002	<0.002
2/11/2019		<0.002	<0.002	
2/12/2019	0.00165 (J)			<0.002
4/17/2019	<0.002	<0.002	<0.002	
4/18/2019				<0.002
9/27/2019				0.00206 (J)
9/30/2019	<0.002	<0.002	<0.002	
2/21/2020	<0.002			<0.002
2/22/2020		<0.002	<0.002	
10/30/2020	<0.002	<0.002	<0.002	
11/2/2020				<0.002
3/17/2021		<0.002	<0.002	
3/26/2021	<0.002			<0.002
10/5/2021		<0.002		<0.002
10/6/2021	<0.002		<0.002	
3/16/2022	<0.002	<0.002	<0.002	<0.002
10/5/2022	0.0191	<0.002		
10/6/2022			<0.002	<0.002
4/20/2023	<0.002			
4/21/2023		<0.002	<0.002	<0.002
10/24/2023				<0.002
10/25/2023	<0.002	<0.002	<0.002	
3/20/2024			<0.002	
3/21/2024	<0.002	<0.002		<0.002
10/2/2024	0.00133 (J)	0.00204	0.00175 (J)	0.00171 (J)
Mean	0.002712	0.001923	0.002098	0.00199
Std. Dev.	0.0035	0.0002253	0.0006471	6.097E-05
Upper Lim.	0.003	0.002	0.0024	0.00206
Lower Lim.	0.00165	0.0015	0.00175	0.00171

Constituent: Cobalt (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

			Plant Da	niel Client: Southern Company	Data: Bottom Ash CCR	
	BAW-3	BAW-4	BAW-5	BAW-7		
3/23/2016	0.0055	0.00094 (J)	<0.0005	0.0011 (J)		
5/17/2016		0.0007 (J)	<0.0005	0.001 (J)		
5/18/2016	0.0059					
7/12/2016				0.00091 (J)		
7/13/2016	0.0048	0.0016 (J)	0.00042 (J)			
9/13/2016			<0.0005	0.001 (J)		
9/14/2016	0.0063	0.0011 (J)				
11/19/2016	0.0056	0.0012 (J)	<0.0005	0.00083 (J)		
1/17/2017	0.0046			0.00091 (J)		
1/18/2017		0.0011 (J)	<0.0005			
3/22/2017				0.00098 (J)		
3/23/2017	0.0049	0.0011 (J)	<0.0005			
5/24/2017	0.0052	0.0012 (J)	<0.0005	0.00098 (J)		
3/28/2018	0.0063	0.00095 (J)	<0.0005			
3/29/2018				0.00063 (J)		
6/2/2018	0.0068	0.0012 (J)	<0.0005	0.00087 (J)		
11/8/2018	0.0068	0.0011 (J)				
11/9/2018			<0.0005	0.00076 (J)		
2/11/2019		0.00093 (J)	<0.0005			
2/12/2019	0.00552			0.000661 (J)		
4/17/2019	0.00603	0.00116 (J)	<0.0005			
4/18/2019				0.000705 (J)		
9/27/2019				0.00071 (J)		
9/30/2019	0.0062	0.001 (J)	<0.0005			
2/21/2020	0.00576			0.000634 (J)		
2/22/2020		0.000907 (J)	<0.0005			
4/14/2020	0.00633	0.00105 (J)	<0.0005	0.000684 (J)		
10/30/2020	0.00657	0.00102 (J)	<0.0005			
11/2/2020				0.000729 (J)		
3/17/2021		0.00208	<0.0005			
3/26/2021	0.00339			0.000995		
10/5/2021		0.00187		0.00112		
10/6/2021	0.00336		0.000802			
3/16/2022	0.00289	0.00182	0.000967	0.00141		
10/5/2022	0.00821	0.00121				
10/6/2022			0.00143	0.00548		
4/20/2023	0.0083					
4/21/2023		0.00142	0.00275	0.00216		
10/24/2023				0.00143		
10/25/2023	0.0092	0.00187	0.000885			
3/20/2024			0.00131			
3/21/2024	0.00945	0.0016		0.00186		
10/2/2024	0.0105	0.00163	0.00176	0.00256		
Mean	0.006176	0.00127	0.000753	0.001244		
Std. Dev.	0.001861	0.000363	0.0005414	0.001007		
Upper Lim.	0.007104	0.001451	0.000802	0.00112		
Lower Lim.	0.005249	0.001089	0.0005	0.000729		

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<5	<5	0.549	<5
5/17/2016		<5	0.551	<5
5/18/2016	<5			
7/12/2016				0.165 (U)
7/13/2016	0.27 (U)	0.0365 (U)	0.859	
9/13/2016			0.367 (U)	0.341 (U)
9/14/2016	-0.0909 (U)	0.3 (U)		
11/19/2016	0.416	<5 (U)	<5 (U)	<5 (U)
1/17/2017	0.412 (U)			0.124 (U)
1/18/2017		0.235 (U)	0.289 (U)	
3/22/2017				0.0719 (U)
3/23/2017	0.0761 (U)	0.168 (U)	0.554	
5/24/2017	0.0415 (U)	-0.0607 (U)	0.831	0.441
3/28/2018	0.398	0.42	0.458	
3/29/2018				0.731
6/2/2018	-0.253 (U)	0.0844 (U)	0.226 (U)	0.303 (U)
11/8/2018	0.343 (U)	0.367 (U)		
11/9/2018			0.298 (U)	0.00226 (U)
2/11/2019		0.0402 (U)	0.15 (U)	
2/12/2019	0.581			0.094 (U)
4/17/2019	0.646	0.493	0.326 (U)	
4/18/2019				0.48
9/27/2019				0.497
9/30/2019	1	0.404		
2/21/2020	0.126 (U)			0.375
2/22/2020		0.53	0.47	
4/14/2020	0.338	0.0408 (U)	0.376 (U)	0.329 (U)
10/30/2020	0.485	0.344	0.528	
11/2/2020				0.535
3/17/2021		0.312 (U)	0.0889 (U)	
3/26/2021	0.78			0.813
10/5/2021		1.06		0.814
10/6/2021	0.503		0.931	
3/16/2022	0.286 (U)	0.314 (U)	1.39	1.39
10/21/2022	1.29	0.562 (U)	1.36	2.03
4/20/2023	0.884	0.450 (1)	1 70	0.000
4/21/2023		0.158 (U)	1.73	0.802
10/24/2023	0.057	0.470 (1)	1.40	0.7
10/25/2023	0.857	0.472 (U)	1.49	
3/20/2024	0.000	0.754	0.758	0.000
3/21/2024	0.926	0.754	1 00	0.606
10/2/2024 Moon	-0.14 (U)	-0.111 (U)	1.22	0.813
Mean Std. Dov	0.607 0.6826	0.5769	0.7625 0.5863	0.7983
Std. Dev. Upper Lim.	0.6826	0.7692 0.53	0.5863	0.7736 1.005
Lower Lim.	0.857	0.53	0.9563	0.3488
LOWEI LIIII.	0.27	0.100	0.4200	0.3400

Constituent: Fluoride (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.1	0.04 (J)	0.06 (J)	<0.1
5/17/2016		0.04 (J)	0.07 (J)	<0.1
5/18/2016	<0.1			
7/12/2016				<0.1
7/13/2016	<0.1	0.05 (J)	0.08 (J)	
9/13/2016			0.06 (J)	<0.1
9/14/2016	<0.1	0.04 (J)		
11/19/2016	<0.1	0.04 (J)	0.06 (J)	<0.1
1/17/2017	<0.1			<0.1
1/18/2017		<0.1	0.05 (J)	
3/22/2017				<0.1
3/23/2017	<0.1	<0.1	0.05 (J)	
5/24/2017	<0.1	0.04 (J)	0.06 (J)	<0.1 (D)
10/16/2017	<0.1	<0.1	0.06 (J)	<0.1
3/28/2018	<0.1	0.04 (J)	0.06 (J)	
3/29/2018				<0.1
6/2/2018	<0.1	0.05 (J)	0.06 (J)	<0.1
11/8/2018	<0.1	0.05 (J)		
11/9/2018			0.06 (J)	<0.1
2/11/2019		<0.1	0.0368 (J)	
2/12/2019	<0.1			<0.1
4/17/2019	<0.1	0.033 (J)	0.0421 (J)	
4/18/2019				<0.1
9/27/2019				<0.1
9/30/2019	<0.1	<0.1	0.045 (J)	
2/21/2020	<0.1			<0.1
2/22/2020		0.0317 (J)	0.0434 (J)	
4/14/2020	0.034 (J)	0.0508 (J)	0.059 (J)	0.0415 (J)
10/30/2020	<0.1	<0.1	<0.1	
11/2/2020				<0.1
3/17/2021		0.0544 (J)	0.0575 (J)	
3/26/2021	<0.1			<0.1
10/5/2021		0.0505 (J)		<0.1
10/6/2021	<0.1		0.0725 (J)	
3/16/2022	0.0307 (J)	0.0462 (J)	0.176	0.0266 (J)
10/5/2022	<0.1	0.0322 (J)		
10/6/2022			0.0972 (J)	<0.1
4/20/2023	<0.1			
4/21/2023		0.0441 (J)	0.0665 (J)	<0.1
10/24/2023				<0.1
10/25/2023	<0.1	0.0393 (J)	0.0858 (J)	
3/20/2024			0.11	
3/21/2024	0.0537 (J)	0.0578 (J)		0.0292 (J)
10/2/2024	0.026 (J)	0.04 (J)	0.0865 (J)	<0.1
Mean	0.09017	0.05654	0.06763	0.0922
Std. Dev.	0.02389	0.02512	0.02797	0.02213
Upper Lim.	0.1	0.0578	0.07485	0.1
Lower Lim.	0.0537	0.04	0.05423	0.0415

Constituent: Lead (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.001	0.00039 (J)	<0.001	<0.001
5/17/2016		<0.001	<0.001	<0.001
5/18/2016	<0.001			
7/12/2016				<0.001
7/13/2016	<0.001	<0.001	<0.001	
9/13/2016			<0.001	<0.001
9/14/2016	0.00056 (J)	<0.001		
11/19/2016	<0.001	0.00042 (J)	<0.001	<0.001
1/17/2017	<0.001			<0.001
1/18/2017		<0.001	<0.001	
3/22/2017				<0.001
3/23/2017	0.00038 (J)	<0.001	<0.001	
5/24/2017	0.00036 (J)	<0.001	<0.001	<0.001
3/28/2018	<0.001	<0.001	<0.001	
3/29/2018				<0.001
11/8/2018	<0.001	<0.001		
11/9/2018			<0.001	<0.001
2/11/2019		<0.001	<0.001	
2/12/2019	0.000139 (J)			<0.001
4/17/2019	<0.001	<0.001	<0.001	
4/18/2019				<0.001
9/27/2019	(N			0.000129 (J)
9/30/2019	0.000322 (J)	0.000191 (J)	0.000152 (J)	10.001
2/21/2020	0.00015 (J)	-0.001	-0.001	<0.001
2/22/2020	0.000226 (1)	<0.001	<0.001	-0.001
4/14/2020 10/30/2020	0.000236 (J) 0.000136 (J)	<0.001 <0.001	<0.001 <0.001	<0.001
11/2/2020	0.000130(3)	~0.001	~0.001	<0.001
3/17/2021		0.000153 (J)	<0.001	-0.001
3/26/2021	0.000145 (J)	0.000100 (0)	-0.001	<0.001
10/5/2021	0.000110(0)	<0.001		<0.001
10/6/2021	<0.001		<0.001	
3/16/2022	<0.001	<0.001	<0.001	<0.001
10/5/2022	<0.001	<0.001		
10/6/2022			<0.001	<0.001
4/20/2023	<0.001			
4/21/2023		<0.001	<0.001	<0.001
10/24/2023				<0.001
10/25/2023	<0.001	<0.001	<0.001	
3/20/2024			<0.001	
3/21/2024	<0.001	<0.001		<0.001
10/2/2024	0.000425 (J)	0.0003 (J)	0.00032 (J)	0.000345 (J)
Mean	0.0007022	0.0008523	0.0009363	0.0009364
Std. Dev.	0.0003715	0.0002983	0.0002171	0.0002178
Upper Lim.	0.001	0.001	0.001	0.001
Lower Lim.	0.000322	0.00042	0.00032	0.000345

Constituent: Lithium (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	<0.005	0.044	0.17	<0.005
5/17/2016		0.028	0.2	<0.005
5/18/2016	<0.005			
7/12/2016				<0.005
7/13/2016	<0.005	0.026	0.17	
9/13/2016			0.17	<0.005
9/14/2016	<0.005	0.026		
11/19/2016	<0.005	0.026	0.18	0.0035 (J)
1/17/2017	<0.005			<0.005
1/18/2017		0.027	0.2	
3/22/2017				<0.005
3/23/2017	<0.005	0.024	0.19	
5/24/2017	<0.005	0.027	0.21	<0.005
3/28/2018	0.0023 (J)	0.021	0.23	
3/29/2018				0.0026 (J)
6/2/2018	0.002 (J)	0.022	0.19	0.0029 (J)
11/8/2018	0.0024 (J)	0.025		
11/9/2018			0.18	0.0027 (J)
2/11/2019		0.0229	0.161	
2/12/2019	<0.005			<0.005
4/17/2019	0.00197 (J)	0.0236	0.174	
4/18/2019				0.00238 (J)
9/27/2019				0.00375 (J)
9/30/2019	0.00687	0.0249	0.166	
2/21/2020	<0.005			<0.005
2/22/2020		0.0211	0.169	
4/14/2020	<0.005	0.0224	0.192	<0.005
10/30/2020	<0.005	0.0267	0.194	
11/2/2020				<0.005
3/17/2021		0.0174	0.12	
3/26/2021	<0.005			<0.005
10/5/2021		0.0127		0.0045 (J)
10/6/2021	<0.005		0.0994	
3/16/2022	0.0038 (J)	0.0112	0.0629	0.00437 (J)
10/5/2022	0.00322 (J)	0.00676		
10/6/2022			0.0534	0.0123
4/20/2023	0.00309 (J)			
4/21/2023		0.0091	0.0564	0.0107
10/24/2023				0.00555
10/25/2023	0.0033 (J)	0.0123	0.0679	
3/20/2024			0.0786	
3/21/2024	0.00355 (J)	0.013		0.0037 (J)
10/2/2024	0.00575	0.0119	0.0774	<0.005
Mean	0.00433	0.02128	0.1505	0.004958
Std. Dev.	0.001264	0.008046	0.05495	0.002184
Upper Lim.	0.005	0.02529	0.1814	0.005
Lower Lim.	0.0033	0.01727	0.1349	0.00375

Constituent: Mercury (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

			Plant	Daniel Client: Southern Company Data: Bottom Ash CCR
	BAW-3	BAW-4	BAW-5	BAW-7
3/23/2016	8.4E-05 (JB)	7.3E-05 (JB)	7.4E-05 (JB)	7.1E-05 (JB)
5/17/2016		<0.0002	<0.0002	<0.0002
5/18/2016	<0.0002			
7/12/2016				<0.0002
7/13/2016	<0.0002	<0.0002	<0.0002	
9/13/2016			<0.0002	<0.0002
9/14/2016	<0.0002	<0.0002		
11/19/2016	<0.0002	<0.0002	<0.0002	<0.0002
1/17/2017	<0.0002			<0.0002
1/18/2017		<0.0002	<0.0002	
3/22/2017				<0.0002
3/23/2017	0.00013 (J)	0.00013 (J)	<0.0002	
5/24/2017	<0.0002	<0.0002	<0.0002	<0.0002
3/28/2018	<0.0002	<0.0002	<0.0002	
3/29/2018				<0.0002
2/11/2019		<0.0002	<0.0002	
2/12/2019	<0.0002			<0.0002
4/17/2019	<0.0002	<0.0002	<0.0002	
4/18/2019				<0.0002
2/21/2020	<0.0002			<0.0002
2/22/2020		<0.0002	<0.0002	
10/30/2020	0.000497	<0.0002	<0.0002	
11/2/2020				<0.0002
3/17/2021		<0.0002	<0.0002	
3/26/2021	<0.0002			0.000235
10/5/2021		<0.0002		0.000151 (J)
10/6/2021	<0.0002		<0.0002	
3/16/2022	<0.0002	<0.0002	<0.0002	0.0012
10/5/2022	<0.0002	<0.0002		
10/6/2022			<0.0002	<0.0002
4/20/2023	<0.0002			
4/21/2023		<0.0002	<0.0002	<0.0002
10/24/2023				<0.0002
10/25/2023	<0.0002	<0.0002	<0.0002	
3/20/2024			0.000134 (J)	
3/21/2024	0.000133 (J)	0.000135 (J)		0.000143 (J)
10/2/2024	<0.0002	<0.0002	<0.0002	<0.0002
Mean	0.0002021	0.0001875	0.0001909	0.0002381
Std. Dev.	7.449E-05	3.316E-05	3.039E-05	0.0002228
Upper Lim.	0.000497	0.0002	0.0002	0.000235
Lower Lim.	0.000133	0.000135	0.000134	0.000151

Constituent: Molybdenum (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

	BAW-4	BAW-5	BAW-7
3/23/2016	<0.005	0.0026 (J)	<0.005
5/17/2016	<0.005	0.0011 (J)	<0.005
7/12/2016			<0.005
7/13/2016	<0.005	0.0079 (J)	
9/13/2016		0.0038 (J)	<0.005
9/14/2016	<0.005		
11/19/2016	<0.005	0.0014 (J)	<0.005
1/17/2017			<0.005
1/18/2017	<0.005	0.001 (J)	
3/22/2017			0.0038 (J)
3/23/2017	<0.005	<0.015	
5/24/2017	<0.005	0.0014 (J)	<0.005
3/28/2018	<0.005	<0.015	
3/29/2018			<0.005
11/8/2018	<0.005		
11/9/2018		<0.015	<0.005
2/11/2019	<0.005	<0.015	
2/12/2019			<0.005
4/17/2019	<0.005	<0.015	
4/18/2019			<0.005
2/21/2020			<0.005
2/22/2020	0.000616 (J)	0.000627 (J)	
4/14/2020	<0.005	0.000747 (J)	<0.005
10/30/2020	<0.005	<0.015	
11/2/2020			<0.005
3/17/2021	0.0032 (J)	0.00328 (J)	
3/26/2021			<0.005
10/5/2021	0.00109 (J)		<0.005
10/6/2021		0.00364 (J)	
3/16/2022	0.000916 (J)	0.00533	<0.005
10/5/2022	0.000939 (J)		
10/6/2022		0.00424 (J)	<0.005
4/21/2023	0.00109 (J)	0.00651	<0.005
10/24/2023			<0.005
10/25/2023	<0.005	0.0036 (J)	
3/20/2024		0.00366 (J)	
3/21/2024	0.000937 (J)		<0.005
10/2/2024	0.00108 (J)	0.00335 (J)	<0.005
Mean	0.00369	0.006269	0.004948
Std. Dev.	0.00189	0.005589	0.0002502
Upper Lim.	0.005	0.003795	0.005
Lower Lim.	0.00109	0.00176	0.0038

Constituent: Selenium (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

-				
		BAW-3	BAW-5	BAW-7
	3/23/2016	0.00033 (J)	<0.005	<0.005
	5/17/2016		<0.005	0.00026 (J)
	5/18/2016	<0.005		
	7/12/2016			<0.005
	7/13/2016	0.00041 (J)	<0.005	
	9/13/2016		<0.005	0.00031 (J)
	9/14/2016	0.00079 (J)		
	11/19/2016	<0.005	<0.005	<0.005
	1/17/2017	<0.005		<0.005
	1/18/2017		<0.005	
	3/22/2017			0.0021
	3/23/2017	<0.005	<0.005	
	5/24/2017	0.00028 (J)	0.00033 (J)	0.00026 (J)
	3/28/2018	0.00038 (J)	<0.005	
	3/29/2018			0.00036 (J)
	6/2/2018	0.00031 (J)	<0.005	<0.005
	11/8/2018	0.00088 (J)		
	11/9/2018		<0.005	<0.005
	2/11/2019		<0.005	
	2/12/2019	<0.005		<0.005
	4/17/2019	<0.005	<0.005	
	4/18/2019			<0.005
	2/21/2020	<0.005		<0.005
	2/22/2020		<0.005	
	10/30/2020	<0.005	<0.005	
	11/2/2020			<0.005
	3/17/2021		<0.005	
	3/26/2021	<0.005		<0.005
	10/5/2021			<0.005
	10/6/2021	<0.005	<0.005	
	3/16/2022	<0.005	<0.005	<0.005
	10/5/2022	<0.005		
	10/6/2022		<0.005	<0.005
	4/20/2023	<0.005		
	4/21/2023		<0.005	<0.005
	10/24/2023			<0.005
	10/25/2023	<0.005	<0.005	
	3/20/2024		<0.005	
	3/21/2024	<0.005		<0.005
	10/2/2024	<0.005	<0.005	<0.005
	Mean	0.003625	0.004797	0.004056
	Std. Dev.	0.002129	0.0009738	0.001863
	Upper Lim.	0.005	0.005	0.005
	Lower Lim.	0.00079	0.00033	0.0021

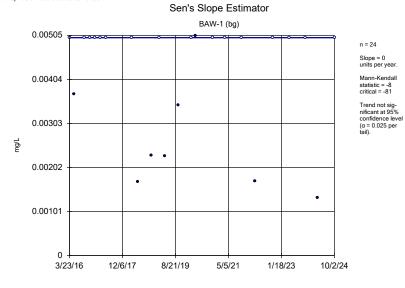
Constituent: Thallium (mg/L) Analysis Run 11/11/2024 3:05 PM View: Confidence Intervals

	BAW-3	BAW-7
3/23/2016	<0.001	<0.001
5/17/2016	40.001	<0.001
5/18/2016	<0.001	-0.001
7/12/2016	\$0.001	<0.001
7/13/2016	<0.001	<0.001
9/13/2016	<0.001	<0.001
9/14/2016	9.5E-05 (J)	\$0.001
11/19/2016	9.5 ∟ -05 (3) <0.001	<0.001
1/17/2017	<0.001	<0.001
3/22/2017	<0.001	<0.001
3/23/2017	<0.001	<0.001
5/24/2017	<0.001	<0.001
3/28/2017	<0.001	<0.001
3/29/2018	<0.001	-0.001
		<0.001
11/8/2018	8.5E-05 (J)	.0.001
11/9/2018	-0.001	< 0.001
2/12/2019	<0.001	<0.001
4/17/2019	<0.001	.0.001
4/18/2019	0.000070.(1)	< 0.001
2/21/2020	0.000276 (J)	<0.001
4/14/2020	0.000158 (J)	<0.001
10/30/2020	<0.001	
11/2/2020		<0.001
3/26/2021	<0.001	<0.001
10/5/2021		0.000153 (J)
10/6/2021	<0.001	
3/16/2022	<0.001	<0.001
10/5/2022	<0.001	
10/6/2022		<0.001
4/20/2023	<0.001	
4/21/2023		<0.001
10/24/2023		<0.001
10/25/2023	<0.001	
3/21/2024	<0.001	<0.001
10/2/2024	<0.001	<0.001
Mean	0.0008528	0.0009632
Std. Dev.	0.0003297	0.0001766
Upper Lim.	0.001	0.001
Lower Lim.	0.000276	0.000153

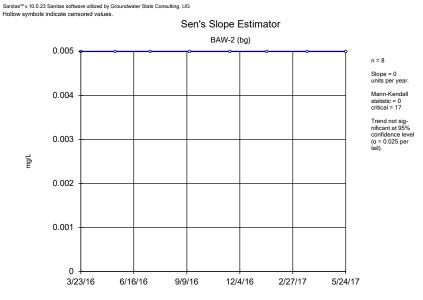
Trend Tests - Confidence Interval Exceedances

Appendix IV - Trend Test Summary - Significant Results

Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 3:07 PM


Constituent	Well	Slope	<u>Calc.</u>	Critical	<u>Sig.</u>	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Lithium (mg/L)	BAW-5	-0.01514	-142	-85	Yes	25	0	n/a	n/a	0.05	NP

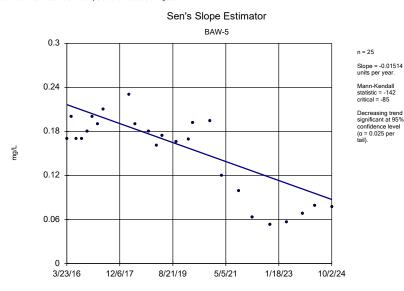
Appendix IV - Trend Test Summary - All Results


Plant Daniel Client: Southern Company Data: Bottom Ash CCR Printed 11/11/2024, 3:07 PM

Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	<u>%NDs</u>	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Lithium (mg/L)	BAW-1 (bg)	0	-8	-81	No	24	66.67	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-2 (bg)	0	0	17	No	8	100	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-2A (bg)	0	-2	-45	No	16	50	n/a	n/a	0.05	NP
Lithium (mg/L)	BAW-5	-0.01514	-142	-85	Yes	25	0	n/a	n/a	0.05	NP

Sanitas¹⁶ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 11/11/2024 3:06 PM View: Appendix IV Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR


Constituent: Lithium Analysis Run 11/11/2024 3:06 PM View: Appendix IV Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas[™] v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Lithium Analysis Run 11/11/2024 3:06 PM View: Appendix IV Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR

Sanitas™ v.10.0.23 Sanitas software utilized by Groundwater Stats Consulting. UG

Constituent: Lithium Analysis Run 11/11/2024 3:06 PM View: Appendix IV Trend Tests Plant Daniel Client: Southern Company Data: Bottom Ash CCR