2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

MISSISSIPPI POWER COMPANY PLANT VICTOR DANIEL NORTH ASH MANAGEMENT UNIT

January 31, 2022

Prepared for

Mississippi Power Company Gulfport, Mississippi

By

Southern Company Services
Earth Science and Environmental Engineering

CERTIFICATION STATEMENT

This 2021 Annual Groundwater Monitoring and Corrective Action Report, Mississippi Power Company – Plant Daniel North Ash Management Unit has been prepared to comply with the United States Environmental Protection Agency coal combustion residual rule (40 Code of Federal Regulations (CFR) Part 257, Subpart D) under the supervision of a licensed Professional Geologist with Southern Company Services.

Robert F. Singleton III, PG

Originator

Mississippi PG No. 1015

Eric E. Wallis, PG

Supervising Principal Hydrogeol

Mississippi PG No. 0926

SITE SUMMARY

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 CFR Part 257, Subpart D), this 2021 Annual Groundwater Monitoring and Corrective Action Report has been prepared to document 2021 semi-annual detection groundwater monitoring activities at the Plant Daniel North Ash Management Unit (NAMU) and to satisfy the requirements of § 257.90(e). Semi-annual detection monitoring and associated reporting for Plant Daniel NAMU is performed in accordance with the monitoring requirements § 257.90 through § 257.94.

Statistical evaluations of the April and October 2021 detection monitoring data identified statistically significant increases (SSIs) of Appendix III constituents above the GWPS. However, an ASD report for SSIs identified during the first and second semi-annual detection monitoring events is included in this report. As discussed in the ASD report, the apparent exceedances observed during the monitoring period were not likely the result of a release from the CCR unit. Therefore, in accordance with § 257.94, MPC will continue detection monitoring.

The following future actions will be taken or are recommended for the Site:

- Continue semi-annual assessment monitoring in March or April 2022 and September or October 2022.
- Submit 2022 Annual Groundwater Monitoring and Corrective Action Report by January 31, 2023.

Pursuant to 40 CFR 257.90(e)(6), the table titled **Monitoring Period Summary** has been prepared to describe the status of groundwater monitoring and corrective action during the monitoring period for this report.

Monitoring Period Summary Plant Daniel - North Ash Management Unit

Monitoring Period: January 1 - December 31, 2021

Beginning Status: Detection Ending Status: Detection

STATISTICAL ANALYSIS RESULTS*

Appendix	Ш	SSIs
----------	---	------

Parameter	Wells	
Boron	None	
Calcium	MW-19	
Chloride	None	
Fluoride	None	
рН	MW-19	
Sulfate	MW-17	
TDS	None	

Appendix IV SSLs

Site Remains in Detection Monitoring (§ 257.94)

ASSESSMENT OF CORRECTIVE MEASURES & GROUNDWATER REMEDY

Assessment of Corrective Measures

Site Remains in Detection Monitoring (§ 257.94)

Groundwater Remedy

Site Remains in Detection Monitoring (§ 257.94)

^{*} See the attached report for further details regarding statistical exceedances.

TABLE OF CONTENTS

SITE SUMMARY	i
Table of Contents	iii
1.0 INTRODUCTION	1
2.0 SITE DESCRIPTION	2
2.1 Regional Geology & Hydrogeologic Setting	2
2.2 Uppermost Aquifer	3
3.0 GROUNDWATER MONITORING SYSTEM AND ACTIVITY	4
3.1 Groundwater Monitoring System	4
3.2 Monitoring Well Installation and Maintenance	4
3.3 Detection Monitoring	4
4.0 SAMPLE METHODOLOGY & ANALYSIS	5
4.1 Groundwater Flow Direction, Gradient, and Velocity	5
4.2 Groundwater Sampling	6
4.3 Laboratory Analysis	6
4.4 Quality Assurance and Quality Control	6
5.0 STATISTICAL ANALYSIS	9
5.1 Statistical Method	9
5.2 Statistical Analysis Results	9
6.0 ALTERNATE SOURCE DEMONSTRATION	10
7.0 MONITORING PROGRAM STATUS	11
8.0 CONCLUSIONS & FUTURE ACTIONS	12
9.0 REFERENCES	13

Tables

Site Summary	Monitoring Period Summary
Table 1	Monitoring Well Network Summary
Table 2	Groundwater Elevations Summary – 2021
Table 3	Groundwater Flow Velocity Calculations – 2021
Table 4	Relative Percent Difference Calculations

Figures

Figure 1	Site Location Map
Figure 2	Monitoring Well Location Map
Figure 3	Potentiometric Surface Contour Map – March 15, 2021
Figure 4	Potentiometric Surface Contour Map – October 4, 2021

Appendices

Appendix A	Laboratory Analytical and Field Sampling Reports
Appendix B	Statistical Data Evaluation
Appendix C	Alternate Source Demonstration

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations (CFR) § 257 Subpart D), Southern Company Services (SCS) has prepared this 2021 Annual Groundwater Monitoring and Corrective Action Report document groundwater monitoring activities at Mississippi Power Company (MPC) Plant Daniel North Ash Management Unit (NAMU).

Groundwater monitoring and reporting for the CCR unit is performed in accordance with the monitoring requirements § 257.90 through § 257.94 of the Federal CCR rule. This report has been prepared to document the 2021 semi-annual groundwater monitoring events at the NAMU and to satisfy the requirements of § 257.90(e).

2.0 SITE DESCRIPTION

The Site is located within Section 35, Township 5 South, Range 6 West, Sections 37, 10, 15, East half of Section 9, Southwest ¼ of Section 2, Northwest ¼ and south half of Section 11, and the north half and northwest ¼ of the southwest ¼ of Section 14, all of Township 6 South, Range 6 West. The Site is situated immediately northwest of the intersection of Mississippi State Highways 63 and 613, between the Pascagoula River to the west and Highway 63 to the east. The site address is 13201 Highway 63 N, Escatawpa, Mississippi 39562.

NAMU is located in the northernmost portion of the property. **Figure 1, Site Location Map**, depicts the location of Plant Daniel relative to site features and the surrounding area.

2.1 Regional Geology & Hydrogeologic Setting

Jackson County lies in the Pascagoula River Drainage Basin in the Gulf Coastal Plain physiographic province. Topographically, the province is gently rolling to flat with local salt marshes. Rock outcrops are sedimentary in origin and range in age from late Miocene to Recent (Gandl, 1982). A dominant regional structural feature which affects the sediments of Miocene and younger age is the Gulf Coast geosyncline. The sediments dip toward the Gulf of Mexico. Where formations are near the surface, dips are from 15 to 35 feet/mile. Further from the outcrop, dips increase dramatically with depth. Fresh-water aquifers in the Pascagoula area are sand or sand and gravel beds of Miocene age or younger, generally less than 1,000 feet below the surface.

The surface geology of soils near Plant Daniel results from present-day weathering processes dictated by southern Mississippi's semi-tropical climate and the parent geologic materials. The soil profile formed from a wide variety of sediments of recent age, and from Pleistocene terrace deposits. The soils therefore contain sand, silt, clay, gravel and organics.

Studies prepared by SCS, establish five geologic units underlying the immediate Plant Daniel property:

- Unit 1 is a sandy clay aquitard. The unit is discontinuous across the Plant Daniel site and extends from the surface to approximately 32 feet deep in some areas.
- Unit 2 is a sand aquifer, which extends to approximately 70 feet and is considered the uppermost aquifer for groundwater monitoring purposes.
- Unit 3 is a clay aquitard underlying Unit 2 with thicknesses ranging from 2.5 to 9.5 feet at Plant Daniel.
- Unit 4 is a sand and gravel aquifer with a thickness of 34 feet or greater.

• Unit 5 is a clay aquitard.

2.2 Uppermost Aquifer

Two aquifers supply water to the Pascagoula area. These are the Pliocene-age Citronelle and the Miocene Aquifer System, which includes the Graham Ferry Aquifer. Plant Daniel is located in the Citronelle outcrop area.

The Citronelle Aquifers are the shallowest aquifers in the Pascagoula area. Although principally a sand and gravel formation, the Citronelle is characterized by occasional lenses and layers of clay which may cause semi-artesian conditions. Sediments become coarse near the irregular contact with the underlying Pascagoula or Graham Ferry Formation. Also, the Citronelle and overlying coastal deposits are generally considered one hydrogeologic unit. The Citronelle is primarily a water table aquifer with a saturated thickness of about 45 feet. Recharge is primarily by rainfall which moves vertically and down dip to recharge underlying aquifers and to sustain local streams (Wasson, 1978).

For groundwater monitoring purposes, the Unit 2 sand is the uppermost aquifer screened by site monitoring wells.

3.0 GROUNDWATER MONITORING SYSTEM AND ACTIVITY

Pursuant to § 257.91, MPC installed a groundwater monitoring system to monitor groundwater within the uppermost aquifer (Unit 2). The Professional Engineer (PE)-certified groundwater monitoring system for the NAMU is designed to monitor groundwater passing the waste boundary of the CCR unit within the uppermost aquifer. As required by § 257.90(e), the following also describes monitoring-related activities performed during the preceding year.

3.1 Groundwater Monitoring System

The groundwater monitoring network is comprised of seven monitoring wells as presented on **Figure 2**, **Monitoring Well Location Map**. **Table 1**, **Monitoring Well Network Summary**, summarizes the monitoring well construction details and design purpose for the NAMU.

Monitoring well locations MW-11, MW-14, and MW-18 serve as upgradient locations for the NAMU. Upgradient wells are screened within the same uppermost aquifer as downgradient locations and are representative of background groundwater quality at the site. Monitoring well locations MW-15, MW-16, MW-17 and MW-19 are utilized as downgradient locations for NAMU. Downgradient locations were determined by water level monitoring and potentiometric surface maps constructed for the site.

3.2 Monitoring Well Installation and Maintenance

There was no change to the groundwater monitoring system in 2021; the network remained the same as in the previous reporting year. Monitoring well-related activities were limited to visual inspection of well conditions prior to sampling, recording the site conditions, and performing exterior maintenance to perform sampling under safe and clean conditions.

3.3 Detection Monitoring

Based on results provided in previous Annual Groundwater and Corrective Action Monitoring Reports, the NAMU is performing detection monitoring. Samples were collected from wells in the PE-certified monitoring system shown on **Figure 2**. Analytical data from the semi-annual monitoring events are included as **Appendix A**, **Laboratory Analytical and Field Sampling Reports**, in accordance with the requirements of § 257.90(e)(3).

4.0 SAMPLE METHODOLOGY & ANALYSIS

The following describes the methods used to complete groundwater monitoring at NAMU.

4.1 Groundwater Flow Direction, Gradient, and Velocity

Prior to each sampling event, groundwater levels were measured and recorded to the nearest 0.01 foot within a 24-hour period. Groundwater levels recorded during the monitoring events are summarized in **Table 2, Groundwater Elevations Summary – 2021.** Groundwater levels and top of casing elevations were used to calculate groundwater elevation and develop the potentiometric surface elevation contour map provided as **Figures 3** and **4, Potentiometric Surface Contour Map(s)**. As shown on **Figures 3** and **4,** the general direction of groundwater flow is west-southwest. The groundwater flow pattern observed during the 2021 monitoring events is consistent with historic observations.

Groundwater flow velocities at the site were calculated based on hydraulic gradients, hydraulic conductivity from previous slug test results, and an estimated effective porosity of the screened horizon. Based on slug test data at the site the average hydraulic conductivity at the site is 25 feet per day. The hydraulic gradient was calculated between well pairs shown on **Table 3**, **Groundwater Flow Velocity Calculations - 2021**. An effective porosity of 0.2 was used based on the default values for effective porosity recommended by USEPA for a silty sand-type soil (U.S. USEPA, 1996).

Horizontal flow velocity was calculated using the commonly used derivative of Darcy's Law:

$$V = \frac{K * i}{n_e}$$

Where:

 $V = \text{Groundwater flow velocity} \left(\frac{feet}{day}\right)$ $K = \text{Average permeability of the aquifer} \left(\frac{feet}{day}\right)$

i = Horizontal hydraulic gradient

 n_e = Effective porosity

Using this equation, groundwater flow velocities are calculated for various areas of the site and are tabulated on **Table 3**.

Groundwater monitoring wells MW-14 and MW-16 were used as points for calculating Flow Path A and MW-11 and MW-19 were used to calculate Flow Path B. The horizontal hydraulic gradients ranged from 0.0034 feet per foot (ft/ft) to 0.0046 ft/ft. As presented on **Table 3**, groundwater flow velocity at the site ranges from approximately 0.42 feet per day (ft/day) (or approximately 154.67 feet per year) to 0.58

feet/day (or approximately 210.63 feet per year). These calculated groundwater flow velocities across the site are consistent with historical calculations and with expected velocities.

4.2 Groundwater Sampling

Groundwater samples were collected from monitoring wells using low-flow sampling procedures in accordance with § 257.93(a). All monitoring wells at the Site are equipped with a dedicated pump. Monitoring wells were purged and sampled using low-flow sampling procedures whereby samples are collected when field water quality parameters (pH, turbidity, conductivity, and dissolved oxygen (DO)) were measured to determine stabilization. Groundwater samples were collected when the following stabilization criteria were met:

- 0.2 standard units for pH
- 5% for specific conductance
- 0.2 mg/L or 10% for DO > 0.5 mg/l (whichever is greater)
- Turbidity measurements less than 5 nephelometric turbidity unit (NTU)
- Temperature and oxidation reduction potential (ORP) record only, no stabilization criteria

During purging and sampling a SmarTroll instrument was used to monitor and record field parameters. Once stabilization was achieved, samples were collected and submitted to the laboratory following standard chain-of-custody (COC) protocol.

4.3 Laboratory Analysis

Laboratory analyses was performed by Eurofins Environmental Testing TestAmerica, Inc. (TAL) of Pittsburgh, Pennsylvania and St. Louis, Missouri. TAL is accredited by National Environmental Laboratory Accreditation Program (NELAP). TestAmerica maintains a NELAP certification for all parameters analyzed for this project. Groundwater analytical data and chain-of-custody records for the monitoring events are presented in **Appendix A**.

4.4 Quality Assurance and Quality Control

During each sampling event, quality assurance/quality control samples (QA/QC) were collected at a rate of one sample per every 10 detection samples. Equipment blanks and duplicate samples were also collected during each sampling event. QA/QC sample data was evaluated during data validation and is included in **Appendix A**. When values are followed by a "J" flag, this indicates that the value is an estimated analyte concentration detected between the method detection limit (MDL) and the laboratory reporting limit (RL). The estimated value is positively identified but is below lowest level that can be reliably achieved within specified limits of precision and accuracy under routine laboratory operating conditions.

Analytical precision is measured through the calculation of the relative percent difference (RPD) of two data sets generated from a similar source. Here, a comparison of results between samples and field duplicate samples are used as measure of laboratory precision. For groundwater analytical data, quality control procedures include calculating the relative percent difference (where field duplicates are collected, the RPD) between the sample and duplicate sample duplicate concentrations. This is calculated as:

$$RPD = \frac{Conc1 - Conc2}{(Conc1 + Conc2)/2}$$

Where:

RPD = Relative Percent Difference (%)

Conc1 = Higher concentration of the sample or field duplicate

Conc2 = Lower concentration of the sample or field duplicate

Relative percent differences are calculated for all detected concentrations above the RL. Where the RPD is below 20%, the difference is considered acceptable, and no further action is needed. Where an RPD is greater than 20%, further evaluation is required to attempt to determine the cause of the difference and potentially result in qualified data. **Table 4, Relative Percent Difference Calculations**, provides the relative percent differences for sample and sample duplicates during 2021 sampling events.

During the first 2021 semi-annual sampling event, RPD exceeded 20% for Total Dissolved Solids (TDS) for the sample and field duplicate collected at MW-18. The results for both the sample and the field duplicate are less than five times the RL for TDS, and the difference between the results is less than the RL. Additionally, RPD exceeded 20% for fluoride for the sample and field duplicate collected at MW-18. Both results have "J" flags and the difference between the results is less than the RL. Therefore, data validation is not required at MW-18 for TDS or fluoride.

During the first 2021 semi-annual sampling event, fluoride was detected in the field blank at an estimated concentration of 0.0303 mg/L. The result is "J" flagged indicating it is an estimated concentration below the RL. If a field blank has an analyte detected at a concentration greater than the MDL and below the RL, sample results that are less than five times the blank results are qualified with (+) U* and the MDL is raised to the blank result. Fluoride was not detected in samples at concentrations exceeding five times the field blank results; therefore, the sample results are qualified with (+)U* and the MDL is raised to 0.0303 mg/L for each sample result. A summary a data validation for Plant Daniel NAMU is provided below.

Sample	Fluoride Result (mg/L)	Original MDL (mg/L)	Data Validation Qualifier	New MDL (mg/L)
MW-11	0.0269 J	0.026	(+)U*	0.0303
MW-14	<0.026 0.026		(+)U*	0.0303
MW-15	<0.026	0.026	(+)U*	0.0303
MW-16	<0.026	0.026	(+)U*	0.0303
MW-17	<0.026	0.026	(+)U*	0.0303
MW-18	0.344 J	0.026	(+)U*	0.0303
MW-19	0.0376 J	0.026	(+)U*	0.0303

5.0 STATISTICAL ANALYSIS

Statistical analysis of Appendix III groundwater monitoring data was performed on samples collected from the certified groundwater monitoring network pursuant to 40 CFR § 257.93 and following the appropriate PE-certified method. The statistical method used at the site was developed by Groundwater Stats Consulting, LLC (GSC), in accordance with 40 CFR § 257.93(f) using methodology presented in *Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance*, March 2009, EPA 530/R-09-007 (USEPA, 2009). Results are included in **Appendix B, Statistical Data Evaluation.**

5.1 Statistical Method

At NAMU, intrawell prediction limits (PL) are used to compare the most recent sample to prediction limits constructed from screened historical data from within the same well for each of the Appendix III parameters and determine whether any concentrations exceed background levels. The selected statistical method includes a 1-of-2 verification resample plan. When an initial (or apparent) statistically significant increase or questionable result occurs, a second sample may be collected to verify the initial result or determine if the result was an outlier. If the second sample exceeds its respective background statistical limit, a statistically significant increase (SSI) is identified. If the second sample is below its respective background limit there is no SSI.

5.2 Statistical Analysis Results

Analytical data from the 2021 semi-annual monitoring events in March and October were statistically analyzed in accordance with the PE-certified Statistical Analysis Plan (October 2017) and Statistical Background Update by GSC (December 2019).

A review of the Sanitas results, presented in **Appendix B**, identified the following Appendix III SSIs during the first semi-annual monitoring event:

- MW-17: Sulfate
- MW-19: Calcium

During the second semi-annual monitoring event, the previous MW-17 SSI was not verified, and the following SSIs were identified:

• MW-19: Calcium and pH

As discussed in the following section, an alternate source demonstration (ASD) has been prepared pursuant to 40 CFR § 257.94(e)(2) demonstrating that the SSI is not the result of a release from the CCR unit.

6.0 ALTERNATE SOURCE DEMONSTRATION

Section 257.94(e)(2) allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSI or that the SSI was the result of an alternate source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. An ASD report for SSIs identified during the 2021 semi-annual detection monitoring events is included as **Appendix C**, **Alternate Source Demonstration**. As discussed in the ASD report, the apparent exceedances observed during the monitoring period were not the result of a release from the CCR unit and are likely caused by natural variability in groundwater quality. Instrument or operating variability is the likely cause of the pH SSI. Based on the ASD, the NAMU remained in detection monitoring.

7.0 MONITORING PROGRAM STATUS

Presently, Plant Daniel NAMU is in detection monitoring. SSIs of Appendix III parameters have been identified during the first and second semi-annual event. Pursuant to § 257.94(e)(1), MPC has prepared a demonstration that a source other than the CCR unit was the cause. MPC has addressed the reported SSIs in accordance with the requirements, and options, of § 257.94(e)(1-3) and (f) by providing an ASD, attached as **Appendix C.**

8.0 CONCLUSIONS & FUTURE ACTIONS

Based on results reported in the 2021 Annual Groundwater and Corrective Action Monitoring Report, MPC remained in detection monitoring. Groundwater samples were subsequently collected from the certified well network and analyzed for Appendix III parameters.

The certified compliance monitoring well network was resampled on a semi-annual basis. The groundwater samples were analyzed for all Appendix III parameters. Statistical evaluations of the April and October 2021 detection monitoring data identified SSIs of Appendix III constituents above the GWPS. However, an ASD report for SSIs identified during the first and second semi-annual detection monitoring events is included in this report. As discussed in the ASD report, the apparent exceedances observed during the monitoring period were not likely the result of a release from the CCR unit.

Therefore, in accordance with § 257.94, MPC will continue detection monitoring. The following future actions will be taken or are recommended for the Site:

- Continue semi-annual assessment monitoring in March or April 2022 and September or October 2022.
- Submit 2022 Annual Groundwater Monitoring and Corrective Action Report by January 31, 2023.
- Evaluate sampling and well conditions at wells MW-17 and MW-19 during sampling and ascertain if additional purging is needed during sampling to assure stabilized field parameters or if the wells should be redeveloped to mitigate potential localized geochemical variability.

9.0 REFERENCES

- Gandl, L.A. "Characterization of Aquifers Designated as Potential Drinking Water Sources in Mississippi," Water Resources Investigation Open-File Report 81-550, Mississippi Department of Natural Resources, Bureau of Pollution Control. 1982. 90 pp.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March.
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER]. RIN-2050-AE81. April.
- USEPA. 2011. *Data Validation Standard Operating Procedures*. Science and Ecosystem Support Division. Region IV. Athens, GA. September.
- USEPA. 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January.
- Wasson, B.E., 1978, Availability of additional ground-water supplies in the Pascagoula area, Mississippi Research and Development Center Bulletin, 32 p.

Tables

Table 1.
Monitoring Well Network Summary

Well ID	Purpose	Installation Date	Northing	Easting	Total Hole Depth (feet)	Top of Casing Elevation (feet MSL)	Ground Elevation (feet MSL)	Top of Screen Elevation (feet MSL)	Bottom of Screen Elevation (feet MSL)
MW-11	Upgradient	5/2/2006	384797.922	1068943.907	32.00	25.24	23.22	-3.78	-8.78
MW-14	Upgradient	7/24/2015	384048.468	1068916.529	47.00	23.65	20.87	-11.83	-16.83
MW-15	Downgradient	7/24/2015	383503.877	1068571.153	37.00	21.53	18.69	-12.61	-17.61
MW-16	Downgradient	7/24/2015	383593.548	1067845.867	28.00	16.12	13.16	-6.94	-11.94
MW-17	Downgradient	7/24/2015	384781.265	1067808.459	27.00	15.41	12.59	-7.91	-12.91
MW-18	Upgradient	7/24/2015	385290.588	1068774.386	47.00	28.86	26.33	-10.27	-15.27
MW-19	Downgradient	7/26/2016	384157.41	1067711.624	30.00	24.42	21.56	-3.04	-8.04

Notes:

- 1. Northing and Easting are referenced to MS SPCS (NAD 83) East Zone U.S. Survey Feet (2301).
- 2. Elevations shown are referenced Mean Sea Level (MSL) to NAVD 88 (G12) U.S. Survey Feet.
- 3. MSL refers to Mean Sea Level.

Table 2. Groundwater Elevations Summary - 2021

Well ID	Top of Casing	Groundwater Elevations (feet MSL)				
Well ID	(feet MSL)	March 15, 2021	October 4, 2021			
MW-11	25.24	11.96	13.99			
MW-14	23.65	10.85	12.35			
MW-15	21.53	9.32	10.50			
MW-16	16.12	6.29	7.16			
MW-17	15.41	8.03	9.22			
MW-18	28.86	12.01	14.26			
MW-19	24.42	5.94	6.63			

Notes:

1. MSL refers to Mean Sea Level

Table 3. Groundwater Flow Velocity Calculations - 2021

	Flow Path A								
	MW-14 h ₁ (ft)	MW-16 h ₂ (ft)	Distance Δl (ft)	Hydraulic Gradient Δh/Δl (ft/ft)	Hydraulic Conductivity K	Assumed Effective Porosity (ne)	Calculated Groundwater Flow Velocity (feet/day)	Calculated Groundwater Flow Velocity (feet/year)	
3/15/2021	10.85	6.29	1350	0.0034	25.09	0.2	0.42	154.67	
10/4/2021	12.35	7.16	1350	0.0038	25.09	0.2	0.48	176.03	

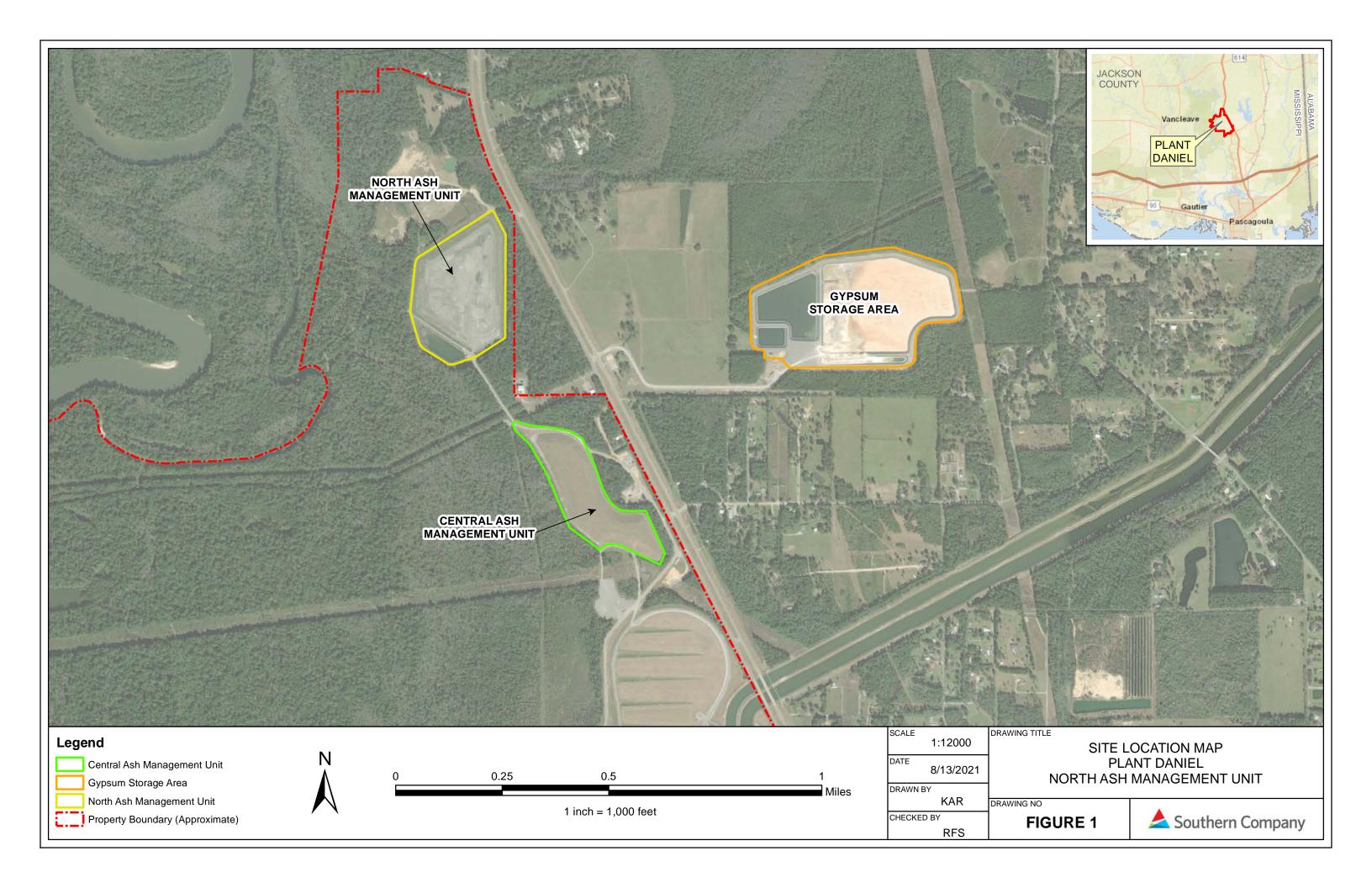
	Flow Path B							
	MW-11	MW-19 h ₂ (ft)	Distance Δl (ft)	Hydraulic Gradient Δh/Δl (ft/ft)	Hydraulic Conductivity K	Assumed Effective Porosity (ne)	Calculated Groundwater Flow Velocity (feet/day)	Calculated Groundwater Flow Velocity (feet/year)
3/15/2021	11.96	5.94	1600	0.0038	25.09	0.2	0.47	172.28
10/4/2021	13.99	6.63	1600	0.0046	25.09	0.2	0.58	210.63

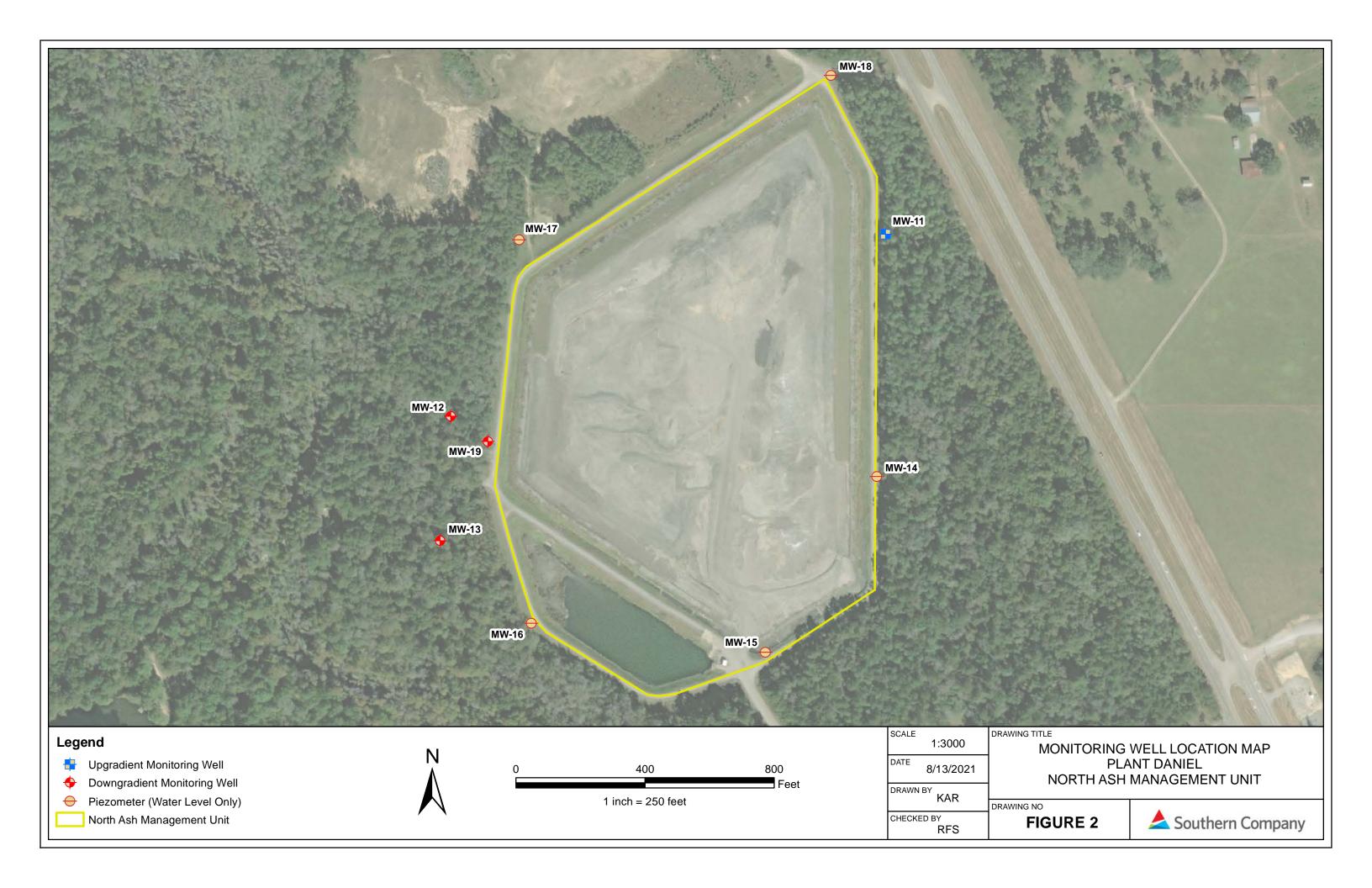
Notes:

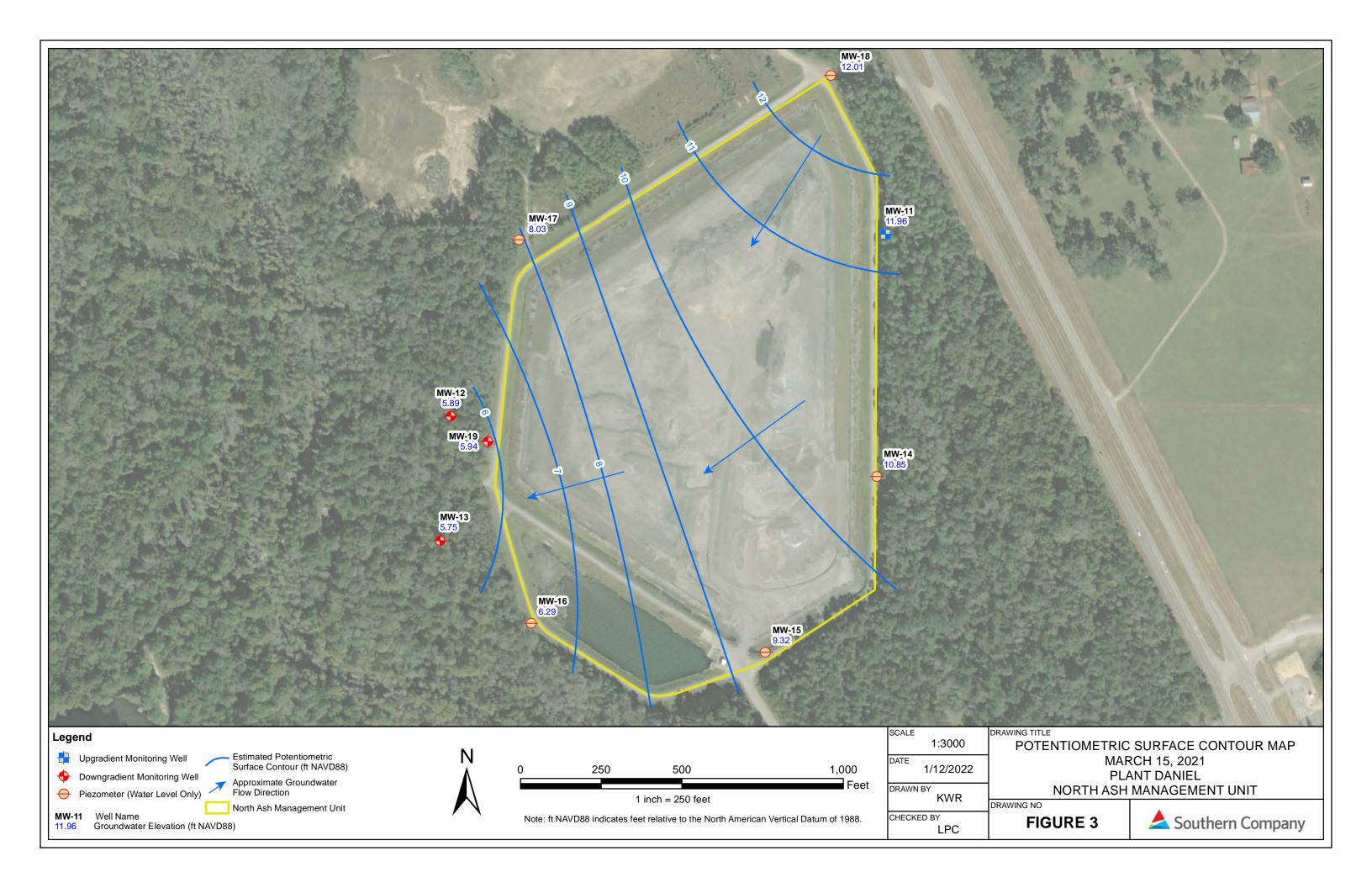
ft=feet

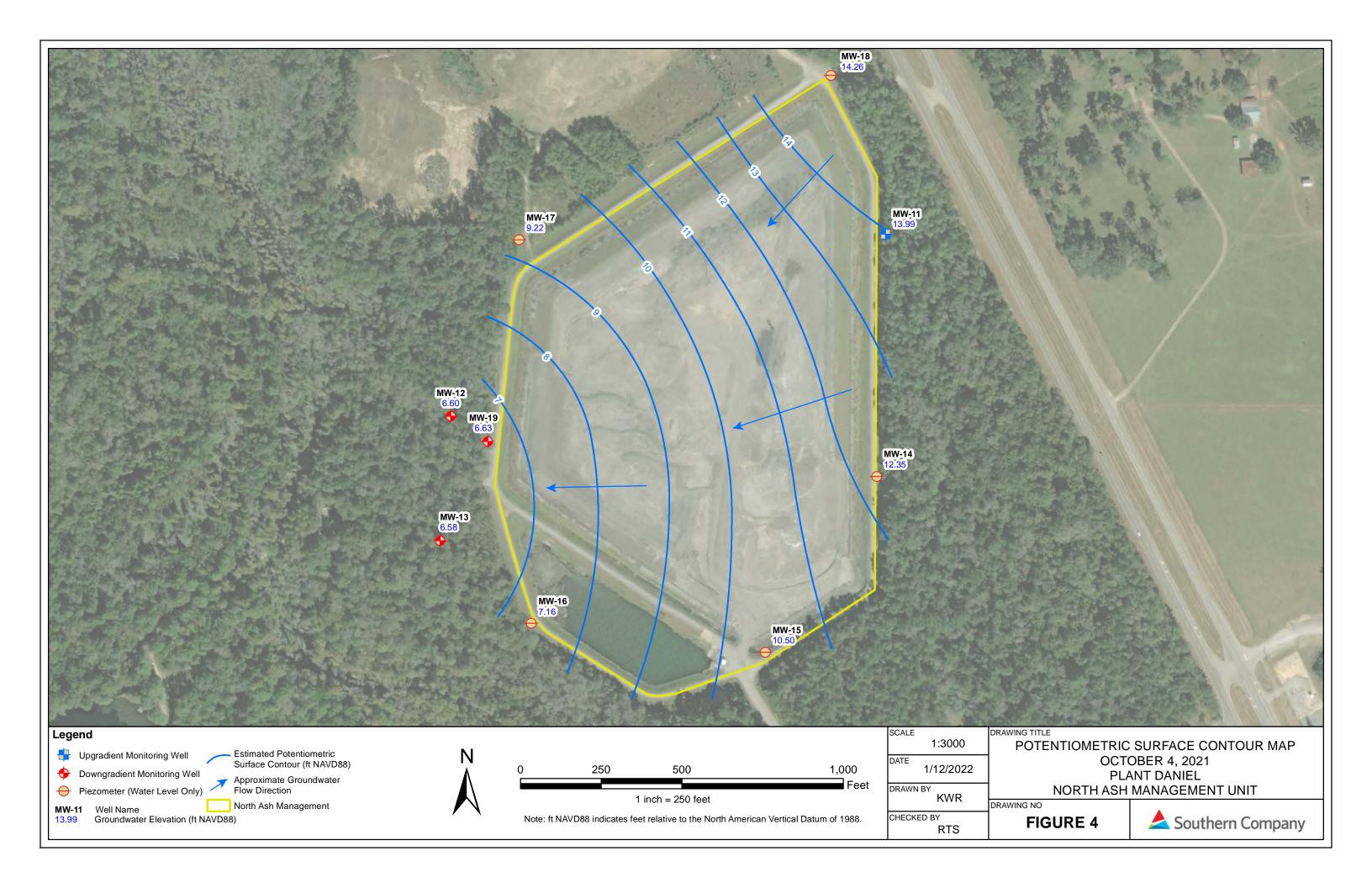
ft/d = feet/day

ft/ft = feet per foot


ft/yr = feet per year


Table 4.
Relative Percent Difference Calculations


1st Semi-Annual Monitoring Event							
D	***	Monitoring Poi	Relative Percent				
Parameter	Units	MW-18	Dup-01	Difference (RPD %)			
TDS	mg/L	31.0	40.0	25.4			
Chloride	mg/L	8.18	8.84	7.8			
Fluoride	mg/L	0.0344	0.0866	86.3			
Sulfate	mg/L	3.18	3.30	3.7			
Calcium	mg/L	0.570	0.525	8.2			


2nd Semi-Annual Monitoring Event						
Parameter	Units	Monitoring Point Identification		Relative Percent		
		MW-14	Dup-02	Difference (RPD %)		
TDS	mg/L	29.0	26.0	10.9		
Chloride	mg/L	6.59	5.87	11.6		
Fluoride	mg/L	0.0300	0.0260	14.3		
Sulfate	mg/L	2.46	2.07	17.2		
Calcium	mg/L	1.89	1.95	3.1		

Figures

Appendix A

1st Semi-Annual Monitoring Event

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-118544-1

Client Project/Site: Plant Daniel NAMU CCR

For:

Southern Company 3535 Colonnade Parkway Bin S 530 EC Birmingham, Alabama 35243

Attn: Lauren Parker

(Filipman)

Authorized for release by: 4/2/2021 3:17:21 PM

Shali Brown, Project Manager II (615)301-5031

Shali.Brown@Eurofinset.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Southern Company Project/Site: Plant Daniel NAMU CCR Laboratory Job ID: 180-118544-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	11
QC Sample Results	14
QC Association Summary	16
Receipt Checklists	18

4

R

9

4 4

Case Narrative

Client: Southern Company

Job ID: 180-118544-1 Project/Site: Plant Daniel NAMU CCR

Job ID: 180-118544-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-118544-1

Comments

No additional comments.

Receipt

The samples were received on 3/17/2021 8:45 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.8° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Southern Company Job ID: 180-118544-1

Project/Site: Plant Daniel NAMU CCR

Qualifiers

HPLC/IC

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

6

0

10

11

45

Accreditation/Certification Summary

Client: Southern Company Job ID: 180-118544-1

Project/Site: Plant Daniel NAMU CCR

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-21
California	State	2891	04-30-21
Connecticut	State	PH-0688	09-30-20 *
Florida	NELAP	E871008	06-30-21
Georgia	State	PA 02-00416	04-30-21
Illinois	NELAP	004375	06-30-21
Kansas	NELAP	E-10350	01-31-22
Kentucky (UST)	State	162013	04-30-21
Kentucky (WW)	State	KY98043	12-31-21
Louisiana	NELAP	04041	06-30-21
Maine	State	PA00164	03-06-22
Minnesota	NELAP	042-999-482	12-31-21
Nevada	State	PA00164	07-31-21
New Hampshire	NELAP	2030	04-05-21
New Jersey	NELAP	PA005	06-30-21
New York	NELAP	11182	03-31-21
North Carolina (WW/SW)	State	434	12-31-21
North Dakota	State	R-227	04-30-21
Oregon	NELAP	PA-2151	02-06-22
Pennsylvania	NELAP	02-00416	04-30-21
Rhode Island	State	LAO00362	12-31-21
South Carolina	State	89014	04-30-21
Texas	NELAP	T104704528	03-31-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462019-8	05-31-21
Virginia	NELAP	10043	09-14-21
West Virginia DEP	State	142	01-31-22
Wisconsin	State	998027800	08-31-21

4

5

7

9

10

11

12

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins TestAmerica, Pittsburgh

Sample Summary

Client: Southern Company Project/Site: Plant Daniel NAMU CCR

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
180-118544-1	MW-11	Water	03/16/21 09:05	03/17/21 08:45	
180-118544-2	MW-14	Water	03/16/21 08:15	03/17/21 08:45	
180-118544-3	MW-15	Water	03/16/21 07:40	03/17/21 08:45	
180-118544-4	MW-16	Water	03/16/21 07:36	03/17/21 08:45	
180-118544-5	MW-17	Water	03/16/21 11:20	03/17/21 08:45	
180-118544-6	MW-18	Water	03/16/21 10:00	03/17/21 08:45	
180-118544-7	MW-19	Water	03/16/21 12:05	03/17/21 08:45	
180-118544-8	DUP-01	Water	03/16/21 09:00	03/17/21 08:45	
180-118544-9	FB-01	Water	03/16/21 08:10	03/17/21 08:45	

Job ID: 180-118544-1

Method Summary

Client: Southern Company

Project/Site: Plant Daniel NAMU CCR

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	TAL PIT
EPA 6020B	Metals (ICP/MS)	SW846	TAL PIT
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Job ID: 180-118544-1

2

А

6

7

8

9

Client: Southern Company

Project/Site: Plant Daniel NAMU CCR

Client Sample ID: MW-11 Lab Sample ID: 180-118544-1

Date Collected: 03/16/21 09:05 Matrix: Water

Date Received: 03/17/21 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA 9056A at ID: INTEGRION		1			350706	03/26/21 02:08	EPS	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	350753	03/25/21 12:15	KEM	TAL PIT
Total Recoverable	Analysis Instrumer	EPA 6020B at ID: NEMO		1			351300	03/30/21 11:28	RSK	TAL PIT
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	350419	03/23/21 12:14	GRB	TAL PIT

Client Sample ID: MW-14

Date Collected: 03/16/21 08:15

Lab Sample ID: 180-118544-2

Matrix: Water

Date Collected: 03/16/21 08:15
Date Received: 03/17/21 08:45

Batch Batch Dil Initial Final Batch Prepared Method Amount Number **Prep Type** Туре Factor **Amount** or Analyzed Run **Analyst** Lab Total/NA EPA 9056A 03/26/21 02:26 EPS TAL PIT Analysis 350706 Instrument ID: INTEGRION Total Recoverable 3005A TAL PIT 50 mL 50 mL 350753 03/25/21 12:15 KEM TAL PIT Total Recoverable Analysis **EPA 6020B** 1 351300 03/30/21 11:30 RSK Instrument ID: NEMO Total/NA Analysis SM 2540C 100 mL 100 mL 350419 03/23/21 12:14 GRB TAL PIT Instrument ID: NOEQUIP

Client Sample ID: MW-15

Date Collected: 03/16/21 07:40

Lab Sample ID: 180-118544-3

Matrix: Water

Date Collected: 03/16/21 07:40 Date Received: 03/17/21 08:45

Prep Type Total/NA	Batch Type Analysis Instrumen	Batch Method EPA 9056A t ID: INTEGRION	Run	Factor 1	Initial Amount	Final Amount	Batch Number 350706	Prepared or Analyzed 03/26/21 02:44	Analyst EPS	Lab TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumer	3005A EPA 6020B it ID: NEMO		1	50 mL	50 mL	350753 351300	03/25/21 12:15 03/30/21 11:39		TAL PIT TAL PIT
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	350419	03/23/21 12:14	GRB	TAL PIT

Client Sample ID: MW-16

Lab Sample ID: 180-118544-4

Matrix: Water

Date Collected: 03/16/21 07:36 Date Received: 03/17/21 08:45

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			350706	03/26/21 03:02	EPS	TAL PIT
	Instrumer	t ID: INTEGRION								
Total Recoverable	Prep	3005A			50 mL	50 mL	350753	03/25/21 12:15	KEM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			351300	03/30/21 11:41	RSK	TAL PIT
	Instrumer	t ID: NEMO								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	350487	03/23/21 20:08	GRB	TAL PIT
	Instrumer	t ID: NOEQUIP								

Eurofins TestAmerica, Pittsburgh

Page 8 of 18 4/2/2021

2

Job ID: 180-118544-1

+

6

8

10

11

Client: Southern Company

Project/Site: Plant Daniel NAMU CCR

Lab Sample ID: 180-118544-5 **Client Sample ID: MW-17** Date Collected: 03/16/21 11:20

Matrix: Water

Job ID: 180-118544-1

Date Received: 03/17/21 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA 9056A at ID: INTEGRION		1			350706	03/26/21 03:20	EPS	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	350753	03/25/21 12:15	KEM	TAL PIT
Total Recoverable	Analysis Instrumer	EPA 6020B at ID: NEMO		1			351300	03/30/21 11:44	RSK	TAL PIT
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	350487	03/23/21 20:08	GRB	TAL PIT

Client Sample ID: MW-18 Lab Sample ID: 180-118544-6

Date Collected: 03/16/21 10:00 **Matrix: Water**

Date Received: 03/17/21 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1		-	350705	03/25/21 14:51	SAT	TAL PIT
	Instrumen	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			50 mL	50 mL	350753	03/25/21 12:15	KEM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			351300	03/30/21 11:47	RSK	TAL PIT
	Instrumen	t ID: NEMO								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	350419	03/23/21 12:14	GRB	TAL PIT
	Instrumen	t ID: NOEQUIP								

Client Sample ID: MW-19 Lab Sample ID: 180-118544-7 **Matrix: Water**

Date Collected: 03/16/21 12:05 Date Received: 03/17/21 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			350705	03/25/21 15:08	SAT	TAL PIT
	Instrumer	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			50 mL	50 mL	350753	03/25/21 12:15	KEM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			351300	03/30/21 11:50	RSK	TAL PIT
	Instrumer	it ID: NEMO								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	350487	03/23/21 20:08	GRB	TAL PIT
	Instrumer	t ID: NOEQUIP								

Client Sample ID: DUP-01 Lab Sample ID: 180-118544-8

Date Collected: 03/16/21 09:00 Date Received: 03/17/21 08:45

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			350705	03/25/21 15:24	SAT	TAL PIT
	Instrumer	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			50 mL	50 mL	350753	03/25/21 12:15	KEM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			351300	03/30/21 11:53	RSK	TAL PIT
	Instrumer	it ID: NEMO								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	350487	03/23/21 20:08	GRB	TAL PIT
	Instrumer	t ID: NOEQUIP								

Eurofins TestAmerica, Pittsburgh

Page 9 of 18 4/2/2021

Matrix: Water

Lab Chronicle

Client: Southern Company Job ID: 180-118544-1

Project/Site: Plant Daniel NAMU CCR

Client Sample ID: FB-01 Lab Sample ID: 180-118544-9

Matrix: Water

Date Collected: 03/16/21 08:10 Date Received: 03/17/21 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			350705	03/25/21 13:46	SAT	TAL PIT
	Instrumer	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			50 mL	50 mL	350753	03/25/21 12:15	KEM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			351300	03/30/21 11:55	RSK	TAL PIT
	Instrumer	t ID: NEMO								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	350487	03/23/21 20:08	GRB	TAL PIT
	Instrumer	t ID: NOEQUIP								

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: TAL PIT

Batch Type: Prep

KEM = Kimberly Mahoney

Batch Type: Analysis

EPS = Evan Scheuer

GRB = Gabriel Berghe

RSK = Robert Kurtz

SAT = Stephen Tallam

Eurofins TestAmerica, Pittsburgh

2

3

5

_

8

4 6

Client: Southern Company

Project/Site: Plant Daniel NAMU CCR

Client Sample ID: MW-11 Lab Sample ID: 180-118544-1 Date Collected: 03/16/21 09:05

Date Received: 03/17/21 08:45

Matrix: Water

Job ID: 180-118544-1

Method: EPA 9056A - Anions	s, Ion Chromate	ography							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13.3		1.00	0.713	mg/L			03/26/21 02:08	1
Fluoride	0.0269 J	J	0.100	0.0260	mg/L			03/26/21 02:08	1
Sulfate	2.15		1.00	0.756	mg/L			03/26/21 02:08	1
Method: EPA 6020B - Metals	(ICP/MS) - Tota	al Recove	rable						
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.0386		0.0800	0.0386	mg/L		03/25/21 12:15	03/30/21 11:28	1

Calcium 1.74 0.500 0.127 mg/L 03/25/21 12:15 03/30/21 11:28

General Chemistry Analyte RL Result Qualifier MDL Unit D Prepared Dil Fac Analyzed 10.0 10.0 mg/L 03/23/21 12:14 **Total Dissolved Solids** 39.0

Client Sample ID: MW-14 Lab Sample ID: 180-118544-2

Date Collected: 03/16/21 08:15 **Matrix: Water**

Date Received: 03/17/21 08:45

M	lethod: EPA 9056A	- Anions, Ion Chroma	tography							
Aı	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
CI	hloride	7.32		1.00	0.713	mg/L			03/26/21 02:26	1
FI	uoride	<0.0260		0.100	0.0260	mg/L			03/26/21 02:26	1
S	ulfate	2.23		1.00	0.756	mg/L			03/26/21 02:26	1

Method: EPA 6020B - Metals (ICP/MS) - Total Recoverable Analyte **MDL** Unit Result Qualifier RL Prepared Analyzed Dil Fac Boron <0.0386 0.0800 0.0386 mg/L 03/25/21 12:15 03/30/21 11:30 0.500 0.127 mg/L 03/25/21 12:15 03/30/21 11:30 Calcium 2.40 **General Chemistry** Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac **Total Dissolved Solids** 41.0 10.0 10.0 mg/L 03/23/21 12:14

Client Sample ID: MW-15 Lab Sample ID: 180-118544-3

Date Collected: 03/16/21 07:40

Date Received: 03/17/21 08:45

Method: EPA 9056A - A	Anions, Ion Chromatography	/						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.94	1.00	0.713	mg/L			03/26/21 02:44	1
Fluoride	<0.0260	0.100	0.0260	mg/L			03/26/21 02:44	1
Sulfate	1.07	1.00	0.756	mg/L			03/26/21 02:44	1
_								

Method: EPA 6020B - Meta	als (ICP/MS) - Total Reco	overable						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.0386	0.0800	0.0386	mg/L		03/25/21 12:15	03/30/21 11:39	1
Calcium	1.41	0.500	0.127	mg/L		03/25/21 12:15	03/30/21 11:39	1
Canaval Chamiatm								

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	34.0		10.0	10.0	mg/L			03/23/21 12:14	1

Eurofins TestAmerica, Pittsburgh

Matrix: Water

Client: Southern Company

Project/Site: Plant Daniel NAMU CCR

Client Sample ID: MW-16 Lab Sample ID: 180-118544-4 Date Collected: 03/16/21 07:36

Matrix: Water

Job ID: 180-118544-1

Date Received: 03/17/21 08:45

Method: EPA 9056A	Anions, Ion Chroma	atography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.14		1.00	0.713	mg/L			03/26/21 03:02	1
Fluoride	<0.0260		0.100	0.0260	mg/L			03/26/21 03:02	1
Sulfate	2.00		1.00	0.756	mg/L			03/26/21 03:02	1
Method: EPA 6020B	- Metals (ICP/MS) - To	otal Recove	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.0386		0.0800	0.0386	mg/L		03/25/21 12:15	03/30/21 11:41	1

Calcium 0.681 0.500 0.127 mg/L 03/25/21 12:15 03/30/21 11:41

General Chemistry Analyte Result Qualifier RL **MDL** Unit D Prepared Dil Fac Analyzed 10.0 10.0 mg/L 03/23/21 20:08 **Total Dissolved Solids** 27.0

Client Sample ID: MW-17 Lab Sample ID: 180-118544-5

Date Collected: 03/16/21 11:20 **Matrix: Water**

Date Received: 03/17/21 08:45

Method: EPA 9056A	- Anions, Ion Chroma	tography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.97		1.00	0.713	mg/L			03/26/21 03:20	1
Fluoride	<0.0260		0.100	0.0260	mg/L			03/26/21 03:20	1
Sulfate	3.06		1.00	0.756	mg/L			03/26/21 03:20	1

Method: EPA 6020B - Metals (ICP/MS) - Total Recoverable **MDL** Unit **Analyte** Result Qualifier RL D Prepared Analyzed Dil Fac Boron <0.0386 0.0800 0.0386 mg/L 03/25/21 12:15 03/30/21 11:44 0.500 03/25/21 12:15 03/30/21 11:44 0.127 mg/L Calcium 1.12 **General Chemistry**

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac **Total Dissolved Solids** 37.0 10.0 10.0 mg/L 03/23/21 20:08

Client Sample ID: MW-18 Lab Sample ID: 180-118544-6 **Matrix: Water**

Date Collected: 03/16/21 10:00 Date Received: 03/17/21 08:45

Method: EPA 9056A - A	nions, Ion Chroma	tography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.18		1.00	0.713	mg/L			03/25/21 14:51	1
Fluoride	0.0344	J	0.100	0.0260	mg/L			03/25/21 14:51	1
Sulfate	3.18		1.00	0.756	mg/L			03/25/21 14:51	1

Method: EPA 6020B	- Metals (ICP/MS) - To	tal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.0386		0.0800	0.0386	mg/L		03/25/21 12:15	03/30/21 11:47	1
Calcium	0.570		0.500	0.127	mg/L		03/25/21 12:15	03/30/21 11:47	1
<u> </u>									

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	31.0		10.0	10.0	mg/L			03/23/21 12:14	1

Eurofins TestAmerica, Pittsburgh

Client: Southern Company Project/Site: Plant Daniel NAMU CCR

Client Sample ID: MW-19 Lab Sample ID: 180-118544-7 **Matrix: Water**

Date Collected: 03/16/21 12:05 Date Received: 03/17/21 08:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.72		1.00	0.713	mg/L			03/25/21 15:08	1
Fluoride	0.0376	J	0.100	0.0260	mg/L			03/25/21 15:08	1
Sulfate	2.72		1.00	0.756	mg/L			03/25/21 15:08	1
Method: EPA 6020B - Meta Analyte		tal Recove	rable RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
				MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Boron	Result <0.0386		0.0800	0.0386	mg/L	<u>D</u>	03/25/21 12:15	03/30/21 11:50	Dil Fac
Analyte	Result		RL		mg/L	<u>D</u>	03/25/21 12:15		Dil Fac
Analyte Boron	Result <0.0386		0.0800	0.0386	mg/L	<u>D</u>	03/25/21 12:15	03/30/21 11:50	Dil Fac

03/23/21 20:08 **Total Dissolved Solids** 10.0 mg/L 25.0 10.0

Client Sample ID: DUP-01 Lab Sample ID: 180-118544-8 Date Collected: 03/16/21 09:00 **Matrix: Water**

Date Received: 03/17/21 08:45

8.84	1.00						
0.04	1.00	0.713	mg/L			03/25/21 15:24	1
0.0866 J	0.100	0.0260	mg/L			03/25/21 15:24	1
3.30	1.00	0.756	mg/L			03/25/21 15:24	1
	3.30		3.30 1.00 0.756	3.30 1.00 0.756 mg/L	3.30 1.00 0.756 mg/L	3.30 1.00 0.756 mg/L	3.30 1.00 0.756 mg/L 03/25/21 15:24

Boron	<0.0386	0.0800	0.0386 mg/L	 03/25/21 12:15	03/30/21 11:53	1	
Calcium	0.525	0.500	0.127 mg/L	03/25/21 12:15	03/30/21 11:53	1	
General Chemistry							

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	40.0	10.0	10.0	mg/L			03/23/21 20:08	1

Client Sample ID: FB-01 Lab Sample ID: 180-118544-9 Date Collected: 03/16/21 08:10 **Matrix: Water**

Date Received: 03/17/21 08:45

Boron

Total Dissolved Solids

Method: EPA 9056A -	Anions, Ion Chroma	tography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.713		1.00	0.713	mg/L			03/25/21 13:46	1
Fluoride	0.0303	J	0.100	0.0260	mg/L			03/25/21 13:46	1
Sulfate	<0.756		1.00	0.756	mg/L			03/25/21 13:46	1
Method: EPA 6020B -	Metals (ICP/MS) - To	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Calcium	<0.127	0.500	0.127 mg/L	03/23/21 12:13 03/30/21 11	1.55 1
General Chemistry					
Analyte	Result Qualifier	RL _	MDL Unit	D Prepared Analyze	d Dil Fac

10.0

0.0800

<0.0386

<10.0

0.0386 mg/L

10.0 mg/L

Eurofins TestAmerica, Pittsburgh

03/23/21 20:08

03/25/21 12:15 03/30/21 11:55

Job ID: 180-118544-1

Job ID: 180-118544-1

Client: Southern Company

Project/Site: Plant Daniel NAMU CCR

Lab Sample ID: MB 180-350705/6

Method: EPA 9056A - Anions, Ion Chromatography

Matrix: Water

Analysis Batch: 350705

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB RL **MDL** Unit Prepared Analyzed Dil Fac

Analyte Result Qualifier Chloride 0.713 mg/L <0.713 1.00 03/25/21 13:29 Fluoride < 0.0260 0.100 0.0260 mg/L 03/25/21 13:29 Sulfate < 0.756 1.00 0.756 mg/L 03/25/21 13:29

Lab Sample ID: LCS 180-350705/5

Matrix: Water

Analysis Batch: 350705

Client Sample ID: Lab Control Sample Prep Type: Total/NA

.,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	50.01		mg/L		100	80 - 120	
Fluoride	2.50	2.495		mg/L		100	80 - 120	
Sulfate	50.0	49.38		mg/L		99	80 - 120	

Lab Sample ID: MB 180-350706/40

Matrix: Water

Analysis Batch: 350706

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB MB							
Analyte	Result Qual	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.713	1.00	0.713	mg/L			03/25/21 18:59	1
Fluoride	<0.0260	0.100	0.0260	mg/L			03/25/21 18:59	1
Sulfate	<0.756	1.00	0.756	mg/L			03/25/21 18:59	1

Lab Sample ID: LCS 180-350706/39

Matrix: Water

Analysis Batch: 350706

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	53.00		mg/L		106	80 - 120	
Fluoride	2.50	2.472		mg/L		99	80 - 120	
Sulfate	50.0	52.90		mg/L		106	80 - 120	

Method: EPA 6020B - Metals (ICP/MS)

Lab Sample ID: MB 180-350753/1-A

Matrix: Water

Analysis Batch: 351300

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 350753**

	INIB I	VIB							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.0386		0.0800	0.0386	mg/L		03/25/21 12:15	03/30/21 10:35	1
Calcium	<0.127		0.500	0.127	mg/L		03/25/21 12:15	03/30/21 10:35	1

Lab Sample ID: LCS 180-350753/2-A **Matrix: Water**

Analysis Batch: 351300

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 350753

, , , , , , , , , , , , , , , , , , , ,	Spike	LCS	LCS			%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	1.25	1.239		mg/L		99	80 - 120	
Calcium	25.0	26.30		mg/L		105	80 - 120	

Eurofins TestAmerica, Pittsburgh

Client: Southern Company

Job ID: 180-118544-1

Project/Site: Plant Daniel NAMU CCR

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-350419/2 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 350419

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac **Prepared** Total Dissolved Solids 10.0 10.0 mg/L 03/23/21 12:14 <10.0

Lab Sample ID: LCS 180-350419/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 350419

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 457 446.0 80 - 120 mg/L 98

Lab Sample ID: MB 180-350487/2 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 350487

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Dissolved Solids <10.0 10.0 10.0 mg/L 03/23/21 20:08

Lab Sample ID: LCS 180-350487/1

Matrix: Water

Analysis Batch: 350487

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Total Dissolved Solids 457 464.0 80 - 120 mg/L 102

10

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: Southern Company

Project/Site: Plant Daniel NAMU CCR

HPLC/IC

Analysis Batch: 350705

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-118544-6	MW-18	Total/NA	Water	EPA 9056A	
180-118544-7	MW-19	Total/NA	Water	EPA 9056A	
180-118544-8	DUP-01	Total/NA	Water	EPA 9056A	
180-118544-9	FB-01	Total/NA	Water	EPA 9056A	
MB 180-350705/6	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-350705/5	Lab Control Sample	Total/NA	Water	EPA 9056A	

Analysis Batch: 350706

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-118544-1	MW-11	Total/NA	Water	EPA 9056A	
180-118544-2	MW-14	Total/NA	Water	EPA 9056A	
180-118544-3	MW-15	Total/NA	Water	EPA 9056A	
180-118544-4	MW-16	Total/NA	Water	EPA 9056A	
180-118544-5	MW-17	Total/NA	Water	EPA 9056A	
MB 180-350706/40	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-350706/39	Lab Control Sample	Total/NA	Water	EPA 9056A	

Metals

Prep Batch: 350753

Trop Batom coores					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-118544-1	MW-11	Total Recoverable	Water	3005A	
180-118544-2	MW-14	Total Recoverable	Water	3005A	
180-118544-3	MW-15	Total Recoverable	Water	3005A	
180-118544-4	MW-16	Total Recoverable	Water	3005A	
180-118544-5	MW-17	Total Recoverable	Water	3005A	
180-118544-6	MW-18	Total Recoverable	Water	3005A	
180-118544-7	MW-19	Total Recoverable	Water	3005A	
180-118544-8	DUP-01	Total Recoverable	Water	3005A	
180-118544-9	FB-01	Total Recoverable	Water	3005A	
MB 180-350753/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-350753/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 351300

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-118544-1	MW-11	Total Recoverable	Water	EPA 6020B	350753
180-118544-2	MW-14	Total Recoverable	Water	EPA 6020B	350753
180-118544-3	MW-15	Total Recoverable	Water	EPA 6020B	350753
180-118544-4	MW-16	Total Recoverable	Water	EPA 6020B	350753
180-118544-5	MW-17	Total Recoverable	Water	EPA 6020B	350753
180-118544-6	MW-18	Total Recoverable	Water	EPA 6020B	350753
180-118544-7	MW-19	Total Recoverable	Water	EPA 6020B	350753
180-118544-8	DUP-01	Total Recoverable	Water	EPA 6020B	350753
180-118544-9	FB-01	Total Recoverable	Water	EPA 6020B	350753
MB 180-350753/1-A	Method Blank	Total Recoverable	Water	EPA 6020B	350753
LCS 180-350753/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020B	350753

General Chemistry

Analysis Batch: 350419

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-118544-1	MW-11	Total/NA	Water	SM 2540C	

Page 16 of 18

Eurofins TestAmerica, Pittsburgh

4/2/2021

2

Job ID: 180-118544-1

3

4

6

8

11

QC Association Summary

Client: Southern Company Job ID: 180-118544-1

Project/Site: Plant Daniel NAMU CCR

General Chemistry (Continued)

Analysis Batch: 350419 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-118544-2	MW-14	Total/NA	Water	SM 2540C	
180-118544-3	MW-15	Total/NA	Water	SM 2540C	
180-118544-6	MW-18	Total/NA	Water	SM 2540C	
MB 180-350419/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-350419/1	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 350487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-118544-4	MW-16	Total/NA	Water	SM 2540C	
180-118544-5	MW-17	Total/NA	Water	SM 2540C	
180-118544-7	MW-19	Total/NA	Water	SM 2540C	
180-118544-8	DUP-01	Total/NA	Water	SM 2540C	
180-118544-9	FB-01	Total/NA	Water	SM 2540C	
MB 180-350487/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-350487/1	Lab Control Sample	Total/NA	Water	SM 2540C	

-1

3

4

9

10

11

4.0

Client: Southern Company

Job Number: 180-118544-1

Login Number: 118544

8544 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Watson, Debbie

Creator: watson, Debbie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Pittsburgh

Date: 2021-03-16 09:05:29

Tubing Length

40 ft

Project Information:		Pump Information:	
Operator Name	Philip Evans	Pump Model/Type	QED
Company Name	RDH Environmental	Tubing Type	PE
Project Name	Plant Daniel NAMU CCR	Tubing Diameter	.17 in

Site Name
Latitude
Longitude
Sonde SN
Daniel
0° 0' 0"
417744

Turbidity Make/Model HACH 2100Q Pump placement from TOC 30.5 ft

Well Information: Pumping Information:

Well ID Final Pumping Rate 400 mL/min MW-11 Well diameter 2 in Total System Volume 0.6585369 L Calculated Sample Rate Well Total Depth 33 ft 300 sec Screen Length 5 ft Stabilization Drawdown 30.36 in Depth to Water 13.22 ft **Total Volume Pumped** 14 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.2	+/- 0.2	+/- 5%	+/- 10		+/- 0.2	+/- 10
Last 5	08:41:09	900.04	18.82	4.73	70.70	1.38	15.38	1.30	135.34
Last 5	08:46:09	1200.04	18.88	4.71	70.05	1.20	15.52	0.85	129.22
Last 5	08:51:09	1500.04	18.92	4.71	69.92	1.14	15.66	0.74	124.67
Last 5	08:56:10	1801.04	18.97	4.70	69.81	1.15	15.70	0.58	121.01
Last 5	09:01:10	2101.05	18.97	4.72	70.10	1.18	15.75	0.68	118.81
Variance 0			0.04	-0.00	-0.13			-0.11	-4.55
Variance 1			0.05	-0.01	-0.12			-0.16	-3.67
Variance 2			0.00	0.02	0.29			0.10	-2.19

Notes

Sample time @ 0905. PC 72.

Date: 2021-03-16 08:14:12

Tubing Length

45 ft

Project Information:		Pump Information:	
Operator Name	Philip Evans	Pump Model/Type	QED
Company Name	RDH Environmental	Tubing Type	PE
Project Name	Plant Daniel NAMU CCR	Tubing Diameter	.17 in

Site Name Daniel
Latitude 0° 0' 0"
Longitude 0° 0' 0"
Sonde SN 417744

Turbidity Make/Model HACH 2100Q Pump placement from TOC 38.2 ft

Well Information: Pumping Information:

Well ID Final Pumping Rate 400 mL/min MW-14 Well diameter 2 in Total System Volume 0.680854 L Calculated Sample Rate Well Total Depth 40.7 ft 300 sec Screen Length 5 ft Stabilization Drawdown 0.84 in Depth to Water **Total Volume Pumped** 12.75 ft 8 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	Com Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.2	+/- 0.2	+/- 5%	+/- 10		+/- 0.2	+/- 10
Last 5	07:56:37	300.04	18.83	5.08	48.22	1.81	12.82	3.48	156.18
Last 5	08:01:37	600.04	18.88	5.09	48.02	1.60	12.82	3.58	145.41
Last 5	08:06:37	900.04	18.90	5.07	47.52	1.56	12.82	3.56	142.30
Last 5	08:11:37	1200.04	18.93	5.06	47.31	1.50	12.82	3.41	139.67
Last 5									
Variance 0			0.05	0.01	-0.20			0.10	-10.77
Variance 1			0.02	-0.02	-0.50			-0.02	-3.10
Variance 2			0.03	-0.01	-0.21			-0.14	-2.64

Notes

Sample time @ 0815. PC 80. FB-01@ 0810.

Date: 2021-03-16 07:39:25

Project Information:		Pump Information:	
Operator Name	Philip Evans	Pump Model/Type	QED
Company Name	RDH Environmental	Tubing Type	PE
Project Name	Plant Daniel NAMU CCR	Tubing Diameter	.17 in
Site Name	Daniel	Tubing Length	42 ft
Latitude	00 0' 0"		
Longitude	00 0, 0,,		

Sonde SN 417744

Turbidity Make/Model **HACH 2100Q** Pump placement from TOC 37 ft

Well Information: Pumping Information:

Well ID MW-15 Final Pumping Rate 400 mL/min Total System Volume Calculated Sample Rate Well diameter 2 in 0.6674637 L Well Total Depth 39.5 ft 300 sec Screen Length 5 ft Stabilization Drawdown 0.72 in Depth to Water 12.17 ft Total Volume Pumped 8 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.2	+/- 0.2	+/- 5%	+/- 10		+/- 0.2	+/- 10
Last 5	07:22:24	300.04	19.10	4.67	55.77	0.45	12.23	3.29	179.63
Last 5	07:27:24	600.04	19.17	4.67	55.56	0.34	12.23	3.11	170.93
Last 5	07:32:24	900.04	19.19	4.68	55.41	0.30	12.23	2.99	164.66
Last 5	07:37:24	1200.04	19.23	4.65	55.29	0.28	12.23	2.99	162.36
Last 5									
Variance 0			0.06	-0.00	-0.21			-0.18	-8.70
Variance 1			0.02	0.01	-0.15			-0.12	-6.27
Variance 2			0.04	-0.03	-0.12			-0.00	-2.30

Notes

Sample time @ 0740. Cloudy 69.

Date: 2021-03-16 07:36:30

Tubing Type

Pump Information:

Pump Model/Type

Tubing Diameter

Tubing Length

Project Information:

Operator Name Brett Surles Company Name RDH Project Name NAMU

Site Name Plant Daniel NAMU Wells

Latitude 0° 0' 0" 0° 0' 0" Longitude Sonde SN 632615 Turbidity Make/Model HACH

Pump placement from TOC

23 ft

WED

.17 in

35 ft

PΕ

Well Information:

Well ID MW-16 Well diameter 2 in Well Total Depth 28 ft Screen Length 5 ft Depth to Water 9.98 ft

Pumping Information:

Final Pumping Rate 400 mL/min Total System Volume 0.6412198 L Calculated Sample Rate 300 sec Stabilization Drawdown 0.01 in Total Volume Pumped 8 L

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.2	+/- 0.2	+/- 5%	+/- 10		+/- 0.2	+/- 10
Last 5	07:20:38	300.03	20.84	4.60	42.94	1.37	9.99	0.34	97.35
Last 5	07:25:38	600.02	20.88	4.60	42.76	0.87	9.99	0.25	95.26
Last 5	07:30:38	900.02	20.93	4.61	42.84	0.65	9.99	0.22	93.50
Last 5	07:35:38	1200.02	20.97	4.62	42.80	0.54	9.99	0.20	91.73
Last 5									
Variance 0			0.04	0.00	-0.18			-0.09	-2.10
Variance 1			0.04	0.01	0.09			-0.03	-1.75
Variance 2			0.04	0.01	-0.04			-0.02	-1.77

Notes

Sample@0736, Cloudy 66

Date: 2021-03-16 11:19:51

Project Information:		Pump Information:	
Operator Name	Philip Evans	Pump Model/Type	QED
Company Name	RDH Environmental	Tubing Type	PE
Project Name	Plant Daniel NAMU CCR	Tubing Diameter	.17 in
Site Name	Daniel	Tubing Length	30 ft

Site Name
Latitude
Longitude
Sonde SN
Daniel
0° 0' 0"
417744

Turbidity Make/Model HACH 2100Q Pump placement from TOC 26 ft

Well Information: Pumping Information:

Well ID Final Pumping Rate 400 mL/min MW-17 Total System Volume Calculated Sample Rate Well diameter 2 in 0.6139027 L Well Total Depth 28.5 ft 300 sec Screen Length 5 ft Stabilization Drawdown 0.96 in Depth to Water Total Volume Pumped 14 L 7.42 ft

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.2	+/- 0.2	+/- 5%	+/- 10		+/- 0.2	+/- 10
Last 5	10:55:59	900.07	20.16	4.99	46.33	0.31	7.50	0.31	12.66
Last 5	11:01:00	1201.05	19.95	4.99	46.34	0.32	7.50	0.27	3.64
Last 5	11:06:00	1501.05	20.12	4.99	46.35	0.30	7.50	0.25	-0.61
Last 5	11:11:00	1801.05	20.21	4.99	46.49	0.30	7.50	0.24	-2.86
Last 5	11:16:00	2101.04	20.06	5.00	46.61	0.29	7.50	0.23	-4.40
Variance 0			0.17	-0.00	0.02			-0.02	-4.25
Variance 1			0.09	0.00	0.13			-0.01	-2.25
Variance 2			-0.15	0.01	0.12			-0.00	-1.53

Notes

Sample time @ 1120. PC 75.

Date: 2021-03-16 10:01:20

Project Information:		Pump Information:	
Operator Name	Philip Evans	Pump Model/Type	QED
Company Name	RDH Environmental	Tubing Type	PE
Project Name	Plant Daniel NAMU CCR	Tubing Diameter	.17 in
Site Name	Daniel	Tubing Length	45 ft
Latitude	00 0' 0"		
Longitude	00 0' 0"		
Sonde SN	417744		
Turbidity Make/Model	HACH 2100Q	Pump placement from TOC	41.9 ft

Pumping Information: Well Information: Final Pumping Rate Total System Volume Calculated Sample Rate Well ID MW-18 400 mL/min 0.680854 L Well diameter 2 in Well Total Depth 44.4 ft 300 sec Screen Length Depth to Water Stabilization Drawdown 5 ft 0.24 in 16.80 ft Total Volume Pumped 14 L

Popul to Water Popul Total Volu

Low-Flow Sar	npling Stabiliz	ation Summary							
	Time	Elapsed	Temp C	рН	SpCond μS	cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.2	+/- 0.2	+/- 5%	+/- 10		+/- 0.2	+/- 10
Last 5	09:38:06	900.04	19.41	4.69	48.82	0.22	16.82	0.24	71.66
Last 5	09:43:06	1200.05	19.50	4.69	48.82	0.20	16.82	0.22	62.41
Last 5	09:48:06	1500.04	19.50	4.68	48.70	0.20	16.82	0.21	55.31
Last 5	09:53:06	1800.05	19.50	4.68	48.74	0.22	16.82	0.20	50.83
Last 5	09:58:06	2100.05	19.53	4.68	48.75	0.21	16.82	0.19	47.04
Variance 0			0.00	-0.01	-0.12			-0.01	-7.10
Variance 1			-0.00	-0.00	0.04			-0.01	-4.48
Variance 2			0.03	0.00	0.01			-0.01	-3.79

Notes

Sample time @ 1000. PC 75. DUP-01@ fake time 0900.

Date: 2021-03-16 12:05:48

Tubing Type

Pump Information: Pump Model/Type

Tubing Diameter

Tubing Length

Project Information:

Operator Name
Company Name
Project Name
Site Name

Brett Surles
RDH
NAMU
NAMU
Plant Daniel NAMU Wells

Latitude 0° 0' 0"

Longitude 0° 0' 0" Sonde SN 632615 Turbidity Make/Model HACH

Pump placement from TOC 27.4 ft

Well Information:

Well IDMW-19Well diameter2 inWell Total Depth32.4 ftScreen Length10 ftDepth to Water18.61 ft

Pumping Information:

Final Pumping Rate 400 mL/min
Total System Volume 0.6635369 L
Calculated Sample Rate 300 sec
Stabilization Drawdown 0.04 in
Total Volume Pumped 16 L

QED

.17 in

40 ft

PΕ

Low-Flow Sampling Stabilization Summary

	Time	Elapsed	Temp C	рН	SpCond µS	S/cm Turb NTU	DTW ft	RDO mg/L	ORP mV
Stabilization			+/- 0.2	+/- 0.2	+/- 5%	+/- 10		+/- 0.2	+/- 10
Last 5	11:44:58	1200.02	24.17	5.48	48.39	2.57	18.65	0.73	100.25
Last 5	11:49:58	1500.02	23.39	5.41	46.85	2.12	18.65	0.55	98.64
Last 5	11:54:58	1800.02	23.12	5.40	45.64	1.96	18.65	0.46	97.75
Last 5	11:59:58	2100.02	22.62	5.37	44.92	1.99	18.65	0.44	97.32
Last 5	12:04:58	2400.03	22.34	5.35	44.40	1.74	18.65	0.42	94.83
Variance 0			-0.27	-0.02	-1.20			-0.09	-0.89
Variance 1			-0.49	-0.03	-0.73			-0.02	-0.44
Variance 2			-0.29	-0.02	-0.52			-0.02	-2.49

Notes

Sample@1205, Cloudy 74

2nd Semi-Annual Monitoring Event

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive **RIDC Park** Pittsburgh, PA 15238

Tel: (412)963-7058

Laboratory Job ID: 180-128125-1

Client Project/Site: Plant Daniel NAMU

For:

Southern Company 3535 Colonnade Parkway Bin S 530 EC Birmingham, Alabama 35243

Attn: Robert Singleton

Authorized for release by: 10/20/2021 6:06:11 PM

Shali Brown, Project Manager II (615)301-5031

Shali.Brown@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Southern Company

Laboratory Job ID: 180-128125-1

Project/Site: Plant Daniel NAMU

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	11
QC Sample Results	15
QC Association Summary	17
Chain of Custody	19
Receipt Chacklists	20

-5

4

0

9

10

12

1:

Case Narrative

Client: Southern Company

Job ID: 180-128125-1

Project/Site: Plant Daniel NAMU

Job ID: 180-128125-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-128125-1

Comments

No additional comments.

Receipt

The samples were received on 10/6/2021 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.9° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

5

_

_

8

9

10

12

Definitions/Glossary

Client: Southern Company

Job ID: 180-128125-1

Project/Site: Plant Daniel NAMU

Qualifiers

HPLC/IC

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

5

5

6

9

4 4

12

Accreditation/Certification Summary

Client: Southern Company

Job ID: 180-128125-1

Project/Site: Plant Daniel NAMU

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Arkansas DEQ	State	19-033-0	06-27-21 *	
California	State	2891	04-30-22	
Connecticut	State	PH-0688	09-30-22	
Florida	NELAP	E871008	06-30-22	
Georgia	State	PA 02-00416	04-30-22	
Illinois	NELAP	004375	06-30-22	
Kansas	NELAP	E-10350	01-31-22	
Kentucky (UST)	State	162013	04-30-22	
Kentucky (WW)	State	KY98043	12-31-21	
Louisiana	NELAP	04041	06-30-22	
Maine	State	PA00164	03-06-22	
Minnesota	NELAP	042-999-482	12-31-21	
Nevada	State	PA00164	08-31-22	
New Hampshire	NELAP	2030	04-05-22	
New Jersey	NELAP	PA005	06-30-22	
New York	NELAP	11182	04-01-22	
North Carolina (WW/SW)	State	434	12-31-21	
North Dakota	State	R-227	04-30-22	
Oregon	NELAP	PA-2151	02-06-22	
Pennsylvania	NELAP	02-00416	04-30-22	
Rhode Island	State	LAO00362	12-31-21	
South Carolina	State	89014	04-30-22	
Texas	NELAP	T104704528	03-31-22	
USDA	Federal	P-Soil-01	06-26-22	
USDA	US Federal Programs	P330-16-00211	06-26-22	
Utah	NELAP	PA001462019-8	05-31-22	
Virginia	NELAP	10043	09-15-22	
West Virginia DEP	State	142	01-31-22	
Wisconsin	State	998027800	08-31-22	

-

-

6

8

9

10

10

1.

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins TestAmerica, Pittsburgh

Sample Summary

Job ID: 180-128125-1

Client: Southern Company Project/Site: Plant Daniel NAMU

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-128125-1	MW-11	Water	10/05/21 08:55	10/06/21 10:00
180-128125-2	MW-14	Water	10/05/21 08:00	10/06/21 10:00
180-128125-3	MW-15	Water	10/05/21 11:14	10/06/21 10:00
180-128125-4	MW-16	Water	10/05/21 10:32	10/06/21 10:00
180-128125-5	MW-17	Water	10/05/21 08:05	10/06/21 10:00
180-128125-6	MW-18	Water	10/05/21 09:50	10/06/21 10:00
180-128125-7	MW-19	Water	10/05/21 09:22	10/06/21 10:00
180-128125-8	DUP-02	Water	10/05/21 07:00	10/06/21 10:00
180-128125-9	FB-01	Water	10/05/21 09:00	10/06/21 10:00
180-128125-10	EB-01	Water	10/05/21 09:15	10/06/21 10:00

Method Summary

Client: Southern Company Project/Site: Plant Daniel NAMU Job ID: 180-128125-1

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	TAL PIT
EPA 6020B	Metals (ICP/MS)	SW846	TAL PIT
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater" SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Lab Chronicle

Client: Southern Company

Job ID: 180-128125-1

Project/Site: Plant Daniel NAMU

Client Sample ID: MW-11 Lab Sample ID: 180-128125-1

Date Collected: 10/05/21 08:55

Date Received: 10/06/21 10:00

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA 9056A at ID: CHIC2100A		1	1 mL	1.0 mL	374344	10/07/21 09:08	J1T	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	375811	10/19/21 11:33	RGM	TAL PIT
Total Recoverable	Analysis Instrumer	EPA 6020B at ID: A		1			375961	10/20/21 08:42	RSK	TAL PIT
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	374631	10/08/21 17:19	KMM	TAL PIT

Client Sample ID: MW-14

Lab Sample ID: 180-128125-2

Date Collected: 10/05/21 08:00 Matrix: Water Date Received: 10/06/21 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1.0 mL	374344	10/07/21 09:56	J1T	TAL PIT
	Instrumer	nt ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	375811	10/19/21 11:33	RGM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			375961	10/20/21 08:46	RSK	TAL PIT
	Instrumer	nt ID: A								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	374631	10/08/21 17:19	KMM	TAL PIT
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: MW-15 Lab Sample ID: 180-128125-3

Date Collected: 10/05/21 11:14 Matrix: Water Date Received: 10/06/21 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1.0 mL	374344	10/07/21 10:12	J1T	TAL PIT
	Instrumer	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	375811	10/19/21 11:33	RGM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			375961	10/20/21 08:57	RSK	TAL PIT
	Instrumer	t ID: A								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	374631	10/08/21 17:19	KMM	TAL PIT
	Instrumer	t ID: NOEQUIP								

Client Sample ID: MW-16 Lab Sample ID: 180-128125-4

Date Collected: 10/05/21 10:32 Matrix: Water Date Received: 10/06/21 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1.0 mL	374344	10/07/21 10:27	J1T	TAL PIT
	Instrumer	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	375811	10/19/21 11:33	RGM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			375961	10/20/21 09:00	RSK	TAL PIT
	Instrumer	t ID: A								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	374631	10/08/21 17:19	KMM	TAL PIT
	Instrumer	t ID: NOEQUIP								

Eurofins TestAmerica, Pittsburgh

Page 8 of 20 10/20/2021

3

4

5

8

4.0

11

Client: Southern Company

Job ID: 180-128125-1

Project/Site: Plant Daniel NAMU

Client Sample ID: MW-17
Date Collected: 10/05/21 08:05

Lab Sample ID: 180-128125-5

Matrix: Water

Date Received: 10/06/21 10:00

Total/NA

Analysis

SM 2540C

Instrument ID: NOEQUIP

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1.0 mL	374344	10/07/21 11:15	J1T	TAL PIT
	Instrumer	it ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	375811	10/19/21 11:33	RGM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			375961	10/20/21 09:04	RSK	TAL PIT
	Instrumer	it ID: A								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	374631	10/08/21 17:19	KMM	TAL PIT
	Instrumer	t ID: NOEQUIP								

Client Sample ID: MW-18 Lab Sample ID: 180-128125-6

Date Collected: 10/05/21 09:50 Matrix: Water Date Received: 10/06/21 10:00

Batch Batch Dil Initial Final Batch Prepared Method Number **Prep Type** Туре **Factor** Amount Amount or Analyzed Run **Analyst** Lab Total/NA EPA 9056A 10/07/21 11:31 J1T TAL PIT 374344 Analysis 1 mL 1.0 mL Instrument ID: CHIC2100A Total Recoverable 3005A TAL PIT 50 mL 50 mL 375811 10/19/21 11:33 RGM EPA 6020B TAL PIT Total Recoverable Analysis 1 375961 10/20/21 09:08 RSK Instrument ID: A

Client Sample ID: MW-19 Lab Sample ID: 180-128125-7

100 mL

100 mL

374631

10/08/21 17:19 KMM

Date Collected: 10/05/21 09:22 Matrix: Water Date Received: 10/06/21 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1.0 mL	374344	10/07/21 11:47	J1T	TAL PIT
	Instrumer	nt ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	375811	10/19/21 11:33	RGM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			375961	10/20/21 09:11	RSK	TAL PIT
	Instrumer	nt ID: A								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	374631	10/08/21 17:19	KMM	TAL PIT
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: DUP-02 Lab Sample ID: 180-128125-8

Date Collected: 10/05/21 07:00 Matrix: Water Date Received: 10/06/21 10:00

Prep Type Total/NA	Batch Type Analysis Instrumer	Batch Method EPA 9056A at ID: CHIC2100A	Run	Factor 1	Initial Amount 1 mL	Final Amount 1.0 mL	Batch Number 374344	Prepared or Analyzed 10/07/21 12:03	Analyst J1T	Lab TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	375811	10/19/21 11:33	RGM	TAL PIT
Total Recoverable	Analysis Instrumer	EPA 6020B at ID: A		1			375961	10/20/21 09:15	RSK	TAL PIT
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	374631	10/08/21 17:19	KMM	TAL PIT

Eurofins TestAmerica, Pittsburgh

10/20/2021

Page 9 of 20

3

5

7

_

10

11

12

TAL PIT

Lab Chronicle

Client: Southern Company

Job ID: 180-128125-1

Project/Site: Plant Daniel NAMU

Client Sample ID: FB-01 Lab Sample ID: 180-128125-9

Date Collected: 10/05/21 09:00 Matrix: Water Date Received: 10/06/21 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1.0 mL	374344	10/07/21 08:36	J1T	TAL PIT
	Instrumer	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	375811	10/19/21 11:33	RGM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			375961	10/20/21 09:19	RSK	TAL PIT
	Instrumer	nt ID: A								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	374631	10/08/21 17:19	KMM	TAL PIT
	Instrumer	t ID: NOEQUIP								

Client Sample ID: EB-01 Lab Sample ID: 180-128125-10

Date Collected: 10/05/21 09:15

Date Received: 10/06/21 10:00

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1	1 mL	1.0 mL	374344	10/07/21 08:52	J1T	TAL PIT
	Instrumer	it ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	375811	10/19/21 11:33	RGM	TAL PIT
Total Recoverable	Analysis	EPA 6020B		1			375961	10/20/21 09:22	RSK	TAL PIT
	Instrumer	it ID: A								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	374631	10/08/21 17:19	KMM	TAL PIT
	Instrumer	t ID: NOEQUIP								

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: TAL PIT

Batch Type: Prep

RGM = Rebecca Manns

Batch Type: Analysis

J1T = Jianwu Tang

KMM = Kendric Moore

RSK = Robert Kurtz

Eurofins TestAmerica, Pittsburgh

Page 10 of 20

S

3

4

6

8

9

2

Job ID: 180-128125-1

Client: Southern Company Project/Site: Plant Daniel NAMU

Client Sample ID: MW-11
Date Collected: 10/05/21 08:55

Lab Sample ID: 180-128125-1

Matrix: Water

Date Received: 10/06/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12.5		1.00	0.713	mg/L			10/07/21 09:08	1
Fluoride	0.0561	J	0.100	0.0260	mg/L			10/07/21 09:08	1
Sulfate	2.57		1.00	0.756	mg/L			10/07/21 09:08	1
- Method: EPA 6020B - Meta	Is (ICP/MS) - To	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	<0.0386		0.0800	0.0386	ma/l		10/19/21 11:33	10/20/21 08:42	
Boron	~0.0300		0.0000	0.0300	1119/L		10/13/21 11.33	10/20/21 00.42	
Calcium	1.87		0.500	0.0360	U		10/19/21 11:33	10/20/21 08:42	1
					U				1
Calcium	1.87	Qualifier		0.127	U	D			Dil Fac

Client Sample ID: MW-14

Date Collected: 10/05/21 08:00

Lab Sample ID: 180-128125-2

Matrix: Water

Date Received: 10/06/21 10:00

Method: EPA 9056A	- Anions, Ion Chroma	tography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.59		1.00	0.713	mg/L			10/07/21 09:56	1
Fluoride	0.0300	J	0.100	0.0260	mg/L			10/07/21 09:56	1
Sulfate	2.46		1.00	0.756	mg/L			10/07/21 09:56	1

Method: EPA 6020B - Meta	ls (ICP/MS) - To	otal Recove	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.0386		0.0800	0.0386	mg/L		10/19/21 11:33	10/20/21 08:46	1
Calcium	1.89		0.500	0.127	mg/L		10/19/21 11:33	10/20/21 08:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	29.0		10.0	10.0	mg/L			10/08/21 17:19	1

Client Sample ID: MW-15 Lab Sample ID: 180-128125-3

Date Collected: 10/05/21 11:14 Date Received: 10/06/21 10:00

Total Dissolved Solids

Method: EPA 9056A -	Anions, Ion Chroma	tography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.30		1.00	0.713	mg/L			10/07/21 10:12	1
Fluoride	<0.0260		0.100	0.0260	mg/L			10/07/21 10:12	1
Sulfate	3.38		1.00	0.756	mg/L			10/07/21 10:12	1

General Chemistry	Rosult Qualifior	ΡI	MDI	Unit	n	Prenared	Analyzed	Dil Fac
Calcium	0.632	0.500	0.127	mg/L		10/19/21 11:33	10/20/21 08:57	1
Boron	<0.0386	0.0800	0.0386	mg/L		10/19/21 11:33	10/20/21 08:57	1
Method: EPA 6020B - Met Analyte	als (ICP/MS) - Total Reco Result Qualifier	verable RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Suirate	3.38	1.00	0.756	IIIg/L			10/07/21 10.12	'

25.0

10.0 10.0 mg/L 10/08/21 17:19 1

Eurofins TestAmerica, Pittsburgh

Matrix: Water

Job ID: 180-128125-1

Project/Site: Plant Daniel NAMU

Client: Southern Company

Client Sample ID: MW-16 Date Collected: 10/05/21 10:32

Lab Sample ID: 180-128125-4

Matrix: Water

Date	Received:	10/06/21	10:00

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.55	1.00	0.713	mg/L			10/07/21 10:27	1
Fluoride	0.0264 J	0.100	0.0260	mg/L			10/07/21 10:27	1
Sulfate	2.22	1.00	0.756	mg/L			10/07/21 10:27	1
Method: EPA 6020B - Meta Analyte	ils (ICP/MS) - Tota Result Q		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: EPA 6020B - Meta	ils (ICP/MS) - Tota	al Recoverable						
			MDL 0.0386		<u>D</u>	Prepared 10/19/21 11:33	Analyzed 10/20/21 09:00	Dil Fac
Analyte	Result Q	Qualifier RL		mg/L	<u>D</u>			Dil Fac
Analyte Boron Calcium	Result Q <0.0386	Qualifier RL 0.0800	0.0386	mg/L	<u>D</u>	10/19/21 11:33	10/20/21 09:00	Dil Fac
Analyte Boron	Result Q <0.0386	Qualifier RL 0.0800	0.0386	mg/L	<u>D</u>	10/19/21 11:33	10/20/21 09:00	Dil Fac 1
Analyte Boron Calcium	Result Q <0.0386	Qualifier RL 0.0800 0.500	0.0386	mg/L mg/L	<u>D</u> D	10/19/21 11:33	10/20/21 09:00	Dil Fac

Lab Sample ID: 180-128125-5 **Client Sample ID: MW-17** Date Collected: 10/05/21 08:05 **Matrix: Water**

Date Received: 10/06/21 10:00

Method: EPA 9056A	- Anions, Ion Chromatograp	ohy						
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.91	1.00	0.713	mg/L			10/07/21 11:15	1
Fluoride	<0.0260	0.100	0.0260	mg/L			10/07/21 11:15	1
Sulfate	2.85	1.00	0.756	mg/L			10/07/21 11:15	1

Method: EPA 6020B - Meta Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.0386		0.0800	0.0386	mg/L		10/19/21 11:33	10/20/21 09:04	1
_Calcium	0.883		0.500	0.127	mg/L		10/19/21 11:33	10/20/21 09:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	34.0		10.0	10.0	mg/L			10/08/21 17:19	1

Client Sample ID: MW-18 Lab Sample ID: 180-128125-6 Date Collected: 10/05/21 09:50 **Matrix: Water**

Date	Received:	10/06/21	10:00

Method: EPA 9056A -	Anions, Ion Chroma	atography						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.72	1.00	0.713	mg/L			10/07/21 11:31	1
Fluoride	<0.0260	0.100	0.0260	mg/L			10/07/21 11:31	1
Sulfate	3.83	1.00	0.756	mg/L			10/07/21 11:31	1
Method: EPA 6020B -	Metals (ICP/MS) - To	otal Recoverable						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.0386	0.0800	0.0386	mg/L		10/19/21 11:33	10/20/21 09:08	1

Calcium	0.430	J	0.500	0.127	mg/L		10/19/21 11:33	10/20/21 09:08	1
General Chemistry Analyte	Posult	Qualifier	RL	MDL	Unit	n	Prepared	Analyzed	Dil Fac
Allalyte	Nesuit	Qualifier	IXL .	IVIDE	Oilit		riepaieu	Allalyzeu	Dillac
Total Dissolved Solids	29.0		10.0	10.0	mg/L			10/08/21 17:19	1

Eurofins TestAmerica, Pittsburgh

Job ID: 180-128125-1

Client: Southern Company Project/Site: Plant Daniel NAMU

Client Sample ID: MW-19

Lab Sample ID: 180-128125-7

Matrix: Water

Date Collected: 10/05/21 09:22 Date Received: 10/06/21 10:00

Method: EPA 9056A - Anio	ns, Ion Chroma	atography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.10		1.00	0.713	mg/L			10/07/21 11:47	1
Fluoride	< 0.0260		0.100	0.0260	mg/L			10/07/21 11:47	1
Sulfate	1.91		1.00	0.756	mg/L			10/07/21 11:47	1
Boron	<0.0386	Quanner	0.0800	0.0386			10/19/21 11:33	10/20/21 09:11	1
Method: EPA 6020B - Meta Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	3.67		0.500	0.127	mg/L		10/19/21 11:33	10/20/21 09:11	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	35.0		10.0		mg/L			10/08/21 17:19	

Lab Sample ID: 180-128125-8 **Client Sample ID: DUP-02 Matrix: Water**

Date Collected: 10/05/21 07:00

Date Received: 10/06/21 10:00

Method: EPA 9056A - Anions, Ion Chromatography									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.87		1.00	0.713	mg/L			10/07/21 12:03	1
Fluoride	<0.0260		0.100	0.0260	mg/L			10/07/21 12:03	1
Sulfate	2.07		1.00	0.756	mg/L			10/07/21 12:03	1

Method: EPA 6020B - Metals	Method: EPA 6020B - Metals (ICP/MS) - Total Recoverable										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Boron	<0.0386		0.0800	0.0386	mg/L		10/19/21 11:33	10/20/21 09:15	1		
Calcium	1.95		0.500	0.127	mg/L		10/19/21 11:33	10/20/21 09:15	1		
General Chemistry											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Total Dissolved Solids	26.0		10.0	10.0	mg/L			10/08/21 17:19	1		

Client Sample ID: FB-01
Date Collected: 10/05/21 09:00 Lab Sample ID: 180-128125-9

Date Collection: 10/00/2	1 00100
Date Received: 10/06/2	1 10:00

Method: EPA 9056A - Anions, Ion Chromatography									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	<0.713	1.00	0.713	mg/L			10/07/21 08:36	1	
Fluoride	<0.0260	0.100	0.0260	mg/L			10/07/21 08:36	1	
Sulfate	<0.756	1.00	0.756	mg/L			10/07/21 08:36	1	

Method: EPA 6020B - Metals (ICP/MS) - Total Recoverable									
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Boron	<0.0386	0.0800	0.0386	mg/L		10/19/21 11:33	10/20/21 09:19	1
	Calcium	<0.127	0.500	0.127	mg/L		10/19/21 11:33	10/20/21 09:19	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<10.0		10.0	10.0	mg/L			10/08/21 17:19	1

Eurofins TestAmerica, Pittsburgh

Matrix: Water

Client Sample Results

Client: Southern Company Job ID: 180-128125-1 Project/Site: Plant Daniel NAMU

Client Sample ID: EB-01 Lab Sample ID: 180-128125-10

Date Collected: 10/05/21 09:15 **Matrix: Water** Date Received: 10/06/21 10:00

Method: EPA 9056A - Anio	ns, Ion Chroma	atography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.713		1.00	0.713	mg/L			10/07/21 08:52	1
Fluoride	< 0.0260		0.100	0.0260	mg/L			10/07/21 08:52	1
Sulfate	< 0.756		1.00	0.756	mg/L			10/07/21 08:52	1
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Boron	< 0.0386		0.0800	0.0386	mg/L		10/19/21 11:33	10/20/21 09:22	1
Calcium	<0.127		0.500	0.127	mg/L		10/19/21 11:33	10/20/21 09:22	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
									D uo

Job ID: 180-128125-1

Client: Southern Company Project/Site: Plant Daniel NAMU

Method: EPA 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 180-374344/6

Matrix: Water

Analysis Batch: 374344

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac D Chloride < 0.713 1.00 0.713 mg/L 10/07/21 08:17 Fluoride < 0.0260 0.100 0.0260 mg/L 10/07/21 08:17 Sulfate < 0.756 1.00 0.756 mg/L 10/07/21 08:17

Lab Sample ID: LCS 180-374344/5

Matrix: Water

Analysis Batch: 374344

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: MW-11

Client Sample ID: MW-11

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	47.61		mg/L		95	80 - 120	
Fluoride	2.50	2.614		mg/L		105	80 - 120	
Sulfate	50.0	48.73		mg/L		97	80 - 120	

Lab Sample ID: 180-128125-1 MS

Matrix: Water Prep Type: Total/NA Analysis Batch: 374344

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	12.5		50.0	56.30		mg/L		88	80 - 120	
Fluoride	0.0561	J	2.50	2.354		mg/L		92	80 - 120	
Sulfate	2.57		50.0	48.16		mg/L		91	80 - 120	

Lab Sample ID: 180-128125-1 MSD

Matrix: Water

Analysis Batch: 374344

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	12.5		50.0	57.56		mg/L		90	80 - 120	2	15
Fluoride	0.0561	J	2.50	2.390		mg/L		93	80 - 120	2	15
Sulfate	2.57		50.0	49.14		mg/L		93	80 - 120	2	15

Method: EPA 6020B - Metals (ICP/MS)

Lab Sample ID: MB 180-375811/1-A

Matrix: Water

Analysis Batch: 375961

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 375811**

Prep Type: Total Recoverable

	IVID IVID							
Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.0386	0.0800	0.0386	mg/L		10/19/21 11:33	10/20/21 08:17	1
Calcium	<0.127	0.500	0.127	mg/L		10/19/21 11:33	10/20/21 08:17	1

Lab Sample ID: LCS 180-373695/2-C **Client Sample ID: Lab Control Sample**

Matrix: Water Analysis Batch: 375961

Prep Batch: 375811 LCS LCS Spike %Rec. Added Result Qualifier D %Rec Limits Unit 1.25 1.103 mg/L 88 80 - 120

Analyte Boron Calcium 25.0 25.20 mg/L 101 80 - 120

Eurofins TestAmerica, Pittsburgh

Page 15 of 20

QC Sample Results

Client: Southern Company Job ID: 180-128125-1

Project/Site: Plant Daniel NAMU

Method: EPA 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 180-375811/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Prep Type: Total Recoverable Analysis Batch: 375961 Prep Batch: 375811

	Spike	LCS LCS				%Rec.
Analyte	Added	Result Qual	ifier Unit	D	%Rec	Limits
Boron	1.25	1.163	mg/L		93	80 - 120
Calcium	25.0	25.56	mg/L		102	80 - 120

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-374631/2 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 374631

MB MB **MDL** Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Total Dissolved Solids <10.0 10.0 10.0 mg/L 10/08/21 17:19

Lab Sample ID: LCS 180-374631/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 374631

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 422 398.0 mg/L 80 - 120

Lab Sample ID: 180-128125-1 DU Client Sample ID: MW-11 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 374631

DU DU RPD Sample Sample Result Qualifier Result Qualifier RPD Limit Analyte Unit D 43.0 **Total Dissolved Solids** 40.00 10 mg/L

10/20/2021

10

QC Association Summary

Client: Southern Company

Job ID: 180-128125-1

Project/Site: Plant Daniel NAMU

HPLC/IC

Analysis Batch: 374344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-128125-1	MW-11	Total/NA	Water	EPA 9056A	
180-128125-2	MW-14	Total/NA	Water	EPA 9056A	
180-128125-3	MW-15	Total/NA	Water	EPA 9056A	
180-128125-4	MW-16	Total/NA	Water	EPA 9056A	
180-128125-5	MW-17	Total/NA	Water	EPA 9056A	
180-128125-6	MW-18	Total/NA	Water	EPA 9056A	
180-128125-7	MW-19	Total/NA	Water	EPA 9056A	
180-128125-8	DUP-02	Total/NA	Water	EPA 9056A	
180-128125-9	FB-01	Total/NA	Water	EPA 9056A	
180-128125-10	EB-01	Total/NA	Water	EPA 9056A	
MB 180-374344/6	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-374344/5	Lab Control Sample	Total/NA	Water	EPA 9056A	
180-128125-1 MS	MW-11	Total/NA	Water	EPA 9056A	
180-128125-1 MSD	MW-11	Total/NA	Water	EPA 9056A	

Metals

Filtration Batch: 373695

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 180-373695/2-C	Lab Control Sample	Total Recoverable	Water	Filtration	

Prep Batch: 375811

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-128125-1	MW-11	Total Recoverable	Water	3005A	<u> </u>
180-128125-2	MW-14	Total Recoverable	Water	3005A	
180-128125-3	MW-15	Total Recoverable	Water	3005A	
180-128125-4	MW-16	Total Recoverable	Water	3005A	
180-128125-5	MW-17	Total Recoverable	Water	3005A	
180-128125-6	MW-18	Total Recoverable	Water	3005A	
180-128125-7	MW-19	Total Recoverable	Water	3005A	
180-128125-8	DUP-02	Total Recoverable	Water	3005A	
180-128125-9	FB-01	Total Recoverable	Water	3005A	
180-128125-10	EB-01	Total Recoverable	Water	3005A	
MB 180-375811/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-373695/2-C	Lab Control Sample	Total Recoverable	Water	3005A	373695
LCS 180-375811/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 375961

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-128125-1	MW-11	Total Recoverable	Water	EPA 6020B	375811
180-128125-2	MW-14	Total Recoverable	Water	EPA 6020B	375811
180-128125-3	MW-15	Total Recoverable	Water	EPA 6020B	375811
180-128125-4	MW-16	Total Recoverable	Water	EPA 6020B	375811
180-128125-5	MW-17	Total Recoverable	Water	EPA 6020B	375811
180-128125-6	MW-18	Total Recoverable	Water	EPA 6020B	375811
180-128125-7	MW-19	Total Recoverable	Water	EPA 6020B	375811
180-128125-8	DUP-02	Total Recoverable	Water	EPA 6020B	375811
180-128125-9	FB-01	Total Recoverable	Water	EPA 6020B	375811
180-128125-10	EB-01	Total Recoverable	Water	EPA 6020B	375811
MB 180-375811/1-A	Method Blank	Total Recoverable	Water	EPA 6020B	375811
LCS 180-373695/2-C	Lab Control Sample	Total Recoverable	Water	EPA 6020B	375811

Eurofins TestAmerica, Pittsburgh

_____ 3

4

6

0

9

11

12

1,

QC Association Summary

Client: Southern Company

Job ID: 180-128125-1

Project/Site: Plant Daniel NAMU

Metals (Continued)

Analysis Batch: 375961 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 180-375811/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020B	375811

General Chemistry

Analysis Batch: 374631

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
180-128125-1	MW-11	Total/NA	Water	SM 2540C	
180-128125-2	MW-14	Total/NA	Water	SM 2540C	
180-128125-3	MW-15	Total/NA	Water	SM 2540C	
180-128125-4	MW-16	Total/NA	Water	SM 2540C	
180-128125-5	MW-17	Total/NA	Water	SM 2540C	
180-128125-6	MW-18	Total/NA	Water	SM 2540C	
180-128125-7	MW-19	Total/NA	Water	SM 2540C	
180-128125-8	DUP-02	Total/NA	Water	SM 2540C	
180-128125-9	FB-01	Total/NA	Water	SM 2540C	
180-128125-10	EB-01	Total/NA	Water	SM 2540C	
MB 180-374631/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-374631/1	Lab Control Sample	Total/NA	Water	SM 2540C	
180-128125-1 DU	MW-11	Total/NA	Water	SM 2540C	

4

6

9

10

12

13

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Chain of Custody Record

 eurofins	
Cuivillio	

Environment Testing America

Phone (412) 963-7058 Fax (412) 963-2468		ett S.												
Client Information	Sampler: Philip Evans Lab PM: Brown, Shali		Carrie	Carrier Tracking No(s):			COC No:							
Client Contact:	Phone 850 -336-0192 E-Mail shall.brown@eurofinset.com								Page:					
SCS Contacts Company:	1 030	000	0170		all. DI OW	пше	JIOIIIIS	SEL.CO				- 12	_	Job #:
SCS	In	Ad.				_		_	Analysis	Reques	ted		_	
ddress: 535 Colannade Pkwy BinS 530 EC	Due Date Reques	tea:												Preservation Codes: A - HCL M - Hexane
ity: Birmingham	TAT Requested (days):									100			B - NaOH N - None C - Zn Acetate O - AsNaO2
itate. Zip: Nabama					100						,	-		D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
hone:	PO#:				1									F - MeOH R - Na2S2O3 G - Amchlor 6 - H2SO4
205.992.6283	SCS10382606 WO#:				ê .							-	1	H - Ascorbic Ap T - TSP Dodecahydrate
mail: • GCS Contacts	WU #:			2-4	Sample (Yes or No)								2	J - DI Water J - MCAA
roject Name: Plant Daniel NAMU CCR	Project #: 18020047				۽ ڪ		(E)	٠					containers	K - EDTA W - pH 4-5 L - EDA other (specify)
ite:	SSOW#:						A)	Sulfate	Solids				cont	Other:
					d Sa		lciu		8			+1	ar of	4
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab) Preservat	Matrix (Wewater, Sesolid, Oewaste/oil, STeTissue, AnAlr	Field Filtere		Boron and Calcium (App III)	Chloride Fluoride	Total Dissolved				Total Number of	Special Instructions/Note:
		2000			Y	+	J							
MW-11	10/5/21	0855	G	W	++			メ >	`					
MW-14	10/5/21	0800												4
Mw-15	10/5/21	1114			3									4
Mw-16	10/5/21	1032							147					N
MW-17	10/5/21	0805											11/302	
MW-18	10/5/21	10950			П						1/11/11/11/11			
MW-19	10/5/21	0922						1						
DUP-02	10/5/21	0700						1				5.02		
FB-01	10/5/21	0900	1	1	Π		V	∜,	y I	<u> </u>	180-12812	5 Chain o	of Cu	stody
EB-01	10/5/2/	09/5	G	W	11			_	X		1 1			
CB of	10[312]	07/3	C!			+		7						
Possible Hazard Identification			L		Sa	mple	Disp	osal	A fee may	be assess	sed if sam	oles are re	etain	ed longer than 1 month)
Non-Hazard Flammable Skin Irritant Poise	on B Unkn	own \square_R	adiological		[eturn			Dispos				ve For Months
eliverable Requested: I, II, III, IV, Other (specify)					Sp	ecial	Instru	ctions	/QC Requi	rements:				
mpty Kit Relinguished by:		Date:			Time:					, in	Method of Ship	oment:		
elinquished by	Date/Time:	5/21	1500	company 21)H	Rece	eived by	y: -	PU	- al	u Da	te/Time:	6	-21 STAPE
elinquished by	Date/Time:			ompany		Rece	eived by	y:			Da	te/Time;		/ 700 Company
elinquished by:	Date/Time:		C	company		Rece	eived by	y:			Da	te/Time:		Company
Custody Seal No.:					-	Cool	er Tem	peratur	e(s) °C and C	ther Remarks	l :			

Client: Southern Company

Job Number: 180-128125-1

Login Number: 128125 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Watson, Debbie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Test Date / Time: 10/5/2021 8:25:53 AM

Project: Plant Daniel CCR **Operator Name:** Philip Evans

Location Name: Daniel NAMU

MW-11

Well Diameter: 2 in Screen Length: 5 ft Top of Screen: 28 ft Total Depth: 33 ft

Initial Depth to Water: 11.22 ft

Pump Type: QED Tubing Type: PE

Pump Intake From TOC: 30.5 ft

Estimated Total Volume Pumped:

10000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 400 ml/min Final Draw Down: 1.72 ft Instrument Used: Aqua TROLL 400

Serial Number: 817728

Test Notes:

Sample time @ 0855. Cloudy 82. FB-01@ 0900.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.2	
10/5/2021 8:25 AM	00:00	4.99 pH	21.95 °C	67.63 μS/cm	5.62 mg/L	2.89 NTU	119.4 mV	11.22 ft	400.00 ml/min
10/5/2021 8:30 AM	05:00	4.71 pH	21.41 °C	70.67 µS/cm	1.38 mg/L	2.20 NTU	119.9 mV	12.04 ft	400.00 ml/min
10/5/2021 8:35 AM	10:00	4.70 pH	21.47 °C	69.74 µS/cm	0.86 mg/L	2.02 NTU	116.8 mV	12.75 ft	400.00 ml/min
10/5/2021 8:40 AM	15:00	4.67 pH	21.55 °C	68.51 µS/cm	0.61 mg/L	1.94 NTU	116.2 mV	12.83 ft	400.00 ml/min
10/5/2021 8:45 AM	20:00	4.65 pH	21.47 °C	68.48 µS/cm	0.48 mg/L	1.87 NTU	116.6 mV	12.89 ft	400.00 ml/min
10/5/2021 8:50 AM	25:00	4.67 pH	21.50 °C	67.98 µS/cm	0.45 mg/L	1.85 NTU	116.7 mV	12.94 ft	400.00 ml/min

Samples

Sample ID:	Description:
MW-11	Sample time @ 0855. Cloudy 82. FB-01@ 0900.

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 10/5/2021 7:32:04 AM

Project: Plant Daniel CCR **Operator Name:** Philip Evans

Location Name: Daniel NAMU

MW-14

Well Diameter: 2 in Screen Length: 5 ft Top of Screen: 35.7 ft Total Depth: 40.7 ft

Initial Depth to Water: 11.2 ft

Pump Type: QED

Tubing Type: PE

Pump Intake From TOC: 38.2 ft Estimated Total Volume Pumped:

8000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 400 ml/min Final Draw Down: 0.08 ft Instrument Used: Aqua TROLL 400

Serial Number: 817728

Test Notes:

Sample time @ 0800. Cloudy 80. DUP-02 @ fake time 0700.

Low-Flow Readings:

Data Time	Date Time Elapsed Time	ml l	Tamparatura	Specific	RDO	Turbidity	ORP	Depth To	Flow
Date Time		рН	Temperature	Conductivity	Concentration	rurbialty	URP	Water	FIOW
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.2	
10/5/2021	00:00	8.14 pH	22.53 °C	55.51 µS/cm	4.45 mg/L	1.94 NTU	106.4 mV	11.28 ft	400.00 ml/min
7:32 AM	00.00	0.14 pri	22.33 0	33.31 μ3/6/11	4.45 Hig/L	1.94 1110	100.41117	11.2011	400.00 111/111111
10/5/2021	05:00	5.21 pH	21.19 °C	41.34 µS/cm	3.72 mg/L	1.88 NTU	98.8 mV	11.28 ft	400.00 ml/min
7:37 AM	05.00	3.21 pm	21.19 0	41.54 μ5/6Π	3.72 Hig/L	1.00 NTO	90.0 111	11.2011	400.00 111/111111
10/5/2021	10:00	5.03 pH	21.12 °C	42.09 µS/cm	3.59 mg/L	1.60 NTU	98.7 mV	11.28 ft	400.00 ml/min
7:42 AM	10.00	3.03 pri	21.12 0	42.09 μ3/cm	3.39 Hig/L	1.00 1410	30.7 IIIV	11.2010	400.00 111/111111
10/5/2021	15:00	5.01 pH	21.10 °C	42.05 µS/cm	3.53 mg/L	1.56 NTU	99.9 mV	11.28 ft	400.00 ml/min
7:47 AM	13.00	3.01 pm	21.10 0	42.05 μ5/6/11	3.33 Hg/L	1.50 1410	99.9 IIIV	11.2010	400.00 111/111111
10/5/2021	20:00	4.98 pH	21.09 °C	41.97 µS/cm	3.52 mg/L	1.54 NTU	101.5 mV	11.28 ft	400.00 ml/min
7:52 AM	20.00	4.90 pri	21.09 0	41.97 μο/οπ	3.32 Hig/L	1.54 1110	101.5111	11.2011	400.00 111/111111

Samples

Sample ID:	Description:
MW-14	Sample time @ 0800. Cloudy 80. DUP-02 @ fake time 0700.

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 10/5/2021 10:48:39 AM

Project: Daniel

Operator Name: Brett Surles

Location Name: Daniel MW-15

Well Diameter: 2 in Screen Length: 10 ft Top of Screen: 29.4 ft Total Depth: 39.4 ft

Initial Depth to Water: 11 ft

Pump Type: PP Tubing Type: PE

Pump Intake From TOC: 34.4 ft Estimated Total Volume Pumped:

10 liter

Flow Cell Volume: 90 ml Final Flow Rate: 400 ml/min Final Draw Down: 0.03 in Instrument Used: Aqua TROLL 400

Serial Number: 800306

Test Notes:

Weather Conditions:

Cloudy 75

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.2	
10/5/2021 10:48 AM	00:00	4.92 pH	23.42 °C	25.63 µS/cm	5.75 mg/L	2.53 NTU	79.0 mV	11.03 in	400.00 ml/min
10/5/2021 10:53 AM	05:00	4.87 pH	22.34 °C	24.06 μS/cm	3.26 mg/L	1.21 NTU	79.5 mV	11.03 in	400.00 ml/min
10/5/2021 10:58 AM	10:00	4.88 pH	22.16 °C	24.03 μS/cm	3.16 mg/L	0.74 NTU	79.2 mV	11.03 in	400.00 ml/min
10/5/2021 11:03 AM	15:00	4.85 pH	22.16 °C	28.91 μS/cm	3.13 mg/L	0.66 NTU	82.6 mV	11.03 in	400.00 ml/min
10/5/2021 11:08 AM	20:00	4.87 pH	22.09 °C	28.70 μS/cm	3.12 mg/L	0.46 NTU	82.0 mV	11.03 in	400.00 ml/min
10/5/2021 11:13 AM	25:00	4.85 pH	22.08 °C	28.95 μS/cm	3.12 mg/L	0.55 NTU	83.6 mV	11.03 in	400.00 ml/min

Samples

Sample ID:	Description:
MW-15	Sample @1114

Test Date / Time: 10/5/2021 9:46:23 AM

Project: Daniel

Operator Name: Brett Surles

Location Name: Daniel W-16

Well Diameter: 2 in Screen Length: 10 ft Top of Screen: 18.3 ft Total Depth: 28.3 ft

Initial Depth to Water: 8.81 ft

Pump Type: PP Tubing Type: PE

Pump Intake From TOC: 23.3 ft Estimated Total Volume Pumped:

18 liter

Flow Cell Volume: 90 ml Final Flow Rate: 400 ml/min Final Draw Down: 0.01 in Instrument Used: Aqua TROLL 400

Serial Number: 800306

Test Notes:

Weather Conditions:

Cloudy 75

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.2	
10/5/2021 9:46 AM	00:00	4.61 pH	22.52 °C	38.29 µS/cm	2.01 mg/L	1.55 NTU	69.3 mV	8.82 in	400.00 ml/min
10/5/2021 9:51 AM	05:00	4.60 pH	22.38 °C	36.80 µS/cm	1.50 mg/L	1.11 NTU	70.5 mV	8.82 in	400.00 ml/min
10/5/2021 9:56 AM	10:00	4.61 pH	22.26 °C	36.71 µS/cm	1.06 mg/L	1.01 NTU	72.0 mV	8.82 in	400.00 ml/min
10/5/2021 10:01 AM	15:00	4.62 pH	22.26 °C	36.70 µS/cm	0.81 mg/L	0.68 NTU	71.6 mV	8.82 in	400.00 ml/min
10/5/2021 10:06 AM	20:00	4.62 pH	22.34 °C	36.65 µS/cm	0.59 mg/L	0.52 NTU	71.8 mV	8.82 in	400.00 ml/min
10/5/2021 10:11 AM	25:00	4.61 pH	22.38 °C	36.51 µS/cm	0.44 mg/L	0.62 NTU	72.0 mV	8.82 in	400.00 ml/min
10/5/2021 10:16 AM	30:00	4.61 pH	22.41 °C	36.60 µS/cm	0.18 mg/L	0.87 NTU	72.3 mV	8.82 in	400.00 ml/min
10/5/2021 10:21 AM	35:00	4.61 pH	22.49 °C	36.34 µS/cm	0.18 mg/L	0.80 NTU	72.0 mV	8.82 in	400.00 ml/min
10/5/2021 10:26 AM	40:00	4.60 pH	22.65 °C	36.49 µS/cm	0.17 mg/L	0.74 NTU	71.8 mV	8.82 in	400.00 ml/min
10/5/2021 10:31 AM	45:00	4.60 pH	22.69 °C	36.47 μS/cm	0.16 mg/L	0.53 NTU	72.8 mV	8.82 in	400.00 ml/min

Samples

Sample ID:	Description:
------------	--------------

MW-16

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 10/5/2021 7:32:51 AM

Project: Daniel

Operator Name: Brett Surles

Location Name: Daniel MW-17

Well Diameter: 2 in Screen Length: 10 ft Top of Screen: 18.45 ft Total Depth: 28.45 ft

Initial Depth to Water: 6.1 m

Pump Type: PP Tubing Type: PE

Pump Intake From TOC: 23.45 ft Estimated Total Volume Pumped:

12 liter

Flow Cell Volume: 90 ml Final Flow Rate: 400 ml/min Final Draw Down: 0.05 in Instrument Used: Aqua TROLL 400

Serial Number: 800306

Test Notes:

Weather Conditions:

Cloudy 73

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.2	
10/5/2021 7:32 AM	00:00	4.88 pH	21.84 °C	35.22 μS/cm	4.74 mg/L	2.30 NTU	113.8 mV	6.15 in	400.00 ml/min
10/5/2021 7:37 AM	05:00	4.76 pH	21.64 °C	35.74 µS/cm	2.76 mg/L	0.80 NTU	91.8 mV	6.15 in	400.00 ml/min
10/5/2021 7:42 AM	10:00	4.76 pH	21.45 °C	35.90 μS/cm	2.22 mg/L	0.99 NTU	92.7 mV	6.15 in	400.00 ml/min
10/5/2021 7:47 AM	15:00	4.86 pH	21.35 °C	34.08 µS/cm	0.79 mg/L	0.73 NTU	89.9 mV	6.15 in	400.00 ml/min
10/5/2021 7:52 AM	20:00	4.87 pH	21.31 °C	33.75 µS/cm	0.48 mg/L	0.61 NTU	86.8 mV	6.15 in	400.00 ml/min
10/5/2021 7:57 AM	25:00	4.89 pH	21.35 °C	33.75 µS/cm	0.34 mg/L	0.53 NTU	86.0 mV	6.15 in	400.00 ml/min
10/5/2021 8:02 AM	30:00	4.88 pH	21.29 °C	33.76 µS/cm	0.35 mg/L	0.37 NTU	84.6 mV	6.15 in	400.00 ml/min

Samples

Sample ID:	Description:
MW-17	Sample @0805

Test Date / Time: 10/5/2021 9:25:59 AM

Project: Plant Daniel CCR **Operator Name:** Philip Evans

Location Name: Daniel NAMU

MW-18

Well Diameter: 2 in Screen Length: 5 ft Top of Screen: 39.4 ft Total Depth: 44.4 ft

Initial Depth to Water: 14.54 ft

Pump Type: QED Tubing Type: PE

Pump Intake From TOC: 41.9 ft Estimated Total Volume Pumped:

8000 ml

Flow Cell Volume: 90 ml Final Flow Rate: 400 ml/min Final Draw Down: 0.04 ft Instrument Used: Aqua TROLL 400

Serial Number: 817728

Test Notes:

Sample time @ 0950. Cloudy 82. EB-01@ 0915.

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.2	
10/5/2021	00:00	4.27 pH	23.26 °C	49.81 µS/cm	4.94 mg/L	1.12 NTU	122.4 mV	14.58 ft	400.00 ml/min
9:25 AM					1.011119/2				100100 1111,111111
10/5/2021	05:00	4.62 pH	21.24 °C	44.48 µS/cm	0.69 mg/L	0.90 NTU	117.3 mV	14.58 ft	400.00 ml/min
9:30 AM	05.00	4.02 pm	21.24 0	44.46 μ3/6111	0.09 mg/L	0.90 1410	117.31110	14.56 11	400.00 1111/111111
10/5/2021	10:00	4.65 pH	21.15 °C	44.62 µS/cm	0.54 mg/L	0.86 NTU	115.6 mV	14.58 ft	400.00 ml/min
9:35 AM	10.00	4.03 pm	21.13 C	44.02 μ3/cm	0.54 Hig/L	0.80 1410	113.01110	14.56 11	400.00 1111/111111
10/5/2021	15:00	4 6E 5U	4.65 pH 21.14 °C	44.63 μS/cm	0.44 mg/L	0.73 NTU	113.9 mV	14.58 ft	400.001/
9:40 AM	15.00	5:00 4.65 pH	21.14 C		0.44 mg/L	0.73 NTO	113.91110	14.58 π	400.00 ml/min
10/5/2021	20:00	4 60 pH	21.10 °C	44 65 uS/om	0.44 mg/l	0.72 NTU	113.6 mV	14.58 ft	400.00 ml/min
9:45 AM	20.00	4.68 pH	21.10 °C	44.65 μS/cm	0.44 mg/L	0.72 NTO	113.01110	14.56 11	400.00 mi/min

Samples

Sample ID:	Description:
MW-18	Sample time @ 0950. Cloudy 82. EB-01@ 0915.

Created using VuSitu from In-Situ, Inc.

Test Date / Time: 10/5/2021 8:21:46 AM

Project: Daniel

Operator Name: Brett Surles

Location Name: Daniel MW-19

Well Diameter: 2 in Screen Length: 10 ft Top of Screen: 22.4 ft Total Depth: 32.4 ft

Initial Depth to Water: 17.6 ft

Pump Type: PP Tubing Type: PE

Pump Intake From TOC: 27.4 ft Estimated Total Volume Pumped:

24 liter

Flow Cell Volume: 90 ml Final Flow Rate: 400 ml/min Final Draw Down: 0.02 in Instrument Used: Aqua TROLL 400

Serial Number: 800306

Test Notes:

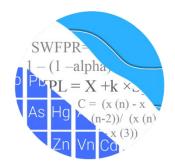
Weather Conditions:

Cloudy 73

Low-Flow Readings:

Date Time	Elapsed Time	рН	Temperature	Specific Conductivity	RDO Concentration	Turbidity	ORP	Depth To Water	Flow
		+/- 0.2	+/- 0.2	+/- 5 %	+/- 0.2	+/- 10	+/- 10	+/- 0.2	
10/5/2021 8:21 AM	00:00	6.28 pH	21.92 °C	157.69 μS/cm	3.93 mg/L	2.24 NTU	83.4 mV	17.62 in	400.00 ml/min
10/5/2021 8:26 AM	05:00	6.18 pH	21.89 °C	110.38 μS/cm	2.46 mg/L	1.96 NTU	81.7 mV	17.62 in	400.00 ml/min
10/5/2021 8:31 AM	10:00	5.97 pH	21.98 °C	79.41 µS/cm	1.51 mg/L	1.50 NTU	78.7 mV	17.62 in	400.00 ml/min
10/5/2021 8:36 AM	15:00	5.77 pH	21.89 °C	61.46 µS/cm	1.03 mg/L	1.15 NTU	76.9 mV	17.62 in	400.00 ml/min
10/5/2021 8:41 AM	20:00	5.71 pH	21.93 °C	56.74 μS/cm	0.76 mg/L	1.22 NTU	74.4 mV	17.62 in	400.00 ml/min
10/5/2021 8:46 AM	25:00	5.68 pH	21.93 °C	52.29 μS/cm	0.67 mg/L	1.07 NTU	70.3 mV	17.62 in	400.00 ml/min
10/5/2021 8:51 AM	30:00	5.61 pH	21.85 °C	49.37 μS/cm	0.56 mg/L	0.88 NTU	69.2 mV	17.62 in	400.00 ml/min
10/5/2021 8:56 AM	35:00	5.63 pH	21.85 °C	49.45 μS/cm	0.54 mg/L	0.76 NTU	66.4 mV	17.62 in	400.00 ml/min
10/5/2021 9:01 AM	40:00	5.56 pH	21.90 °C	46.06 μS/cm	0.48 mg/L	0.52 NTU	65.6 mV	17.62 in	400.00 ml/min
10/5/2021 9:06 AM	45:00	5.60 pH	22.01 °C	47.43 μS/cm	0.49 mg/L	0.67 NTU	63.4 mV	17.62 in	400.00 ml/min
10/5/2021 9:11 AM	50:00	5.54 pH	22.07 °C	43.57 μS/cm	0.47 mg/L	0.79 NTU	61.8 mV	17.62 in	400.00 ml/min
10/5/2021 9:16 AM	55:00	5.51 pH	22.18 °C	43.12 µS/cm	0.38 mg/L	0.54 NTU	60.8 mV	17.62 in	400.00 ml/min
10/5/2021 9:21 AM	01:00:00	5.53 pH	22.07 °C	43.20 μS/cm	0.39 mg/L	0.66 NTU	60.2 mV	17.62 in	400.00 ml/min

Samples


Sample ID:	Description:
MW-19	Sample @0922

Created using VuSitu from In-Situ, Inc.

Appendix B

1st Semi-Annual Monitoring Event

GROUNDWATER STATS CONSULTING

May 20, 2021

Southern Company Services Attn: Ms. Lauren Collins 3535 Colonnade Parkway Birmingham, AL 35243

Re: Plant Daniel North Ash Management Unit (NAMU)

2021 Annual Statistical Analysis – March 2021 Sample Event

Dear Ms. Collins,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of groundwater data for the 2021 Groundwater Monitoring Annual report for Mississippi Power Company's Plant Daniel NAMU. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at Daniel NAMU for the CCR program in 2016. The monitoring well network, as provided by Southern Company Services, consists of the following:

- o **Upgradient wells:** MW-11, MW-14, and MW-18
- o **Downgradient wells:** MW-15, MW-16, MW-17, and MW-19

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting.

The CCR program monitors the constituents listed below. The terms "parameters" and "constituents" are used interchangeably throughout this report.

 Appendix III (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A list of well/constituent pairs with 100% non-detects follow this letter.

For all constituents, a substitution of the most recent reporting limit is used for non-detect data. For calculating intrawell prediction limits, the substitution is performed for individual wells and may differ across wells. This generally gives the most conservative limit in each case. In the time series plots, a single reporting limit substitution is used across all wells for a given parameter since the wells are plotted as a group. Note that in the case of boron, the reporting limit increased to 0.08 mg/L from 0.05 mg/L in 2020 due to changing laboratory practices.

Time series plots for Appendix III parameters are provided for all wells and are used to evaluate concentrations over time as well as for the purpose of updating statistical limits (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graph; however, no values were flagged as outliers (Figure C). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

During the previous screening, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods were recommended. Power curves were provided with the screening to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below.

Summary of Statistical Methods:

Based on the evaluation for federal regulatory requirements, the following methods were selected for Appendix III constituents:

 Intrawell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS

The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. Parametric prediction limits (or tolerance limits or confidence intervals as applicable) are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The following approaches are used for handling non-detects (USEPA, 2009):

- No statistical analyses are required on wells and analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Note that values shown on data pages reflect raw data and any non-detects that have been substituted with one-half of the reporting limit will be shown as the original reporting limit.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents are re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. While this was not required for this report, in some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly

detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening – Conducted in October 2017

Outlier and Trend Testing

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

No suspected outliers were observed in any of the data sets for Appendix III parameters. When any values are identified as outliers, they are plotted in a lighter font on the time series graph. A substitution of the most recent reporting limit was applied when varying detection limits existed in data.

No true seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed a few statistically significant decreasing and increasing trends. All trends noted were relatively low in magnitude when compared to average concentrations; therefore, no adjustments were made to any of the data sets.

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified variation among upgradient well data at Plant Daniel NAMU for the majority of the Appendix III parameters. This facility is a lined unit with pre-waste data; therefore, due to variation noted among upgradient wells, intrawell prediction limits were recommended for this facility to accommodate the groundwater quality. A summary table of the ANOVA results was included with the screening.

Summary of Background Update - Appendix III Parameters - November 2019

Prior to updating background data, samples were re-evaluated for Appendix III constituents at all wells using Tukey's outlier test and visual screening on all historical data through the April 2019 sample event. Only one value was noted by Tukey's as a potential outlier; however, when Tukey's outlier test detects an outlier for the most recent sample, it often will not be flagged in the event that the data precede a trend that is more representative of current concentrations. Therefore, no values for Appendix III constituents were flagged as outliers at the time of the screening. An updated summary of Tukey's test results was included with the screening.

The Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through June 2017 to the new compliance samples at each well through April 2019 to evaluate whether the groups are statistically different at the 99% confidence level for each of the Appendix III parameters. When no differences exist, background data sets may be updated to include newer data for construction of prediction limits. This results in statistical limits that are representative of present-day conditions. No statistically significant differences were found between the two groups except for the following: calcium and sulfate in well MW-15. Note that the Mann-Whitney test could not be produced due to insufficient variation in the data for boron in wells MW-14, MW-15, MW-16, MW-17, and MW-19.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background are not updated to include the newer data but will be reconsidered in the future. For all well/constituent pairs except for sulfate in well MW-15, due to the limited data available and the variability in data shows some of the more recent data has similar concentrations to those reported in background, these data sets were updated. In the case of calcium at well MW-15, while there is a statistically significant difference between the two medians, the magnitude of the difference is minimal, and newer data more accurately represent concentrations present in nearby wells. Therefore, the background for this well/constituent pair was updated with new data. A summary of these results was included in the 2019 Background Update report.

Statistical Analysis of Appendix III Parameters - March 2021

Intrawell prediction limits, combined with a 1-of-2 resample strategy, were established for each of the Appendix III parameters at each well using historical data through April 2019 for the March 2021 sample event (Figure D). Intrawell prediction limits use screened historical data within a given well to establish limits for parameters at that well. The most recent sample from each well were compared to the prediction limits to determine whether there are statistically significant increases (SSIs).

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary. Complete graphical results of the prediction limits may be found following this letter. Exceedances were identified for the following well/constituent pairs:

MW-17: SulfateMW-19: Calcium

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure E). Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. The existence of similar trends in both upgradient and downgradient wells is an

913.829.1470

indication of natural variability in groundwater that is unrelated to practices at the site. Although no statistically significant increasing trends were noted, statistically significant decreasing trends were identified for the following well/constituent pairs:

Decreasing:

MW-11 (upgradient): Sulfate
 MW-14 (upgradient): Calcium
 MW-18 (upgradient): Calcium

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Daniel North Ash Management Unit. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Tristan Clark

Tristan Clark

Groundwater Analyst

Andrew Collins Project Manager

Alollina

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG

100% Non-Detects

Analysis Run 5/18/2021 1:45 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Boron (mg/L) MW-16, MW-17, MW-19

Appendix III Trend Test - Prediction Limit Exceedances - Significant Results Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/18/2021, 3:59 PM

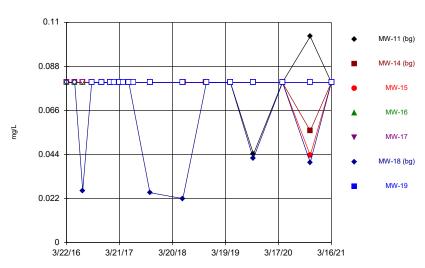
	Plant Daniel	Client: Southern C	ompany D	ata: NAMU C	CR P	rinted 5/1	8/2021, 3	:59 PM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	MW-14 (bg)	-0.5456	-91	-58	Yes	16	6.25	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-18 (bg)	-0.05969	-63	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-11 (ba)	-0.2963	-210	-152	Yes	31	16.13	n/a	n/a	0.01	NP

Appendix III Trend Test - Prediction Limit Exceedances - All Results

Plant Daniel C	Client: Southern Co	ompany D	ata: NAMU Co	CR PI	rinted 5/18	3/2021, 3	:59 PM			
Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
MW-11 (bg)	0.007498	24	58	No	16	6.25	n/a	n/a	0.01	NP
MW-14 (bg)	-0.5456	-91	-58	Yes	16	6.25	n/a	n/a	0.01	NP
MW-18 (bg)	-0.05969	-63	-58	Yes	16	0	n/a	n/a	0.01	NP
MW-19	0.03558	26	58	No	16	0	n/a	n/a	0.01	NP
MW-11 (bg)	-0.2963	-210	-152	Yes	31	16.13	n/a	n/a	0.01	NP
MW-14 (bg)	-0.04474	-28	-58	No	16	31.25	n/a	n/a	0.01	NP
MW-17	0.2933	49	58	No	16	12.5	n/a	n/a	0.01	NP
MW-18 (bg)	-0.05772	-6	-58	No	16	6.25	n/a	n/a	0.01	NP
	Well MW-11 (bg) MW-14 (bg) MW-18 (bg) MW-19 MW-11 (bg) MW-14 (bg) MW-17	Well Slope MW-11 (bg) 0.007498 MW-14 (bg) -0.5456 MW-18 (bg) -0.05969 MW-19 0.03558 MW-11 (bg) -0.2963 MW-14 (bg) -0.04474 MW-17 0.2933	Well Slope Calc. MW-11 (bg) 0.007498 24 MW-14 (bg) -0.5456 -91 MW-18 (bg) -0.05969 -63 MW-19 0.03558 26 MW-11 (bg) -0.2963 -210 MW-14 (bg) -0.04474 -28 MW-17 0.2933 49	Well Slope Calc. Critical MW-11 (bg) 0.007498 24 58 MW-14 (bg) -0.5456 -91 -58 MW-18 (bg) -0.05969 -63 -58 MW-19 0.03558 26 58 MW-11 (bg) -0.2963 -210 -152 MW-14 (bg) -0.04474 -28 -58 MW-17 0.2933 49 58	Well Slope Calc. Critical Sig. MW-11 (bg) 0.007498 24 58 No MW-14 (bg) -0.5456 -91 -58 Yes MW-18 (bg) -0.05969 -63 -58 Yes MW-19 0.03558 26 58 No MW-11 (bg) -0.2963 -210 -152 Yes MW-14 (bg) -0.04474 -28 -58 No MW-17 0.2933 49 58 No	Well Slope Calc. Critical Sig. N MW-11 (bg) 0.007498 24 58 No 16 MW-14 (bg) -0.5456 -91 -58 Yes 16 MW-18 (bg) -0.05969 -63 -58 Yes 16 MW-19 0.03558 26 58 No 16 MW-11 (bg) -0.2963 -210 -152 Yes 31 MW-14 (bg) -0.04474 -28 -58 No 16 MW-17 0.2933 49 58 No 16	Well Slope Calc. Critical Sig. N %NDs MW-11 (bg) 0.007498 24 58 No 16 6.25 MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 MW-18 (bg) -0.05969 -63 -58 Yes 16 0 MW-19 0.03558 26 58 No 16 0 MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 MW-14 (bg) -0.04474 -28 -58 No 16 31.25 MW-17 0.2933 49 58 No 16 12.5	Well Slope Calc. Critical Sig. N %NDs Normality MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a MW-19 0.03558 26 58 No 16 0 n/a MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a MW-17 0.2933 49 58 No 16 12.5 n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a n/a MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a n/a MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a n/a MW-19 0.03558 26 58 No 16 0 n/a n/a MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a n/a MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a n/a MW-17 0.2933 49 58 No 16 12.5 n/a n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform Alpha MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a n/a 0.01 MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a n/a 0.01 MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a n/a 0.01 MW-19 0.03558 26 58 No 16 0 n/a n/a 0.01 MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a n/a 0.01 MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a n/a 0.01 MW-17 0.2933 49 58 No 16 12.5 n/a n/a 0.01

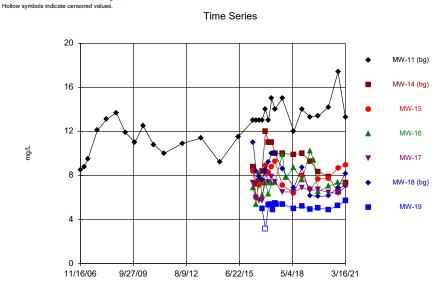
Appendix III Intrawell Prediction Limits - Significant Results

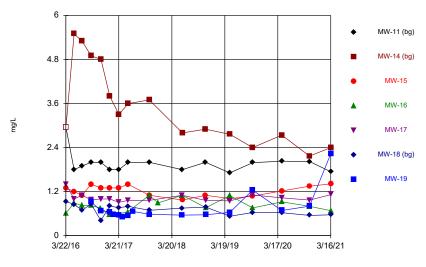
Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/19/2021, 4:44 PM


Constituent	Well	Upper Lim	. Lower Lim	n. Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%ND	s ND Adj.	Transform	m Alpha	Method
Calcium (mg/L)	MW-19	0.8608	n/a	3/16/2021	2.23	Yes 12	0.7847	0.06412	0	None	sqrt(x)	0.00188	Param Intra 1 of 2
Sulfate (mg/L)	MW-17	3.046	n/a	3/16/2021	3.06	Yes 12	1.349	0.1777	16.67	′ Kaplan-Mei	er sqrt(x)	0.00188	Param Intra 1 of 2

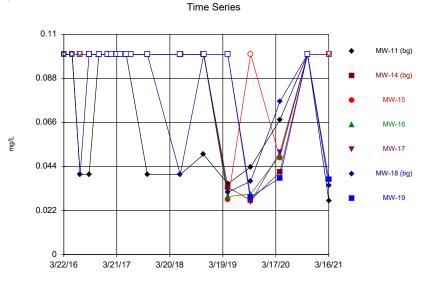
Appendix III Intrawell Prediction Limits - All Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/19/2021, 4:44 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Bg N Bg Mean Std. Dev. %NDs ND Adj. Method Date Observ. Transform Alpha Boron (mg/L) MW-11 n/a 3/16/2021 0.08ND No 12 n/a n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 3/16/2021 0.08ND Boron (mg/L) MW-14 0.08 n/a No 12 n/a n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Boron (mg/L) MW-15 0.08 n/a 3/16/2021 0.08ND 12 100 n/a 0.01077 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Boron (mg/L) 0.08 3/16/2021 0.08ND 75 MW-18 n/a No 12 n/a n/a n/a n/a 0.01077 Param Intra 1 of 2 Calcium (mg/L) MW-11 2.17 n/a 3/16/2021 No 12 12.03 4.544 8.333 None 0.00188 Calcium (mg/L) MW-14 6.114 3/16/2021 2.4 No 12 3.859 1.01 8.333 0.00188 Param Intra 1 of 2 n/a None No Calcium (mg/L) MW-15 1.535 n/a 3/16/2021 1.41 No 12 1.207 0.1472 0 None 0.00188 Param Intra 1 of 2 No Param Intra 1 of 2 Calcium (mg/L) MW-16 3/16/2021 0.681 13 0 0.00188 1.234 No 0.82 0.1886 None No n/a Calcium (mg/L) MW-17 1.4 n/a 3/16/2021 1.12 No 12 n/a 0 n/a 0.01077 NP Intra (normality) 1 of 2 n/a n/a 0.1448 Calcium (mg/L) MW-18 1.062 n/a 3/16/2021 0.57 No 12 0.7384 0 None No 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-19 0.8608 n/a 3/16/2021 2.23 Yes 12 0.7847 0.06412 0 None sqrt(x) 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-11 15.58 n/a 3/16/2021 13.3 No 12.12 1.814 0 None No 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-14 12.79 n/a 3/16/2021 7.32 Nο 12 9.592 1.433 0 None Nο 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-15 10.08 n/a 3/16/2021 8.94 No 12 7.696 1.067 0 None 0.00188 Param Intra 1 of 2 3/16/2021 7.14 Param Intra 1 of 2 Chloride (mg/L) MW-16 10.64 13 7.623 1.377 0 0.00188 n/a No None No Chloride (mg/L) MW-17 8.675 3/16/2021 6.97 12 6.845 0.8197 0 None 0.00188 Param Intra 1 of 2 n/a No No Chloride (mg/L) MW-18 3/16/2021 8.18 12 8.581 1.361 0 0.00188 Param Intra 1 of 2 11.62 n/a No None No Chloride (mg/L) MW-19 5.783 3/16/2021 5.72 No 12 3601 1285 8.333 None x^5 0.00188 Param Intra 1 of 2 n/a Fluoride (mg/L) MW-11 0.1 3/16/2021 0.0269J 12 50 0.01077 NP Intra (normality) 1 of 2 n/a No n/a n/a n/a n/a NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-14 0.1 n/a 3/16/2021 0 1ND Nο 12 n/a n/a 91 67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-15 0.1 n/a 3/16/2021 0.1ND No 12 n/a n/a 91.67 n/a 0.01077 Fluoride (mg/L) NP Intra (NDs) 1 of 2 MW-16 0.1 n/a 3/16/2021 0.1ND No 12 n/a n/a 91.67 n/a n/a 0.01077 12 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-17 0.1 n/a 3/16/2021 0.1ND No 100 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-18 0.1 n/a 3/16/2021 0.0344J No 12 n/a n/a 75 n/a n/a 0.01077 Fluoride (mg/L) MW-19 0.1 n/a 3/16/2021 0.0376J No 12 n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 pH (SU) MW-11 4.992 4.437 3/16/2021 4.72 13 4 715 0.1267 0 0.0009398 Param Intra 1 of 2 No None No pH (SU) MW-14 5.663 4.563 3/16/2021 5.06 No 12 5.113 0.2464 0 None No 0.0009398 Param Intra 1 of 2 3/16/2021 4.65 12 Param Intra 1 of 2 pH (SU) MW-15 5.04 4.32 No 4.68 0.1615 0 None No 0.0009398 pH (SU) MW-16 4.866 4.367 3/16/2021 4.62 No 12 4 617 0.1118 0 None No 0.0009398 Param Intra 1 of 2 pH (SU) MW-17 5.411 4.605 3/16/2021 5 No 12 5.008 0.1805 0 None No 0.0009398 Param Intra 1 of 2 pH (SU) MW-18 4.829 4.401 3/16/2021 4.68 No 12 4.615 0.09587 0 None Nο 0.0009398 Param Intra 1 of 2 0.0009398 pH (SU) MW-19 5.483 4.668 3/16/2021 5.35 No 13 5.075 0.1858 0 Param Intra 1 of 2 Sulfate (mg/L) MW-11 9.808 3/16/2021 2.15 27 4.944 2.552 0.00188 Param Intra 1 of 2 n/a Nο 18.52 Kaplan-Meier No. Sulfate (mg/L) MW-14 5 n/a 3/16/2021 2.23 No 12 41.67 0.01077 NP Intra (normality) 1 of 2 n/a n/a n/a n/a 3/16/2021 1.07 NP Intra (NDs) 1 of 2 Sulfate (mg/L) MW-15 5 12 75 0.01077 n/a No n/a n/a n/a n/a Sulfate (mg/L) MW-16 5 n/a 3/16/2021 2 No 12 n/a 66.67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) MW-17 3.046 n/a 3/16/2021 3.06 Yes 12 1.349 0.1777 Kaplan-Meier sqrt(x) 0.00188 Param Intra 1 of 2 16.67 Sulfate (mg/L) MW-18 5.327 n/a 3/16/2021 3.18 No 12 3 897 0.6408 8.333 None No 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-19 5 n/a 3/16/2021 2.72 No 12 n/a n/a 58.33 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Total Dissolved Solids (mg/L) MW-11 82.24 n/a 3/16/2021 39 No 12 42.67 17.73 0 None No 0.00188 Param Intra 1 of 2 3/16/2021 Total Dissolved Solids (mg/L) MW-14 n/a No 12 38 17.39 0 No 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) 3/16/2021 34 MW-15 58.47 13 25.23 0.00188 Param Intra 1 of 2 n/a Nο 15.16 0 None Nο Total Dissolved Solids (mg/L) MW-16 66.28 3/16/2021 27 12 23.33 19.24 25 0.00188 Param Intra 1 of 2 n/a No Kaplan-Meier 3/16/2021 37 12 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-17 44.84 n/a No 23.81 9.424 8.333 None 0.00188 No Total Dissolved Solids (mg/L) MW-18 51.36 3/16/2021 31 No 12 26.33 0 0.00188 Param Intra 1 of 2 n/a 11.21 None No Total Dissolved Solids (mg/L) MW-19 46.26 3/16/2021 25 12 20.63 8.333 0.00188 Param Intra 1 of 2 n/a No 11.48 None No


FIGURE A.

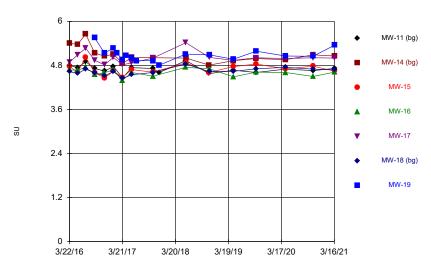

Constituent: Boron Analysis Run 5/19/2021 4:30 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Constituent: Chloride Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

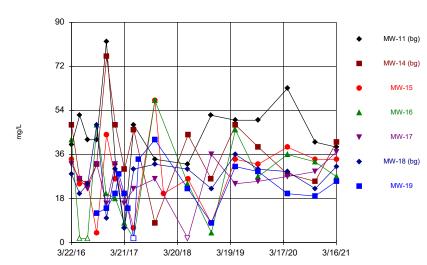
Time Series

Constituent: Calcium Analysis Run 5/19/2021 4:30 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

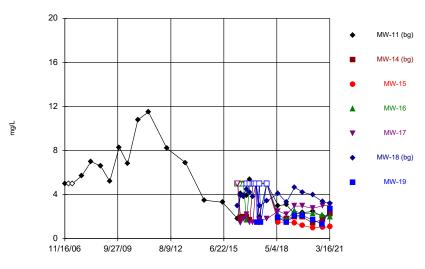
Constituent: Fluoride Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Time Series

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Time Series

Constituent: Sulfate Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Constituent: Boron (mg/L) Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

		MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/20	016			<0.08 (B1)	<0.08 (B1)	<0.08 (B1)	<0.08 (B1)	
3/23/20	016	<0.08 (B1)	<0.08 (B1)					
5/18/20	016	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
7/11/20	016				<0.08			
7/12/20	016	<0.08	<0.08	<0.08		<0.08	0.026 (J)	
9/12/20	016	<0.08	<0.08	<0.08		<0.08	<0.08	<0.08
9/13/20	016				<0.08			
11/17/2	2016				<0.08			
11/18/2	2016	<0.08				<0.08	<0.08	<0.08
11/19/2	2016		<0.08	<0.08				
1/18/20	017		<0.08		<0.08	<0.08	<0.08	<0.08
1/19/20	017	<0.08		<0.08				
2/10/20	017							<0.08
3/21/20	017			<0.08	<0.08	<0.08	<0.08	<0.08
3/22/20	017	<0.08	<0.08					
4/14/20	017							<0.08
5/23/20	017			<0.08	<0.08			<0.08
5/24/20	017	<0.08	<0.08			<0.08	<0.08	
6/26/20	017							<0.08
10/17/2	2017	<0.08	<0.08	<0.08	<0.08	<0.08	0.025 (J)	<0.08
5/31/20	018	<0.08			<0.08	<0.08	0.022 (J)	<0.08
6/1/20	18		<0.08	<0.08				
11/7/20	018	<0.08	<0.08	<0.08				
11/8/20	018				<0.08	<0.08	<0.08	<0.08
4/22/20	019	<0.08			<0.08	<0.08	<0.08	<0.08
4/23/20	019		<0.08	<0.08				
9/26/20	019		<0.08	<0.08	<0.08	<0.08	0.042 (J)	<0.08
9/27/20	019	0.0443 (J)						
4/13/20	020	<0.08	<0.08	<0.08		<0.08		<0.08
4/14/20	020				<0.08		<0.08	
10/21/2	2020				<0.08			<0.08
10/22/2	2020	0.103	0.0559 (J)	0.0437 (J)		<0.08	0.0401 (J)	
3/16/20	021	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

Constituent: Calcium (mg/L) Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

						. ,		
		MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/	/22/2016			1.3 (B1)	0.61 (B1)	1.4 (B1)	0.93 (B1)	
3/	/23/2016	<5.9 (*)	<5.9 (*)					
5/	/18/2016	1.8	5.5	1.2	0.89	1	0.85	
7/	/11/2016				0.82			
7/	/12/2016	1.9	5.3	1.1		1.1	0.69	
9/	/12/2016	2	4.9	1.4		0.98	0.86	0.92
9/	/13/2016				0.82			
11	1/17/2016				0.75			
11	1/18/2016	2				1	0.41	0.68
11	1/19/2016		4.8	1.3				
1/	18/2017		3.8		0.58	1	0.81	0.64
1/	/19/2017	1.8		1.3				
2/	10/2017							0.58
3/	21/2017			1.3	0.6	0.91	0.76	0.56
3/	/22/2017	1.8	3.3					
4/	14/2017							0.51
5/	/23/2017			1.4	0.65			0.54
5/	/24/2017	2	3.6			0.96	0.8	
6/	/26/2017							0.66
10	0/17/2017	2	3.7	1.1	1.1	0.96	0.69	0.58
12	2/15/2017				0.89 (RS)			
5/	/31/2018	1.8			1.1	1.1	0.75	0.56
6/	/1/2018		2.8	0.97				
11	1/7/2018	2	2.9	1.1				
11	1/8/2018				0.76	0.96	0.78	0.57
4/	/22/2019	1.71			1.09	0.946	0.531	0.634
4/	/23/2019		2.76	1.01				
9/	/26/2019		2.4	1.08	0.758	1.11	0.631	1.24
9/	27/2019	1.99						
4/	/13/2020	2.03	2.74	1.22		1.03		0.687
4/	/14/2020				0.92		0.627	
10	0/21/2020				0.798			0.806
10	0/22/2020	2.02	2.17	1.35		0.969	0.553	
3/	16/2021	1.74	2.4	1.41	0.681	1.12	0.57	2.23

Constituent: Chloride (mg/L) Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

						,	
	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
11/16/2006	8.5						
2/5/2007	8.8						
4/12/2007	9.5						
10/17/2007							
4/17/2008	13.1						
10/24/2008							
4/21/2009	11.9						
10/26/2009							
4/12/2010	12.5						
10/30/2010							
5/25/2011	10						
5/25/2012	10.9						
5/28/2013	11.4						
5/31/2014	9.2						
5/29/2015	11.5						
3/22/2016			8.4 (B1)	6.9 (B1)	7.3 (B1)	11 (B1)	
3/23/2016	13	8.8 (B1)	- (= -)	- ()	- ()	(/	
5/18/2016	13	7.2	6	5.4	6	8.4	
7/11/2016		- 	-	8.1	-	-	
7/12/2016	13	7.5	7.1	U	5.7	7.9	
9/12/2016	13	8.4	7.3		5.7	7.6	5
9/13/2016	.0		•	6.2			-
11/17/2016	S			7.3			
11/18/2016				7.0	8.2	8.5	<6.3 (*)
11/19/2016		12	8.9		J. <u>Z</u>	0.0	-0.0 ()
1/18/2017	•	11	0.0	6.3	7.4	9.2	5.3
1/19/2017	13		8.3	0.0	7.4	J. <u>L</u>	0.0
2/10/2017	.0		0.0				5.4
3/21/2017			8.8	7.3	7.9	10	5.3
3/21/2017	15	11	0.0	7.5	7.5	10	5.5
4/14/2017	13	11					4.9 (B)
5/23/2017			9.3	7.4			4.9 (B) 5.5
5/23/2017	14	10	3.3	7.4	7.4	10	5.5
6/26/2017	14	10			7.4	10	5.4
	7 15	10	7.1	0.0	6.5	8.6	
10/17/2017		10	7.1	9.9	6.5	8.6	5.4
12/19/2017				7.8 (RS)	6.6	6.0	_
5/31/2018	12	0.0	6.4	8.7	6.5	6.9	5
6/1/2018	14	9.9	6.4				
11/7/2018	14	10	8	7.0	0.0	0.7	F.0
11/8/2018	10.5			7.6	6.9	8.7	5.2
4/22/2019	13.3	0.2	6.75	10.2	6.64	6.17	4.91
4/23/2019		9.3	6.75	0.4			
6/25/2019		0.05	7.00	9.4	0.7	0.00	F.60
9/26/2019		8.35	7.66	6.54	6.7	6.09	5.03
9/27/2019	13.4						, -
4/13/2020	14.2	7.9	7.74	_	6.46	_	4.9
4/14/2020				7.03		6.15	
10/21/2020				7.36			5.25
10/22/2020		6.5	8.69		6.37	6.89	
3/16/2021	13.3	7.32	8.94	7.14	6.97	8.18	5.72

Constituent: Fluoride (mg/L) Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			<0.1 (B1)	<0.1 (B1)	<0.1 (B1)	<0.1 (B1)	
3/23/2016	<0.1	<0.1 (B1)					
5/18/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
7/11/2016				<0.1			
7/12/2016	0.04 (J)	<0.1	<0.1		<0.1	0.04 (J)	
9/12/2016	0.04 (J)	<0.1	<0.1		<0.1	<0.1	<0.1
9/13/2016				<0.1			
11/17/2016				<0.1			
11/18/2016	<0.1				<0.1	<0.1	<0.1
11/19/2016		<0.1	<0.1				
1/18/2017		<0.1		<0.1	<0.1	<0.1	<0.1
1/19/2017	<0.1		<0.1				
2/10/2017							<0.1
3/21/2017			<0.1	<0.1	<0.1	<0.1	<0.1
3/22/2017	<0.1	<0.1					
4/14/2017							<0.1
5/23/2017			<0.1	<0.1			<0.1
5/24/2017	<0.1	<0.1			<0.1	<0.1	
6/26/2017							<0.1
10/17/2017	0.04 (J)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
5/31/2018	0.04 (J)			<0.1	<0.1	0.04 (J)	<0.1
6/1/2018		<0.1	<0.1				
11/7/2018	0.05 (J)	<0.1	<0.1				
11/8/2018				<0.1	<0.1	<0.1	<0.1
4/22/2019	0.0353 (J)			0.029 (J)	<0.1	0.0311 (J)	<0.1
4/23/2019		0.0335 (J)	0.0275 (J)				
9/26/2019		0.0272 (J)	<0.1	0.0302 (J)	0.0263 (J)	0.0366 (J)	0.0287 (J)
9/27/2019	0.0438 (J)						
4/13/2020	0.0672 (J)	0.0411 (J)	0.0484 (J)		0.0511 (J)		0.0382 (J)
4/14/2020				0.0496 (J)		0.0764 (J)	
10/21/2020				<0.1			<0.1
10/22/2020	<0.1	<0.1	<0.1		<0.1	<0.1	
3/16/2021	0.0269 (J)	<0.1	<0.1	<0.1	<0.1	0.0344 (J)	0.0376 (J)

Constituent: pH (SU) Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

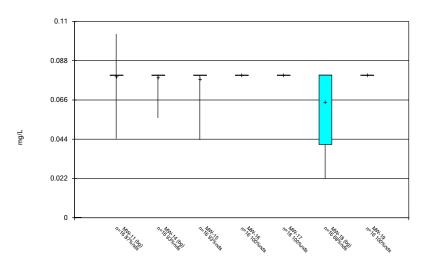
	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			4.77	4.68	4.89	4.63	
3/23/2016	4.8	5.4					
5/18/2016	4.74	5.38	4.62	4.67	5.09	4.58	
7/11/2016				4.75			
7/12/2016	4.9	5.65	5.03		5.27	4.7	
9/12/2016	4.72	5.14	4.6		4.94	4.6	5.55
9/13/2016				4.56			
11/17/2016				4.6			
11/18/2016	4.65				4.82	4.52	5.14
11/19/2016		5.05	4.46				
1/18/2017		5.11		4.68	5.02	4.63	5.27
1/19/2017	4.77		4.65				
2/10/2017							5.14
3/21/2017			4.47	4.39	4.82	4.45	4.96
3/22/2017	4.46	4.86					
4/14/2017							5.07
5/23/2017			4.69	4.61			5.01
5/24/2017	4.74	5.02			4.87	4.55	
6/26/2017							4.93
10/17/2017	4.72	5.01	4.62	4.51	5	4.61	4.93
11/30/2017	4.61						4.81
5/31/2018	4.93			4.75	5.42	4.84	5.11
6/1/2018		5	4.87				
11/7/2018	4.58	4.81	4.61				
11/8/2018				4.71	5.02	4.63	5.09
4/22/2019	4.67			4.49	4.94	4.64	4.97
4/23/2019		4.93	4.77				
9/26/2019		4.99	4.84	4.62	5.01	4.71	5.19
9/27/2019	4.61						
4/13/2020	4.7	4.96	4.71		4.99		5.06
4/14/2020				4.61		4.75	
10/21/2020				4.5			5.05
10/22/2020	4.66	5.09	4.78		5.01	4.7	
3/16/2021	4.72	5.06	4.65	4.62	5	4.68	5.35

Time Series

Constituent: Sulfate (mg/L) Analysis Run 5/19/2021 4:31 PM Plant Daniel Client: Southern Company Data: NAMU CCR

						. ,		
		MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
1	1/16/2006	5						
	/5/2007	<5						
	/12/2007	<5						
	0/17/2007	5.7						
	/17/2008	7						
	0/24/2008	6.6						
	/21/2009	5.2						
	0/26/2009	8.3						
	/12/2010	6.8						
	0/30/2010	10.8						
	/25/2011	11.5						
	/25/2012	8.2						
	/28/2013	6.9						
	/31/2014	3.5						
	/29/2015	3.3						
	/22/2016			<5	<5	<5	3 (J)	
	/23/2016	1.8 (J)	<5					
5	/18/2016	4.1	1.9	<5	<5	1.4	3.9 (J)	
7/	/11/2016				<5			
7	/12/2016	3.8 (J)	2 (J)	<5		1.8 (J)	3.9 (J)	
9/	/12/2016	3.9 (J)	2 (J)	<5		2.2 (J)	4.5 (J)	<5
9/	/13/2016				1.7 (J)			
1	1/17/2016				<5			
1	1/18/2016	5.4				1.5 (J)	4.2 (J)	<5
1	1/19/2016		1.7 (J)	<5				
1/	/18/2017		<5		<5	1.5 (J)	3.8 (J)	<5
	/19/2017	<5		<5				
	/10/2017							<5
	/21/2017			<5	<5	<5	<5 (*)	<5
	/22/2017	<5	<5	-	-	-	- (/	-
	/14/2017	-	-					1.5 (J)
	/23/2017			<5	<5			<5
	/23/2017	2 (1)	<5	.5	-5	17(1)	3 (1)	~~
		2 (J)	~0			1.7 (J)	3 (J)	15/1
	/26/2017	-E	∠E	-E	-E	10/1	2.471)	1.5 (J)
	0/17/2017	<5	<5	<5	<5	1.8 (J)	3.4 (J)	<5
	/31/2018	3 (J)			2.2 (J)	2.5 (J)	4.1 (J)	1.9 (J)
	/1/2018		1.8 (J)	1.5 (J)				
	1/7/2018	3.1 (J)	1.8 (J)	1.5 (J)				
	1/8/2018				1.7 (J)	2.2 (J)	3.3 (J)	1.5 (J)
4	/22/2019	2.22			2.52	2.96	4.66	2.09
4	/23/2019		1.99	1.43				
9/	/26/2019		1.95	1.2	2.28	2.96	4.23	2.1
9/	/27/2019	2.36						
4	/13/2020	2.47	1.43	0.992 (J)		2.75		1.69
4	/14/2020				2.27		3.96	
10	0/21/2020				2.15			1.31
10	0/22/2020	2.01	1.76	1.04		2.98	3.37	
	/16/2021	2.15	2.23	1.07	2	3.06	3.18	2.72

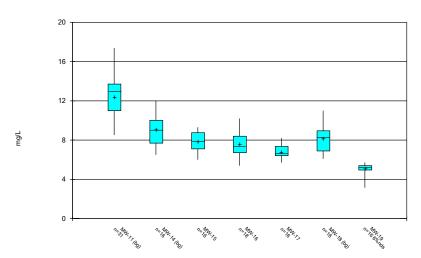
Time Series


Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/19/2021 4:31 PM

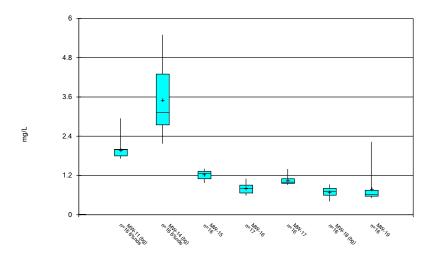
Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			34 (B1)	42 (B1)	32 (B1)	28 (B1)	
3/23/2016	40	48 (B1)					
5/18/2016	52	26	24	<3.4	26	20	
7/11/2016				<3.4			
7/12/2016	42	24	24		22	24	
9/12/2016	42	32	4 (J)		32	48	12
9/13/2016				48			
11/17/2016				20			
11/18/2016	82				16	10	14
11/19/2016		76	44				
1/18/2017		48		18	32	30	20
1/19/2017	32		26				
2/10/2017							28
3/21/2017			20	8	16	6	20
3/22/2017	6	30					
4/14/2017							14
5/23/2017			6	<3.4			<3.4
5/24/2017	48	46			22	30	
6/26/2017							34
10/17/2017	34	8	58	58	26	32	42
12/15/2017			20 (RS)				
5/31/2018	32			24	<3.4	30	22
6/1/2018		44	26				
11/7/2018	52	26	8				
11/8/2018				4 (J)	36	22	8
4/22/2019	50			46	24	36	31
4/23/2019		48	34				
9/26/2019		39	32	27	25	30	29
9/27/2019	50						
4/13/2020	63	28	39		27		20
4/14/2020				36		29	
10/21/2020				33			19
10/22/2020	41	25	34		29	22	
3/16/2021	39	41	34	27	37	31	25

FIGURE B.

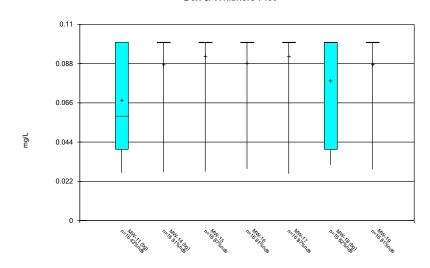

Box & Whiskers Plot

Constituent: Boron Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas[™] v.9.6.28 Groundwater Stats Consulting. UG

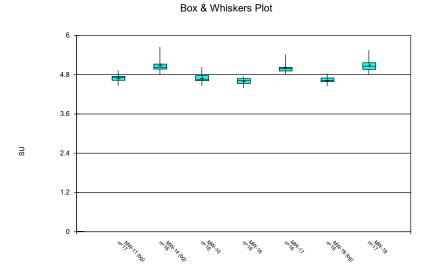
Box & Whiskers Plot

Constituent: Chloride Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Box & Whiskers Plot

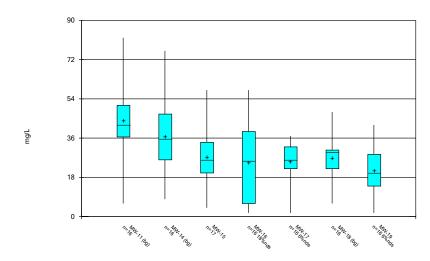
Constituent: Calcium Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

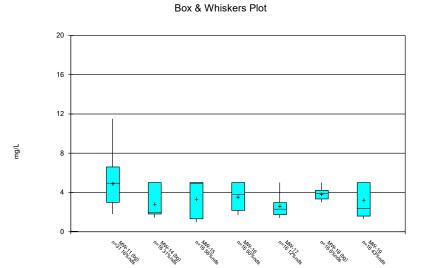
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Fluoride Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Constituent: pH Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Constituent: Sulfate Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

FIGURE C.

Outlier Summary

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/17/2021, 2:36 PM

No outliers were flagged.

FIGURE D.

Appendix III Intrawell Prediction Limits - Significant Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/19/2021, 4:44 PM

Constituent	Well	Upper Lim	. Lower Lim	. Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%ND	s ND Adj.	Transform	m <u>Alpha</u>	Method
Calcium (mg/L)	MW-19	0.8608	n/a	3/16/2021	2.23	Yes 12	0.7847	0.06412	0	None	sqrt(x)	0.00188	Param Intra 1 of 2
Sulfate (mg/L)	MW-17	3.046	n/a	3/16/2021	3.06	Yes 12	1.349	0.1777	16.67	Kaplan-Mei	er sqrt(x)	0.00188	Param Intra 1 of 2

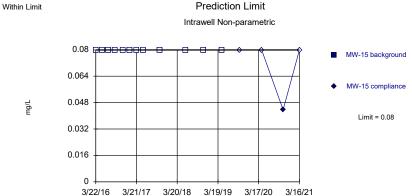
Appendix III Intrawell Prediction Limits - All Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/19/2021, 4:44 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Bg N Bg Mean Std. Dev. %NDs ND Adj. Method Date Observ. Transform Alpha Boron (mg/L) MW-11 n/a 3/16/2021 0.08ND No 12 n/a n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 3/16/2021 0.08ND Boron (mg/L) MW-14 0.08 n/a No 12 n/a n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Boron (mg/L) MW-15 0.08 n/a 3/16/2021 0.08ND 12 100 n/a 0.01077 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Boron (mg/L) 0.08 3/16/2021 0.08ND 75 MW-18 n/a No 12 n/a n/a n/a n/a 0.01077 Param Intra 1 of 2 Calcium (mg/L) MW-11 2.17 n/a 3/16/2021 No 12 12.03 4.544 8.333 None 0.00188 Calcium (mg/L) MW-14 6.114 3/16/2021 2.4 No 12 3.859 1.01 8.333 0.00188 Param Intra 1 of 2 n/a None No Calcium (mg/L) MW-15 1.535 n/a 3/16/2021 1.41 No 12 1.207 0.1472 0 None 0.00188 Param Intra 1 of 2 No Param Intra 1 of 2 Calcium (mg/L) MW-16 3/16/2021 0.681 13 0 0.00188 1.234 No 0.82 0.1886 None No n/a Calcium (mg/L) MW-17 1.4 n/a 3/16/2021 1.12 No 12 n/a 0 n/a 0.01077 NP Intra (normality) 1 of 2 n/a n/a 0.1448 Calcium (mg/L) MW-18 1.062 n/a 3/16/2021 0.57 No 12 0.7384 0 None No 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-19 0.8608 n/a 3/16/2021 2.23 Yes 12 0.7847 0.06412 0 None sqrt(x) 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-11 15.58 n/a 3/16/2021 13.3 No 12.12 1.814 0 None No 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-14 12.79 n/a 3/16/2021 7.32 Nο 12 9.592 1.433 0 None Nο 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-15 10.08 n/a 3/16/2021 8.94 No 12 7.696 1.067 0 None 0.00188 Param Intra 1 of 2 3/16/2021 7.14 Param Intra 1 of 2 Chloride (mg/L) MW-16 10.64 13 7.623 1.377 0 0.00188 n/a No None No Chloride (mg/L) MW-17 8.675 3/16/2021 6.97 12 6.845 0.8197 0 None 0.00188 Param Intra 1 of 2 n/a No No Chloride (mg/L) MW-18 3/16/2021 8.18 12 8.581 1.361 0 0.00188 Param Intra 1 of 2 11.62 n/a No None No Chloride (mg/L) MW-19 5.783 3/16/2021 5.72 No 12 3601 1285 8.333 None x^5 0.00188 Param Intra 1 of 2 n/a Fluoride (mg/L) MW-11 0.1 3/16/2021 0.0269J 12 50 0.01077 NP Intra (normality) 1 of 2 n/a No n/a n/a n/a n/a NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-14 0.1 n/a 3/16/2021 0 1ND Nο 12 n/a n/a 91 67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-15 0.1 n/a 3/16/2021 0.1ND No 12 n/a n/a 91.67 n/a 0.01077 Fluoride (mg/L) NP Intra (NDs) 1 of 2 MW-16 0.1 n/a 3/16/2021 0.1ND No 12 n/a n/a 91.67 n/a n/a 0.01077 12 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-17 0.1 n/a 3/16/2021 0.1ND No 100 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-18 0.1 n/a 3/16/2021 0.0344J No 12 n/a n/a 75 n/a n/a 0.01077 Fluoride (mg/L) MW-19 0.1 n/a 3/16/2021 0.0376J No 12 n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 pH (SU) MW-11 4.992 4.437 3/16/2021 4.72 13 4 715 0.1267 0 0.0009398 Param Intra 1 of 2 No None No pH (SU) MW-14 5.663 4.563 3/16/2021 5.06 No 12 5.113 0.2464 0 None No 0.0009398 Param Intra 1 of 2 3/16/2021 4.65 12 Param Intra 1 of 2 pH (SU) MW-15 5.04 4.32 No 4.68 0.1615 0 None No 0.0009398 pH (SU) MW-16 4.866 4.367 3/16/2021 4.62 No 12 4 617 0.1118 0 None No 0.0009398 Param Intra 1 of 2 pH (SU) MW-17 5.411 4.605 3/16/2021 5 No 12 5.008 0.1805 0 None No 0.0009398 Param Intra 1 of 2 pH (SU) MW-18 4.829 4.401 3/16/2021 4.68 No 12 4.615 0.09587 0 None Nο 0.0009398 Param Intra 1 of 2 0.0009398 pH (SU) MW-19 5.483 4.668 3/16/2021 5.35 No 13 5.075 0.1858 0 Param Intra 1 of 2 Sulfate (mg/L) MW-11 9.808 3/16/2021 2.15 27 4.944 2.552 0.00188 Param Intra 1 of 2 n/a Nο 18.52 Kaplan-Meier No. Sulfate (mg/L) MW-14 5 n/a 3/16/2021 2.23 No 12 41.67 0.01077 NP Intra (normality) 1 of 2 n/a n/a n/a n/a 3/16/2021 1.07 NP Intra (NDs) 1 of 2 Sulfate (mg/L) MW-15 5 12 75 0.01077 n/a No n/a n/a n/a n/a Sulfate (mg/L) MW-16 5 n/a 3/16/2021 2 No 12 n/a 66.67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) MW-17 3.046 n/a 3/16/2021 3.06 Yes 12 1.349 0.1777 Kaplan-Meier sqrt(x) 0.00188 Param Intra 1 of 2 16.67 Sulfate (mg/L) MW-18 5.327 n/a 3/16/2021 3.18 No 12 3 897 0.6408 8.333 None No 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-19 5 n/a 3/16/2021 2.72 No 12 n/a n/a 58.33 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Total Dissolved Solids (mg/L) MW-11 82.24 n/a 3/16/2021 39 No 12 42.67 17.73 0 None No 0.00188 Param Intra 1 of 2 3/16/2021 Total Dissolved Solids (mg/L) MW-14 n/a No 12 38 17.39 0 No 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) 3/16/2021 34 MW-15 58.47 13 25.23 0.00188 Param Intra 1 of 2 n/a Nο 15.16 0 None Nο Total Dissolved Solids (mg/L) MW-16 66.28 3/16/2021 27 12 23.33 19.24 25 0.00188 Param Intra 1 of 2 n/a No Kaplan-Meier 3/16/2021 37 12 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-17 44.84 n/a No 23.81 9.424 8.333 None 0.00188 No Total Dissolved Solids (mg/L) MW-18 51.36 3/16/2021 31 No 12 26.33 0 0.00188 Param Intra 1 of 2 n/a 11.21 None No Total Dissolved Solids (mg/L) MW-19 46.26 3/16/2021 25 12 20.63 8.333 0.00188 Param Intra 1 of 2 n/a No 11.48 None No

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

0

Within Limit


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.012143. Individual comparison alpha = 0.01077 (1 of 2).

3/23/16 3/21/17 3/20/18 3/19/19 3/17/20 3/16/21

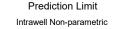
Constituent: Boron Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.}$

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit


Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

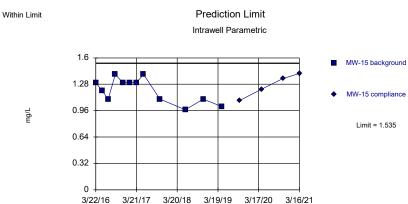
Constituent: Boron Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

 ${\it Sanitas^{\rm to}}~v.9.6.28~{\it Groundwater}~{\it Stats}~{\it Consulting}.~{\it UG}~{\it Hollow}~{\it symbols}~{\it indicate}~{\it censored}~{\it values}.$ Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

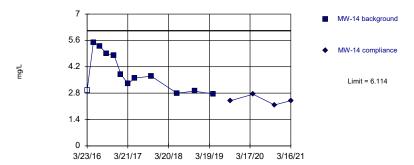
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Parametric

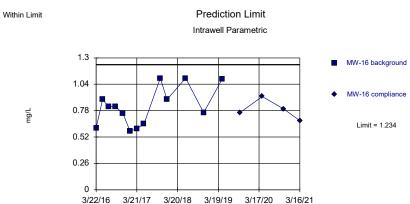
Background Data Summary (based on x^4 transformation): Mean=12.03, Std. Dev.=4.544, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8072, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=1.207, Std. Dev.=0.1472, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9076, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=3.859, Std. Dev.=1.01, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8805, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.82, Std. Dev.=0.1886, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9011, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

0

Within Limit

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Intrawell Non-parametric

MW-17 background

MW-17 compliance

Limit = 1.4

3/22/16 3/21/17 3/20/18 3/19/19 3/17/20 3/16/21

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Calcium Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

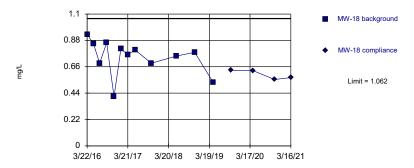
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Exceeds Limit Intrawell Parametric

MW-19 background

AMW-19 compliance

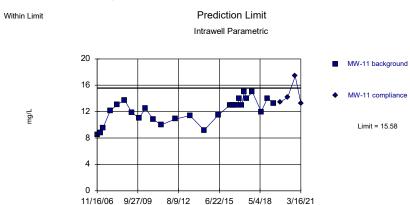
1.8


1.2

0.6

9/12/16 8/7/17 7/2/18 5/27/19 4/20/20 3/16/21

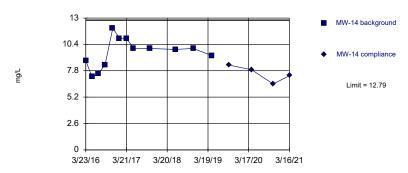
Background Data Summary (based on square root transformation): Mean=0.7847, Std. Dev.=0.06412, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8069, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.7384, Std. Dev.=0.1448, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9007, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Background Data Summary: Mean=12.12, Std. Dev.=1.814, n=27. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9502, critical = 0.894. Kappa = 1.906 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

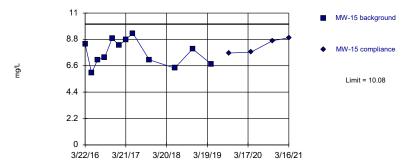
Within Limit Prediction Limit

Background Data Summary: Mean=9.592, Std. Dev.=1.433, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9613, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Chloride Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

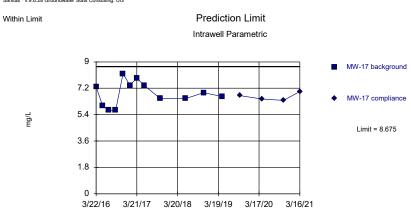
Within Limit
Intrawell Parametric


MW-16 background

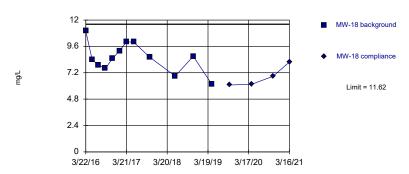
MW-16 compliance

Limit = 10.64

Background Data Summary: Mean=7.623, Std. Dev.=1.377, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9538, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

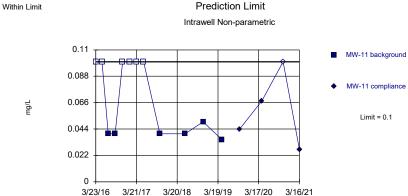

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.696, Std. Dev.=1.067, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9552, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Chloride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

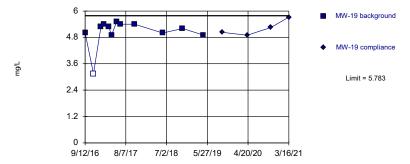
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=6.845, Std. Dev.=0.8197, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9524, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Prediction Limit Within Limit Intrawell Parametric

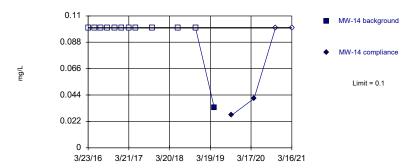
Background Data Summary: Mean=8.581, Std. Dev.=1.361, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9827, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Chloride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. 50% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

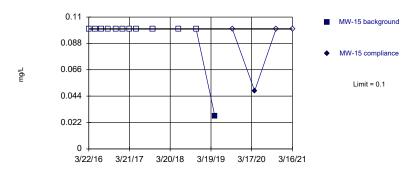


Background Data Summary (based on x^5 transformation): Mean=3601, Std. Dev.=1285, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8476, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Chloride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

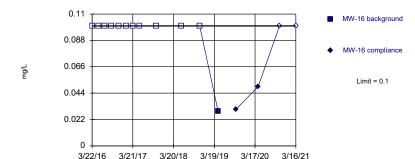
Constituent: Fluoride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Prediction Limit

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

0.11
0.088

0.066
0.044
0.022

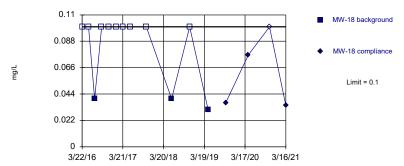

3/22/16 3/21/17 3/20/18 3/19/19 3/17/20 3/16/21

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

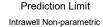
Intrawell Non-parametric

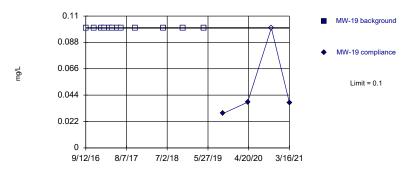
Prediction Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Fluoride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR


 ${\it Sanitas^{\rm to}}~v.9.6.28~{\it Groundwater}~{\it Stats}~{\it Consulting}.~{\it UG}~{\it Hollow}~{\it symbols}~{\it indicate}~{\it censored}~{\it values}.$ Within Limit


Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

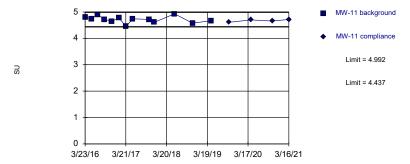
Constituent: Fluoride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Within Limits

Prediction Limit
Intrawell Parametric

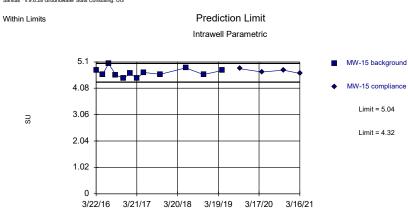
MW-14 background


MW-14 compliance
Limit = 5.663

Limit = 4.563

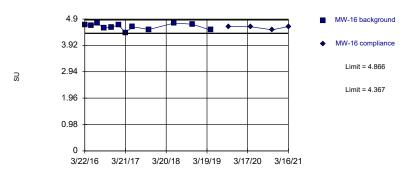
Background Data Summary: Mean=5.113, Std. Dev.=0.2464, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9046, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Within Limits Prediction Limit
Intrawell Parametric

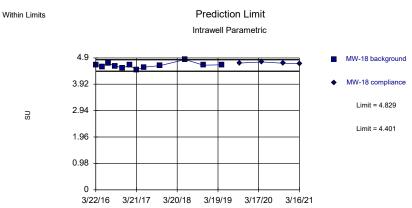
Background Data Summary: Mean=4.715, Std. Dev.=0.1267, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9755, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: pH Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

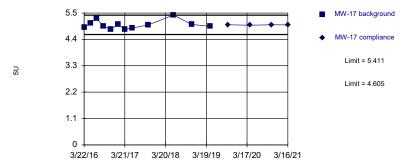

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=4.68, Std. Dev.=0.1615, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9345, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

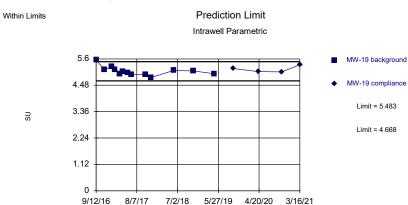

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=4.617, Std. Dev.=0.1118, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9361, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188


Constituent: pH Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

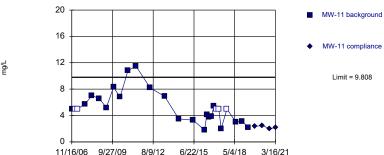
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=4.615, Std. Dev.=0.09587, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.925, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=5.008, Std. Dev.=0.1805, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8737, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00182

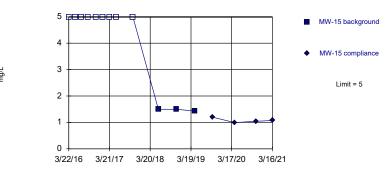
Constituent: pH Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=5.075, Std. Dev.=0.1858, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9001, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values

Prediction Limit Within Limit Intrawell Parametric

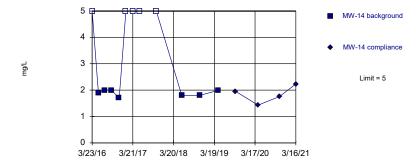


Background Data Summary (after Kaplan-Meier Adjustment): Mean=4.944, Std. Dev.=2.552, n=27, 18.52% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9272, critical = 0.894. Kappa = 1.906 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Sulfate Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

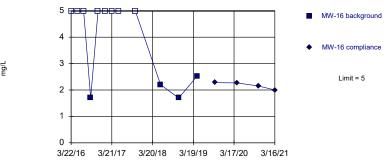


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit

Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. 41.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

> Constituent: Sulfate Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Exceeds Limit

Intrawell Parametric

MW-17 background

MW-17 compliance

Limit = 3.046

Prediction Limit

Background Data Summary (based on square root transformation) (after Kaplan-Meier Adjustment): Mean=1.349, Std. Dev=0.1777, n=12, 16.67% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8093, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

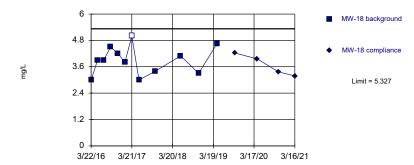
3/22/16 3/21/17 3/20/18 3/19/19 3/17/20 3/16/21

Constituent: Sulfate Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

 $\mbox{Sanitas}^{\mbox{\tiny{1M}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$

Within Limit Prediction Limit Intrawell Non-parametric

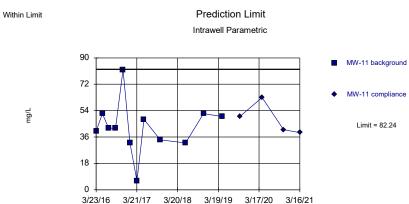
MW-19 background


MW-19 compliance

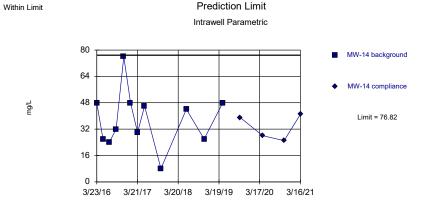
Limit = 5

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 58.33% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

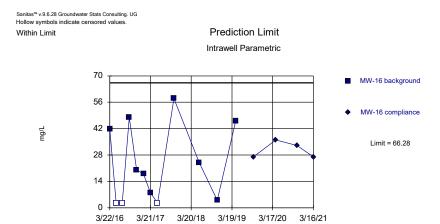
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Parametric

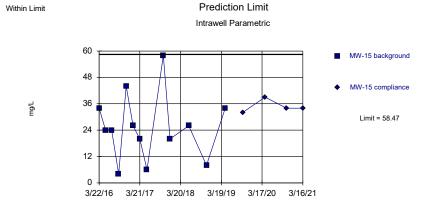
Background Data Summary: Mean=3.897, Std. Dev.=0.6408, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9606, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Sulfate Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Background Data Summary: Mean=42.67, Std. Dev.=17.73, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9141, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



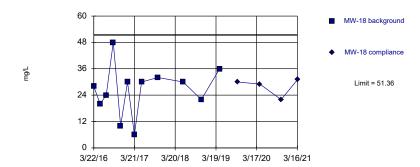
Background Data Summary: Mean=38, Std. Dev.=17.39, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9323, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0192

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Background Data Summary (after Kaplan-Meier Adjustment): Mean=23.33, Std. Dev.=19.24, n=12, 25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8666, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Background Data Summary: Mean=25.23, Std. Dev.=15.16, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9437, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

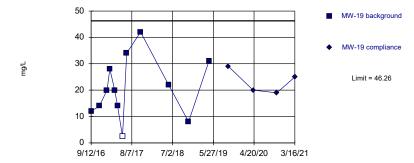


Background Data Summary: Mean=23.81, Std. Dev.=9.424, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9134, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

3/22/16 3/21/17 3/20/18 3/19/19 3/17/20 3/16/21

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=26.33, Std. Dev.=11.21, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9551, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.01188

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=20.63, Std. Dev.=11.48, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9792, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11	MW-11
3/23/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/18/2016	<0.08	
1/19/2017	<0.08	
3/22/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	<0.08	
5/31/2018	<0.08	
11/7/2018	<0.08	
4/22/2019	<0.08	
9/27/2019		0.0443 (J)
4/13/2020		<0.08
10/22/2020		0.103
3/16/2021		<0.08

	MW-14	MW-14
3/23/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/19/2016	<0.08	
1/18/2017	<0.08	
3/22/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	<0.08	
6/1/2018	<0.08	
11/7/2018	<0.08	
4/23/2019	<0.08	
9/26/2019		<0.08
4/13/2020		<0.08
10/22/2020		0.0559 (J)
3/16/2021		<0.08

	MW-15	MW-15
3/22/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/19/2016	<0.08	
1/19/2017	<0.08	
3/21/2017	<0.08	
5/23/2017	<0.08	
10/17/2017	<0.08	
6/1/2018	<0.08	
11/7/2018	<0.08	
4/23/2019	<0.08	
9/26/2019		<0.08
4/13/2020		<0.08
10/22/2020		0.0437 (J)
3/16/2021		<0.08

	MW-18	MW-18
3/22/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	0.026 (J)	
9/12/2016	<0.08	
11/18/2016	<0.08	
1/18/2017	<0.08	
3/21/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	0.025 (J)	
5/31/2018	0.022 (J)	
11/8/2018	<0.08	
4/22/2019	<0.08	
9/26/2019		0.042 (J)
4/14/2020		<0.08
10/22/2020		0.0401 (J)
3/16/2021		<0.08

MW-11	MW-11
<1.9 (*)	
1.8	
1.9	
2	
2	
1.8	
1.8	
2	
2	
1.8	
2	
1.71	
	1.99
	2.03
	2.02
	1.74
	<1.9 (*) 1.8 1.9 2 2 1.8 1.8 2 2 1.8 2

 $\label{eq:constituent: Calcium (mg/L)} \begin{array}{lll} \text{Canalysis Run 5/19/2021 4:44 PM} & \text{View: Intrawell} \\ \text{Plant Daniel} & \text{Client: Southern Company} & \text{Data: NAMU CCR} \\ \end{array}$

	MW-14	MW-14
3/23/2016	<5.9 (*)	
5/18/2016	5.5	
7/12/2016	5.3	
9/12/2016	4.9	
11/19/2016	4.8	
1/18/2017	3.8	
3/22/2017	3.3	
5/24/2017	3.6	
10/17/2017	3.7	
6/1/2018	2.8	
11/7/2018	2.9	
4/23/2019	2.76	
9/26/2019		2.4
4/13/2020		2.74
10/22/2020		2.17
3/16/2021		2.4

	MW-15	MW-15
	IVIVV-15	CI-VVIVI
3/22/2016	1.3 (B1)	
5/18/2016	1.2	
7/12/2016	1.1	
9/12/2016	1.4	
11/19/2016	1.3	
1/19/2017	1.3	
3/21/2017	1.3	
5/23/2017	1.4	
10/17/2017	1.1	
6/1/2018	0.97	
11/7/2018	1.1	
4/23/2019	1.01	
9/26/2019		1.08
4/13/2020		1.22
10/22/2020		1.35
3/16/2021		1.41

	MW-16	MW-16
3/22/2016	0.61 (B1)	
5/18/2016	0.89	
7/11/2016	0.82	
9/13/2016	0.82	
11/17/2016	0.75	
1/18/2017	0.58	
3/21/2017	0.6	
5/23/2017	0.65	
10/17/2017	1.1	
12/15/2017	0.89 (RS)	
5/31/2018	1.1	
11/8/2018	0.76	
4/22/2019	1.09	
9/26/2019		0.758
4/14/2020		0.92
10/21/2020		0.798
3/16/2021		0.681

 $\label{eq:constituent: Calcium (mg/L)} \begin{array}{lll} \text{Canalysis Run 5/19/2021 4:44 PM} & \text{View: Intrawell} \\ \text{Plant Daniel} & \text{Client: Southern Company} & \text{Data: NAMU CCR} \\ \end{array}$

	MW-17	MW-17
3/22/2016	1.4 (B1)	
5/18/2016	1	
7/12/2016	1.1	
9/12/2016	0.98	
11/18/2016	1	
1/18/2017	1	
3/21/2017	0.91	
5/24/2017	0.96	
10/17/2017	0.96	
5/31/2018	1.1	
11/8/2018	0.96	
4/22/2019	0.946	
9/26/2019		1.11
4/13/2020		1.03
10/22/2020		0.969
3/16/2021		1.12

	MW-18	MW-18
3/22/2016	0.93 (B1)	
5/18/2016	0.85	
7/12/2016	0.69	
9/12/2016	0.86	
11/18/2016	0.41	
1/18/2017	0.81	
3/21/2017	0.76	
5/24/2017	0.8	
10/17/2017	0.69	
5/31/2018	0.75	
11/8/2018	0.78	
4/22/2019	0.531	
9/26/2019		0.631
4/14/2020		0.627
10/22/2020		0.553
3/16/2021		0.57

 $\label{eq:constituent: Calcium (mg/L)} \begin{array}{lll} \text{Canalysis Run 5/19/2021 4:44 PM} & \text{View: Intrawell} \\ \text{Plant Daniel} & \text{Client: Southern Company} & \text{Data: NAMU CCR} \\ \end{array}$

	MW-19	MW-19
9/12/2016	0.92	
11/18/2016	0.68	
1/18/2017	0.64	
2/10/2017	0.58	
3/21/2017	0.56	
4/14/2017	0.51	
5/23/2017	0.54	
6/26/2017	0.66	
10/17/2017	0.58	
5/31/2018	0.56	
11/8/2018	0.57	
4/22/2019	0.634	
9/26/2019		1.24
4/13/2020		0.687
10/21/2020		0.806
3/16/2021		2.23

	MW-11	MW-11
11/16/2006	8.5	
2/5/2007	8.8	
4/12/2007	9.5	
10/17/2007	12.1	
4/17/2008	13.1	
10/24/2008	13.7	
4/21/2009	11.9	
10/26/2009	11	
4/12/2010	12.5	
10/30/2010	10.8	
5/25/2011	10	
5/25/2012	10.9	
5/28/2013	11.4	
5/31/2014	9.2	
5/29/2015	11.5	
3/23/2016	13	
5/18/2016	13	
7/12/2016	13	
9/12/2016	13	
11/18/2016	14	
1/19/2017	13	
3/22/2017	15	
5/24/2017	14	
10/17/2017	15	
5/31/2018	12	
11/7/2018	14	
4/22/2019	13.3	
9/27/2019		13.4
4/13/2020		14.2
10/22/2020		17.4
3/16/2021		13.3

 $\label{eq:constituent: Chloride (mg/L)} Constituent: Chloride (mg/L) \quad Analysis Run 5/19/2021 4:44 PM \quad View: Intrawell \\ Plant Daniel \quad Client: Southern Company \quad Data: NAMU CCR$

	MW-14	MW-14
3/23/2016	8.8 (B1)	
5/18/2016	7.2	
7/12/2016	7.5	
9/12/2016	8.4	
11/19/2016	12	
1/18/2017	11	
3/22/2017	11	
5/24/2017	10	
10/17/2017	10	
6/1/2018	9.9	
11/7/2018	10	
4/23/2019	9.3	
9/26/2019		8.35
4/13/2020		7.9
10/22/2020		6.5
3/16/2021		7.32

	MW-15	MW-15
3/22/2016	8.4 (B1)	
5/18/2016	6	
7/12/2016	7.1	
9/12/2016	7.3	
11/19/2016	8.9	
1/19/2017	8.3	
3/21/2017	8.8	
5/23/2017	9.3	
10/17/2017	7.1	
6/1/2018	6.4	
11/7/2018	8	
4/23/2019	6.75	
9/26/2019		7.66
4/13/2020		7.74
10/22/2020		8.69
3/16/2021		8.94

	MW-16	MW-16
3/22/2016	6.9 (B1)	
5/18/2016	5.4	
7/11/2016	8.1	
9/13/2016	6.2	
11/17/2016	7.3	
1/18/2017	6.3	
3/21/2017	7.3	
5/23/2017	7.4	
10/17/2017	9.9	
12/19/2017	7.8 (RS)	
5/31/2018	8.7	
11/8/2018	7.6	
4/22/2019	10.2	
6/25/2019		9.4
9/26/2019		6.54
4/14/2020		7.03
10/21/2020		7.36
3/16/2021		7.14

	MW-17	MW-17
3/22/2016	7.3 (B1)	
5/18/2016	6	
7/12/2016	5.7	
9/12/2016	5.7	
11/18/2016	8.2	
1/18/2017	7.4	
3/21/2017	7.9	
5/24/2017	7.4	
10/17/2017	6.5	
5/31/2018	6.5	
11/8/2018	6.9	
4/22/2019	6.64	
9/26/2019		6.7
4/13/2020		6.46
10/22/2020		6.37
3/16/2021		6.97

	MW-18	MW-18
3/22/2016	11 (B1)	
5/18/2016	8.4	
7/12/2016	7.9	
9/12/2016	7.6	
11/18/2016	8.5	
1/18/2017	9.2	
3/21/2017	10	
5/24/2017	10	
10/17/2017	8.6	
5/31/2018	6.9	
11/8/2018	8.7	
4/22/2019	6.17	
9/26/2019		6.09
4/14/2020		6.15
10/22/2020		6.89
3/16/2021		8.18

	MW-19	MW-19
9/12/2016	5	
11/18/2016	<6.3 (*)	
1/18/2017	5.3	
2/10/2017	5.4	
3/21/2017	5.3	
4/14/2017	4.9 (B)	
5/23/2017	5.5	
6/26/2017	5.4	
10/17/2017	5.4	
5/31/2018	5	
11/8/2018	5.2	
4/22/2019	4.91	
9/26/2019		5.03
4/13/2020		4.9
10/21/2020		5.25
3/16/2021		5.72

	MW-11	MW-11
3/23/2016	<0.1	
5/18/2016	<0.1	
7/12/2016	0.04 (J)	
9/12/2016	0.04 (J)	
11/18/2016	<0.1	
1/19/2017	<0.1	
3/22/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	0.04 (J)	
5/31/2018	0.04 (J)	
11/7/2018	0.05 (J)	
4/22/2019	0.0353 (J)	
9/27/2019		0.0438 (J)
4/13/2020		0.0672 (J)
10/22/2020		<0.1
3/16/2021		0.0269 (J)

MW-14	MW-14
<0.1 (B1)	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
0.0335 (J)	
	0.0272 (J)
	0.0411 (J)
	<0.1
	<0.1
	<0.1 (B1) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

	MW-15	MW-15
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	<0.1	
9/12/2016	<0.1	
11/19/2016	<0.1	
1/19/2017	<0.1	
3/21/2017	<0.1	
5/23/2017	<0.1	
10/17/2017	<0.1	
6/1/2018	<0.1	
11/7/2018	<0.1	
4/23/2019	0.0275 (J)	
9/26/2019		<0.1
4/13/2020		0.0484 (J)
10/22/2020		<0.1
3/16/2021		<0.1

	MW-16	MW-16
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/11/2016	<0.1	
9/13/2016	<0.1	
11/17/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/23/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	0.029 (J)	
9/26/2019		0.0302 (J)
4/14/2020		0.0496 (J)
10/21/2020		<0.1
3/16/2021		<0.1

	MW-17	MW-17
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	<0.1	
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	<0.1	
9/26/2019		0.0263 (J)
4/13/2020		0.0511 (J)
10/22/2020		<0.1
3/16/2021		<0.1

 $\label{eq:constituent: Fluoride (mg/L)} Constituent: Fluoride (mg/L) & Analysis Run 5/19/2021 4:44 PM & View: Intrawell \\ Plant Daniel & Client: Southern Company & Data: NAMU CCR \\ \\$

	MW-18	MW-18
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	0.04 (J)	
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	0.04 (J)	
11/8/2018	<0.1	
4/22/2019	0.0311 (J)	
9/26/2019		0.0366 (J)
4/14/2020		0.0764 (J)
10/22/2020		<0.1
3/16/2021		0.0344 (J)

	MW-19	MW-19
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
2/10/2017	<0.1	
3/21/2017	<0.1	
4/14/2017	<0.1	
5/23/2017	<0.1	
6/26/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	<0.1	
9/26/2019		0.0287 (J)
4/13/2020		0.0382 (J)
10/21/2020		<0.1
3/16/2021		0.0376 (J)

	MW-11	MW-11
3/23/2016	4.8	
5/18/2016	4.74	
7/12/2016	4.9	
9/12/2016	4.72	
11/18/2016	4.65	
1/19/2017	4.77	
3/22/2017	4.46	
5/24/2017	4.74	
10/17/2017	4.72	
11/30/2017	4.61	
5/31/2018	4.93	
11/7/2018	4.58	
4/22/2019	4.67	
9/27/2019		4.61
4/13/2020		4.7
10/22/2020		4.66
3/16/2021		4.72

	MW-14	MW-14
3/23/2016	5.4	
5/18/2016	5.38	
7/12/2016	5.65	
9/12/2016	5.14	
11/19/2016	5.05	
1/18/2017	5.11	
3/22/2017	4.86	
5/24/2017	5.02	
10/17/2017	5.01	
6/1/2018	5	
11/7/2018	4.81	
4/23/2019	4.93	
9/26/2019		4.99
4/13/2020		4.96
10/22/2020		5.09
3/16/2021		5.06

	MW-15	MW-15
3/22/2016	4.77	
5/18/2016	4.62	
7/12/2016	5.03	
9/12/2016	4.6	
11/19/2016	4.46	
1/19/2017	4.65	
3/21/2017	4.47	
5/23/2017	4.69	
10/17/2017	4.62	
6/1/2018	4.87	
11/7/2018	4.61	
4/23/2019	4.77	
9/26/2019		4.84
4/13/2020		4.71
10/22/2020		4.78
3/16/2021		4.65

	MW-16	MW-16
3/22/2016	4.68	
5/18/2016	4.67	
7/11/2016	4.75	
9/13/2016	4.56	
11/17/2016	4.6	
1/18/2017	4.68	
3/21/2017	4.39	
5/23/2017	4.61	
10/17/2017	4.51	
5/31/2018	4.75	
11/8/2018	4.71	
4/22/2019	4.49	
9/26/2019		4.62
4/14/2020		4.61
10/21/2020		4.5
3/16/2021		4.62

	MW-17	MW-17
3/22/2016	4.89	
5/18/2016	5.09	
7/12/2016	5.27	
9/12/2016	4.94	
11/18/2016	4.82	
1/18/2017	5.02	
3/21/2017	4.82	
5/24/2017	4.87	
10/17/2017	5	
5/31/2018	5.42	
11/8/2018	5.02	
4/22/2019	4.94	
9/26/2019		5.01
4/13/2020		4.99
10/22/2020		5.01
3/16/2021		5

	MW-18	MW-18
3/22/2016	4.63	
5/18/2016	4.58	
7/12/2016	4.7	
9/12/2016	4.6	
11/18/2016	4.52	
1/18/2017	4.63	
3/21/2017	4.45	
5/24/2017	4.55	
10/17/2017	4.61	
5/31/2018	4.84	
11/8/2018	4.63	
4/22/2019	4.64	
9/26/2019		4.71
4/14/2020		4.75
10/22/2020		4.7
3/16/2021		4.68

	MW-19	MW-19
9/12/2016	5.55	
11/18/2016	5.14	
1/18/2017	5.27	
2/10/2017	5.14	
3/21/2017	4.96	
4/14/2017	5.07	
5/23/2017	5.01	
6/26/2017	4.93	
10/17/2017	4.93	
11/30/2017	4.81	
5/31/2018	5.11	
11/8/2018	5.09	
4/22/2019	4.97	
9/26/2019		5.19
4/13/2020		5.06
10/21/2020		5.05
3/16/2021		5.35
	11/18/2016 1/18/2017 2/10/2017 3/21/2017 4/14/2017 5/23/2017 6/26/2017 10/17/2017 11/30/2017 5/31/2018 11/8/2018 4/22/2019 9/26/2019 4/13/2020 10/21/2020	9/12/2016 5.55 11/18/2016 5.14 1/18/2017 5.27 2/10/2017 5.14 3/21/2017 4.96 4/14/2017 5.07 5/23/2017 5.01 6/26/2017 4.93 10/17/2017 4.93 11/30/2017 4.81 5/31/2018 5.11 11/8/2018 5.09 4/22/2019 4.97 9/26/2019 4/13/2020 10/21/2020

	MW-11	MW-11
11/16/2006	5	
2/5/2007	<5	
4/12/2007	<5	
10/17/2007	5.7	
4/17/2008	7	
10/24/2008	6.6	
4/21/2009	5.2	
10/26/2009	8.3	
4/12/2010	6.8	
10/30/2010	10.8	
5/25/2011	11.5	
5/25/2012	8.2	
5/28/2013	6.9	
5/31/2014	3.5	
5/29/2015	3.3	
3/23/2016	1.8 (J)	
5/18/2016	4.1	
7/12/2016	3.8 (J)	
9/12/2016	3.9 (J)	
11/18/2016	5.4	
1/19/2017	<5	
3/22/2017	<5	
5/24/2017	2 (J)	
10/17/2017	<5	
5/31/2018	3 (J)	
11/7/2018	3.1 (J)	
4/22/2019	2.22	
9/27/2019		2.36
4/13/2020		2.47
10/22/2020		2.01
3/16/2021		2.15

	MW-14	MW-14
3/23/2016	<5	
5/18/2016	1.9	
7/12/2016	2 (J)	
9/12/2016	2 (J)	
11/19/2016	1.7 (J)	
1/18/2017	<5	
3/22/2017	<5	
5/24/2017	<5	
10/17/2017	<5	
6/1/2018	1.8 (J)	
11/7/2018	1.8 (J)	
4/23/2019	1.99	
9/26/2019		1.95
4/13/2020		1.43
10/22/2020		1.76
3/16/2021		2.23

	MW-15	MW-15
3/22/2016	<5	
5/18/2016	<5	
7/12/2016	<5	
9/12/2016	<5	
11/19/2016	<5	
1/19/2017	<5	
3/21/2017	<5	
5/23/2017	<5	
10/17/2017	<5	
6/1/2018	1.5 (J)	
11/7/2018	1.5 (J)	
4/23/2019	1.43	
9/26/2019		1.2
4/13/2020		0.992 (J)
10/22/2020		1.04
3/16/2021		1.07

	MW-16	MW-16
3/22/2016	<5	
5/18/2016	<5	
7/11/2016	<5	
9/13/2016	1.7 (J)	
11/17/2016	<5	
1/18/2017	<5	
3/21/2017	<5	
5/23/2017	<5	
10/17/2017	<5	
5/31/2018	2.2 (J)	
11/8/2018	1.7 (J)	
4/22/2019	2.52	
9/26/2019		2.28
4/14/2020		2.27
10/21/2020		2.15
3/16/2021		2

	MW-17	MW-17
3/22/2016	<5	
5/18/2016	1.4	
7/12/2016	1.8 (J)	
9/12/2016	2.2 (J)	
11/18/2016	1.5 (J)	
1/18/2017	1.5 (J)	
3/21/2017	<5	
5/24/2017	1.7 (J)	
10/17/2017	1.8 (J)	
5/31/2018	2.5 (J)	
11/8/2018	2.2 (J)	
4/22/2019	2.96	
9/26/2019		2.96
4/13/2020		2.75
10/22/2020		2.98
3/16/2021		3.06

	MW-18	MW-18
3/22/2016	3 (J)	
5/18/2016	3.9 (J)	
7/12/2016	3.9 (J)	
9/12/2016	4.5 (J)	
11/18/2016	4.2 (J)	
1/18/2017	3.8 (J)	
3/21/2017	<5 (*)	
5/24/2017	3 (J)	
10/17/2017	3.4 (J)	
5/31/2018	4.1 (J)	
11/8/2018	3.3 (J)	
4/22/2019	4.66	
9/26/2019		4.23
4/14/2020		3.96
10/22/2020		3.37
3/16/2021		3.18

	MW-19	MW-19
9/12/2016	<5	
11/18/2016	<5	
1/18/2017	<5	
2/10/2017	<5	
3/21/2017	<5	
4/14/2017	1.5 (J)	
5/23/2017	<5	
6/26/2017	1.5 (J)	
10/17/2017	<5	
5/31/2018	1.9 (J)	
11/8/2018	1.5 (J)	
4/22/2019	2.09	
9/26/2019		2.1
4/13/2020		1.69
10/21/2020		1.31
3/16/2021		2.72

	MW-11	MW-11
3/23/2016	40	
5/18/2016	52	
7/12/2016	42	
9/12/2016	42	
11/18/2016	82	
1/19/2017	32	
3/22/2017	6	
5/24/2017	48	
10/17/2017	34	
5/31/2018	32	
11/7/2018	52	
4/22/2019	50	
9/27/2019		50
4/13/2020		63
10/22/2020		41
3/16/2021		39

		MW-14	MW-14
3	3/23/2016	48 (B1)	
5	5/18/2016	26	
7	//12/2016	24	
9	9/12/2016	32	
1	1/19/2016	76	
1	/18/2017	48	
3	3/22/2017	30	
5	5/24/2017	46	
1	0/17/2017	8	
6	5/1/2018	44	
1	1/7/2018	26	
4	/23/2019	48	
9	0/26/2019		39
4	/13/2020		28
1	0/22/2020		25
3	3/16/2021		41

	MW-15	MW-15
3/22/2016	34 (B1)	
5/18/2016	24	
7/12/2016	24	
9/12/2016	4 (J)	
11/19/2016	44	
1/19/2017	26	
3/21/2017	20	
5/23/2017	6	
10/17/2017	58	
12/15/2017	20 (RS)	
6/1/2018	26	
11/7/2018	8	
4/23/2019	34	
9/26/2019		32
4/13/2020		39
10/22/2020		34
3/16/2021		34

	MW-16	MW-16
3/22/2016	42 (B1)	
5/18/2016	<5	
7/11/2016	<5	
9/13/2016	48	
11/17/2016	20	
1/18/2017	18	
3/21/2017	8	
5/23/2017	<5	
10/17/2017	58	
5/31/2018	24	
11/8/2018	4 (J)	
4/22/2019	46	
9/26/2019		27
4/14/2020		36
10/21/2020		33
3/16/2021		27

	MW-17	MW-17
3/22/2016	32 (B1)	
5/18/2016	26	
7/12/2016	22	
9/12/2016	32	
11/18/2016	16	
1/18/2017	32	
3/21/2017	16	
5/24/2017	22	
10/17/2017	26	
5/31/2018	<3.4	
11/8/2018	36	
4/22/2019	24	
9/26/2019		25
4/13/2020		27
10/22/2020		29
3/16/2021		37

	MW-18	MW-18
3/22/2016	28 (B1)	
5/18/2016	20	
7/12/2016	24	
9/12/2016	48	
11/18/2016	10	
1/18/2017	30	
3/21/2017	6	
5/24/2017	30	
10/17/2017	32	
5/31/2018	30	
11/8/2018	22	
4/22/2019	36	
9/26/2019		30
4/14/2020		29
10/22/2020		22
3/16/2021		31

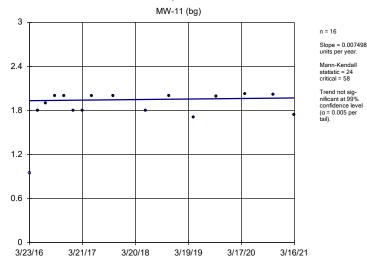
	MW-19	MW-19
9/12/2016	12	
11/18/2016	14	
1/18/2017	20	
2/10/2017	28	
3/21/2017	20	
4/14/2017	14	
5/23/2017	<5	
6/26/2017	34	
10/17/2017	42	
5/31/2018	22	
11/8/2018	8	
4/22/2019	31	
9/26/2019		29
4/13/2020		20
10/21/2020		19
3/16/2021		25

FIGURE E.

Appendix III Trend Test - Prediction Limit Exceedances - Significant Results Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/18/2021, 3:59 PM

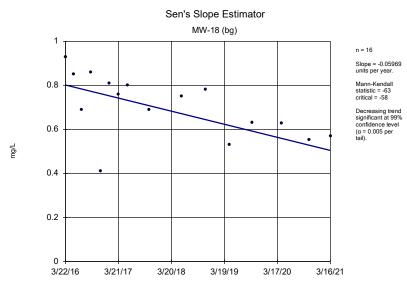
	Plant Daniel	Client: Southern C	ompany D	ata: NAMU C	CR P	rinted 5/1	8/2021, 3	:59 PM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	MW-14 (bg)	-0.5456	-91	-58	Yes	16	6.25	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-18 (bg)	-0.05969	-63	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-11 (ba)	-0.2963	-210	-152	Yes	31	16.13	n/a	n/a	0.01	NP

Appendix III Trend Test - Prediction Limit Exceedances - All Results

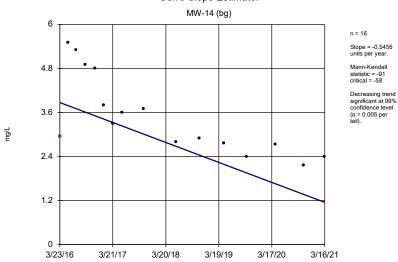

Plant Daniel C	Client: Southern Co	ompany D	ata: NAMU Co	CR PI	rinted 5/18	3/2021, 3	:59 PM			
Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
MW-11 (bg)	0.007498	24	58	No	16	6.25	n/a	n/a	0.01	NP
MW-14 (bg)	-0.5456	-91	-58	Yes	16	6.25	n/a	n/a	0.01	NP
MW-18 (bg)	-0.05969	-63	-58	Yes	16	0	n/a	n/a	0.01	NP
MW-19	0.03558	26	58	No	16	0	n/a	n/a	0.01	NP
MW-11 (bg)	-0.2963	-210	-152	Yes	31	16.13	n/a	n/a	0.01	NP
MW-14 (bg)	-0.04474	-28	-58	No	16	31.25	n/a	n/a	0.01	NP
MW-17	0.2933	49	58	No	16	12.5	n/a	n/a	0.01	NP
MW-18 (bg)	-0.05772	-6	-58	No	16	6.25	n/a	n/a	0.01	NP
	Well MW-11 (bg) MW-14 (bg) MW-18 (bg) MW-19 MW-11 (bg) MW-14 (bg) MW-17	Well Slope MW-11 (bg) 0.007498 MW-14 (bg) -0.5456 MW-18 (bg) -0.05969 MW-19 0.03558 MW-11 (bg) -0.2963 MW-14 (bg) -0.04474 MW-17 0.2933	Well Slope Calc. MW-11 (bg) 0.007498 24 MW-14 (bg) -0.5456 -91 MW-18 (bg) -0.05969 -63 MW-19 0.03558 26 MW-11 (bg) -0.2963 -210 MW-14 (bg) -0.04474 -28 MW-17 0.2933 49	Well Slope Calc. Critical MW-11 (bg) 0.007498 24 58 MW-14 (bg) -0.5456 -91 -58 MW-18 (bg) -0.05969 -63 -58 MW-19 0.03558 26 58 MW-11 (bg) -0.2963 -210 -152 MW-14 (bg) -0.04474 -28 -58 MW-17 0.2933 49 58	Well Slope Calc. Critical Sig. MW-11 (bg) 0.007498 24 58 No MW-14 (bg) -0.5456 -91 -58 Yes MW-18 (bg) -0.05969 -63 -58 Yes MW-19 0.03558 26 58 No MW-11 (bg) -0.2963 -210 -152 Yes MW-14 (bg) -0.04474 -28 -58 No MW-17 0.2933 49 58 No	Well Slope Calc. Critical Sig. N MW-11 (bg) 0.007498 24 58 No 16 MW-14 (bg) -0.5456 -91 -58 Yes 16 MW-18 (bg) -0.05969 -63 -58 Yes 16 MW-19 0.03558 26 58 No 16 MW-11 (bg) -0.2963 -210 -152 Yes 31 MW-14 (bg) -0.04474 -28 -58 No 16 MW-17 0.2933 49 58 No 16	Well Slope Calc. Critical Sig. N %NDs MW-11 (bg) 0.007498 24 58 No 16 6.25 MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 MW-18 (bg) -0.05969 -63 -58 Yes 16 0 MW-19 0.03558 26 58 No 16 0 MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 MW-14 (bg) -0.04474 -28 -58 No 16 31.25 MW-17 0.2933 49 58 No 16 12.5	Well Slope Calc. Critical Sig. N %NDs Normality MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a MW-19 0.03558 26 58 No 16 0 n/a MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a MW-17 0.2933 49 58 No 16 12.5 n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a n/a MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a n/a MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a n/a MW-19 0.03558 26 58 No 16 0 n/a n/a MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a n/a MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a n/a MW-17 0.2933 49 58 No 16 12.5 n/a n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform Alpha MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a n/a 0.01 MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a n/a 0.01 MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a n/a 0.01 MW-19 0.03558 26 58 No 16 0 n/a n/a 0.01 MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a n/a 0.01 MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a n/a 0.01 MW-17 0.2933 49 58 No 16 12.5 n/a n/a 0.01

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG

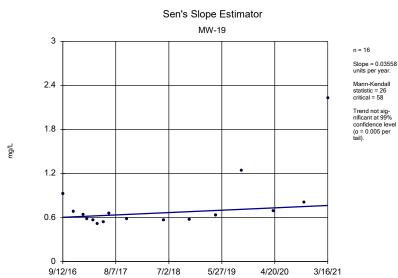
Hollow symbols indicate censored values.


mg/L

Constituent: Calcium Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG

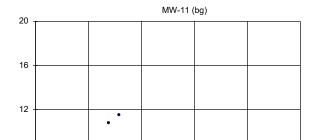
Constituent: Calcium Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sen's Slope Estimator

Constituent: Calcium Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

mg/L

Sen's Slope Estimator

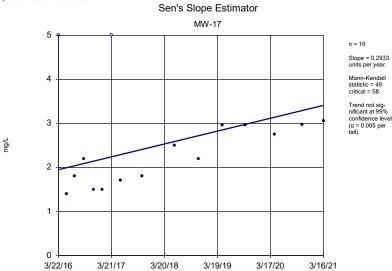
Slope = -0.2963

units per year.

Mann-Kendall

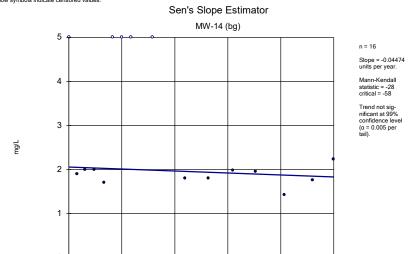
statistic = -210 critical = -152

Decreasing trend significant at 99% confidence level


(α = 0.005 per tail).

12 8 4 0 11/16/06 9/27/09 8/9/12 6/22/15 5/4/18 3/16/21

Constituent: Sulfate Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Constituent: Sulfate Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Sulfate Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

3/19/19

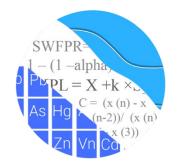
3/17/20


3/16/21

3/20/18

3/21/17

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG


3/23/16

Constituent: Sulfate Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

2nd Semi-Annual Monitoring Event

GROUNDWATER STATS CONSULTING

December 15, 2021

Southern Company Services Attn: Mr. Trey Singleton 3535 Colonnade Parkway Birmingham, AL 35243

Re: Plant Daniel North Ash Management Unit (NAMU)

2021 Annual Statistical Analysis – October 2021 Sample Event

Dear Mr. Singleton,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of groundwater data for the 2021 Groundwater Monitoring Annual report for Mississippi Power Company's Plant Daniel NAMU. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at Daniel NAMU for the CCR program in 2016. The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient wells: MW-11, MW-14, and MW-18
- o **Downgradient wells:** MW-15, MW-16, MW-17, and MW-19

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting.

The CCR program monitors the constituents listed below. The terms "parameters" and "constituents" are used interchangeably throughout this report.

 Appendix III (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A list of well/constituent pairs containing 100% non-detects follow this letter.

For all constituents, a substitution of the most recent reporting limit is used for non-detect data. For calculating intrawell prediction limits, the substitution is performed for individual wells and may differ across wells. This generally gives the most conservative limit in each case. For the time series plots, a single reporting limit substitution is used across all wells for a given parameter since the wells are plotted as a group.

Time series plots for Appendix III parameters are provided for all wells and are used to evaluate concentrations over time as well as for the purpose of updating statistical limits (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graph; however, no values were flagged as outliers (Figure C). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

During the previous screening, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods were recommended. Power curves were provided with the screening to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below.

Summary of Statistical Methods

Based on the evaluation for federal regulatory requirements, the following methods were selected for Appendix III constituents:

 Intrawell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. Parametric prediction limits (or tolerance limits or confidence intervals as applicable) are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The following approaches are used for handling non-detects (USEPA, 2009):

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Note that values shown on data pages reflect raw data and any non-detects that have been substituted with one-half of the reporting limit will be shown as the original reporting limit.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents are re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. While this was not required for this report, in some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening – Conducted in October 2017

Outlier Analysis

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

No suspected outliers were observed in any of the data sets for Appendix III parameters. When any values are identified as outliers, they are plotted in a lighter font on the time series graph.

Seasonality

No seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Test Evaluation

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed a few statistically significant decreasing and increasing trends. All trends noted were relatively low in magnitude when compared to average concentrations; therefore, no adjustments were made to any of the data sets.

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified variation among upgradient well data at Plant Daniel NAMU for the majority of the Appendix III parameters. This facility is a lined unit with pre-waste data; therefore, due to variation noted among upgradient wells, intrawell prediction limits were recommended for this facility to accommodate the groundwater quality. A summary table of the ANOVA results was included with the screening.

Summary of Background Update – Appendix III Parameters – November 2019

Prior to updating background data, samples were re-evaluated for Appendix III constituents at all wells using Tukey's outlier test and visual screening on all historical data through the April 2019 sample event. Only one value was noted by Tukey's as a potential outlier; however, when Tukey's outlier test detects an outlier for the most recent sample, it often will not be flagged in the event that the data precede a trend that is more representative of current concentrations. Therefore, no values for Appendix III constituents were flagged as outliers at the time of the screening. An updated summary of Tukey's test results was included with the screening.

The Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through June 2017 to the new compliance samples at each well through April 2019 to evaluate whether the groups are statistically different at the 99% confidence level for each of the Appendix III parameters. When no differences exist, background data sets may be updated to include newer data for construction of prediction limits. This results in statistical limits that are representative of present-day conditions. No statistically significant differences were found between the two groups except for the following: calcium and sulfate in well MW-15. Note that the Mann-Whitney test could not be produced due to insufficient variation in the data for boron in wells MW-14, MW-15, MW-16, MW-17, and MW-19.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background are not updated to include the newer data but will be reconsidered in the future. For all well/constituent pairs except for sulfate in well MW-15, due to the limited data available and the variability in data shows some of the more recent data has similar concentrations to those reported in background, these data sets were updated. In the case of calcium at well MW-15, while there is a statistically significant difference between the two medians, the magnitude of the difference is minimal, and newer data more accurately represent concentrations present in nearby wells. Therefore, the background for this well/constituent pair was updated with new data. A summary of these results was included in the 2019 Background Update report.

Statistical Analysis of Appendix III Parameters - October 2021

Intrawell Prediction Limits

Intrawell prediction limits, combined with a 1-of-2 resample strategy, were established for each of the Appendix III parameters at each well using historical data through April 2019 for the October 2021 sample event (Figure D). Intrawell prediction limits use screened historical data within a given well to establish limits for parameters at that well. The October 2021 sample from each well was compared to the prediction limits to determine whether initial exceedances are present.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary. Complete graphical results of the prediction limits may be found following this letter. Exceedances were identified for the following well/constituent pairs:

MW-19: Calcium and pH

Trend Test Evaluation

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure E). Upgradient

wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. The existence of similar trends in both upgradient and downgradient wells is an indication of natural variability in groundwater that is unrelated to practices at the site. Although no statistically significant increasing trends were noted, statistically significant decreasing trends were identified for the following well/constituent pairs:

Decreasing:

MW-14 (upgradient): Calcium, pH
 MW-18 (upgradient): Calcium

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Daniel North Ash Management Unit. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Tristan Clark

Groundwater Analyst

Tristan Clark

Andrew Collins
Project Manager

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

100% Non-Detects

Analysis Run 12/14/2021 2:16 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Boron (mg/L) MW-16, MW-17, MW-19

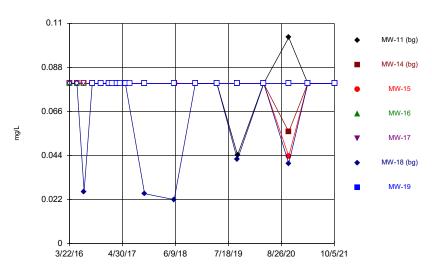
Appendix III Intrawell Prediction Limits - Significant Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/14/2021, 3:24 PM

Constituent	Well	Upper Lim. Lower Lin	n. <u>Date</u>	Observ.	Sig. Bg N %NDs	ND Adj. Transform	<u>Alpha</u>	Method
Calcium (mg/L)	MW-19	0.8608 n/a	10/5/2021	3.67	Yes 12 0	None sqrt(x)	0.00188	Param Intra 1 of 2
pH (SU)	MW-19	5.483 4.668	10/5/2021	5.53	Yes 13 0	None No	0.0009398	Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/14/2021, 3:36 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Date Observ. Sig. Bg N%NDs ND Adj. <u>Transform</u> <u>Alpha</u> Method NP Intra (NDs) 1 of 2 MW-11 10/5/2021 0.08ND No 12 100 0.01077 Boron (ma/L) 0.08 n/a n/a n/a MW-14 10/5/2021 No 12 100 NP Intra (NDs) 1 of 2 Boron (mg/L) 0.08 0.08ND n/a n/a 0.01077 Boron (mg/L) MW-15 0.08 n/a 10/5/2021 0.08ND No 12 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 10/5/2021 12 NP Intra (NDs) 1 of 2 MW-18 0.08 0.08ND No 75 0.01077 Boron (mg/L) n/a n/a n/a Calcium (mg/L) MW-11 2.17 n/a 10/5/2021 1.87 12 8.333 None 0.00188 Param Intra 1 of 2 n/a Calcium (mg/L) M\/\/_14 6.114 10/5/2021 1.89 Nο 12 8.333 None No 0.00188 Param Intra 1 of 2 MW-15 Calcium (mg/L) 1.535 10/5/2021 0.632 No 12 0 None No 0.00188 Param Intra 1 of 2 n/a Calcium (mg/L) MW-16 1.234 n/a 10/5/2021 0.793 No 13 None 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-17 1.4 n/a 10/5/2021 0.883 No 12 0 n/a n/a 0.01077 NP Intra (normality) 1 of 2 MW-18 No 12 0 Param Intra 1 of 2 Calcium (mg/L) 1.062 n/a 10/5/2021 0.43JNone Nο 0.00188 Calcium (mg/L) MW-19 0.8608 n/a 10/5/2021 3.67 Yes 12 None sqrt(x) 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-11 15.58 n/a 10/5/2021 12.5 No 27 0 None No 0.00188 Param Intra 1 of 2 MW-14 10/5/2021 No 12 0 Param Intra 1 of 2 Chloride (ma/L) 12.79 n/a 6.59 None No 0.00188 No 12 0 Chloride (mg/L) MW-15 10.08 10/5/2021 None No 0.00188 Param Intra 1 of 2 n/a Chloride (mg/L) MW-16 10.64 n/a 10/5/2021 6.55 No 13 0 None No 0.00188 Param Intra 1 of 2 10/5/2021 12 MW-17 8.675 No 0 No 0.00188 Param Intra 1 of 2 Chloride (mg/L) n/a 5.91 None Chloride (mg/L) MW-18 11.62 10/5/2021 5.72 12 0.00188 Param Intra 1 of 2 None No n/a Chloride (mg/L) MW-19 5.783 10/5/2021 No 12 8.333 x^5 0.00188 Param Intra 1 of 2 n/a 5.1 None MW-11 12 50 NP Intra (normality) 1 of 2 Fluoride (ma/L) 0.1 n/a 10/5/2021 0.0561.1 Nο n/a n/a 0.01077 Fluoride (mg/L) MW-14 0.1 n/a 10/5/2021 0.03J No 12 91.67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-15 n/a 10/5/2021 0.1ND No 12 91.67 0.01077 NP Intra (NDs) 1 of 2 0.1 n/a n/a MW-16 12 NP Intra (NDs) 1 of 2 Fluoride (mg/L) 0.1 n/a 10/5/2021 0.0264JNο 91.67 n/a n/a 0.01077 MW-17 0.1 10/5/2021 No 12 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) n/a 0.1ND 100 n/a n/a Fluoride (mg/L) MW-18 0.1 n/a 10/5/2021 0.1ND No 12 75 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-19 0.1 n/a 10/5/2021 0.1ND No 12 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 pH (SU) MW-11 4.992 4.437 10/5/2021 4.67 No 13 No 0.0009398 Param Intra 1 of 2 None pH (SU) MW-14 5.663 4 563 10/5/2021 4.98 No 12 0 None No 0.0009398 Param Intra 1 of 2 12 pH (SU) MW-15 5.04 4.32 10/5/2021 4.85 No 0 None No 0.0009398 Param Intra 1 of 2 MW-16 4.866 4.367 10/5/2021 4.6 12 0.0009398 Param Intra 1 of 2 pH (SU) None No 5.411 MW-17 4.605 10/5/2021 4.88 No 12 0 0.0009398 Param Intra 1 of 2 pH (SU) No MW-18 No 12 0 pH (SU) 4 829 4 401 10/5/2021 4 68 None Nο 0.0009398 Param Intra 1 of 2 (US) Ha MW-19 5.483 4.668 10/5/2021 5.53 Yes 13 0 None No 0.0009398 Param Intra 1 of 2 MW-11 9.808 10/5/2021 No 27 18.52 Param Intra 1 of 2 Sulfate (mg/L) 2.57 Kaplan-Meier 0.00188 No 12 41.67 NP Intra (normality) 1 of 2 Sulfate (mg/L) MW-14 5 n/a 10/5/2021 2.46 n/a n/a 0.01077 MW-15 10/5/2021 12 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) n/a 3.38 No 75 n/a n/a MW-16 10/5/2021 12 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) 5 2.22 No 66.67 Sulfate (mg/L) MW-17 3.046 n/a 10/5/2021 2.85 No 12 16.67 Kaplan-Meier sqrt(x) 0.00188 Param Intra 1 of 2 MW-18 Sulfate (mg/L) 5.327 10/5/2021 No 12 8.333 0.00188 Param Intra 1 of 2 3.83 None n/a No Sulfate (mg/L) MW-19 n/a 10/5/2021 No 12 58.33 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 82 24 12 Total Dissolved Solids (mg/L) MW-11 n/a 10/5/2021 43 Nο 0 None Nο 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-14 76.82 10/5/2021 29 No 0.00188 Param Intra 1 of 2 n/a None No 58.47 Total Dissolved Solids (mg/L) MW-15 10/5/2021 25 No 13 0 0.00188 Param Intra 1 of 2 n/a No No. 12 25 Total Dissolved Solids (mg/L) MW-16 66 28 n/a 10/5/2021 29 Kaplan-Meier Nο 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-17 10/5/2021 No 12 8.333 0.00188 Param Intra 1 of 2 44.84 n/a 34 None No Total Dissolved Solids (mg/L) MW-18 10/5/2021 No 12 0 0.00188 Param Intra 1 of 2 51.36 n/a 29 No Total Dissolved Solids (mg/L) MW-19 46.26 n/a 10/5/2021 No. 12 8 333 None No 0.00188 Param Intra 1 of 2


Appendix III Trend Tests - Prediction Limits Exceedances - Significant Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/15/2021, 5:11 PM Constituent Well Calc. Critical Sig. N %NDs Normality Xform <u>Alpha</u> Method Slope Calcium (mg/L) MW-14 (bg) -0.5166 -107 -63 Yes 17 5.882 n/a n/a 0.01 -0.06436 -77 -63 Yes 17 0 n/a NP Calcium (mg/L) MW-18 (bg) n/a 0.01 pH (SU) MW-14 (bg) -0.05378 -64 -63 Yes 17 0 n/a n/a 0.01 NP

Appendix III Trend Tests - Prediction Limits Exceedances - All Results

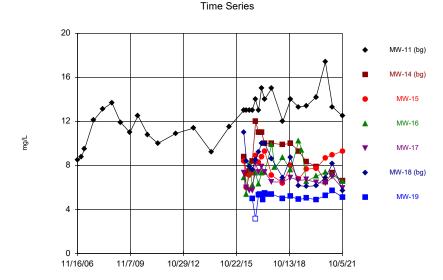
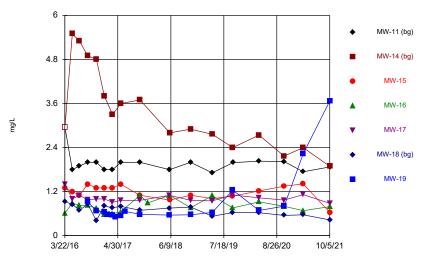

	Plant Daniel Client: Southern Comp	any Data: NA	MU CCR	Printed 1	2/15/2	021, 5:1	I1 PM				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	MW-11 (bg)	0.006242	22	63	No	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-14 (bg)	-0.5166	-107	-63	Yes	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-18 (bg)	-0.06436	-77	-63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-19	0.0475	42	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	MW-11 (bg)	-0.01917	-41	-68	No	18	0	n/a	n/a	0.01	NP
pH (SU)	MW-14 (bg)	-0.05378	-64	-63	Yes	17	0	n/a	n/a	0.01	NP
pH (SU)	MW-18 (bg)	0.02083	44	58	No	16	0	n/a	n/a	0.01	NP
pH (SU)	MW-19	-0.003948	-5	-68	No	18	0	n/a	n/a	0.01	NP

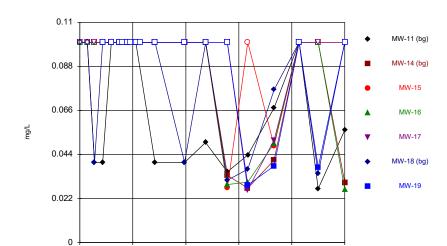
FIGURE A.


Constituent: Boron Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Chloride Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Time Series


Constituent: Calcium Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Time Series

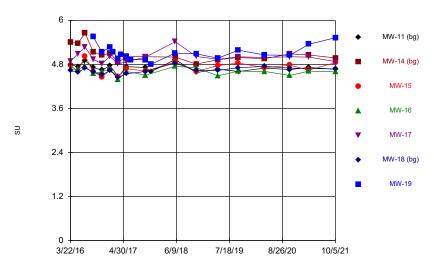
Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

3/22/16

4/30/17

Constituent: Fluoride Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

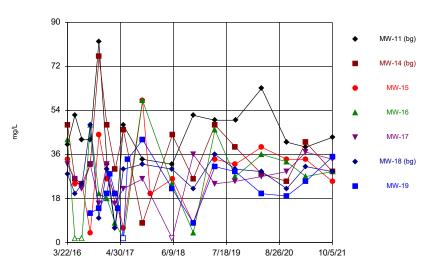
7/18/19


8/26/20

10/5/21

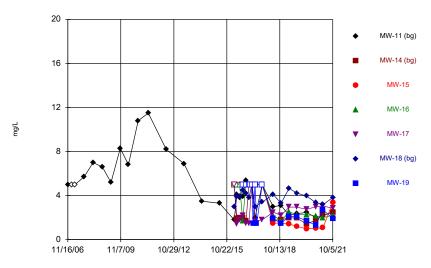
6/9/18

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Time Series

Constituent: Total Dissolved Solids Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Sulfate Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Constituent: Boron (mg/L) Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

·	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			<0.08 (B1)	<0.08 (B1)	<0.08 (B1)	<0.08 (B1)	
3/23/2016	<0.08 (B1)	<0.08 (B1)					
5/18/2016	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
7/11/2016				<0.08			
7/12/2016	<0.08	<0.08	<0.08		<0.08	0.026 (J)	
9/12/2016	<0.08	<0.08	<0.08		<0.08	<0.08	<0.08
9/13/2016				<0.08			
11/17/2016				<0.08			
11/18/2016	<0.08				<0.08	<0.08	<0.08
11/19/2016		<0.08	<0.08				
1/18/2017		<0.08		<0.08	<0.08	<0.08	<0.08
1/19/2017	<0.08		<0.08				
2/10/2017							<0.08
3/21/2017			<0.08	<0.08	<0.08	<0.08	<0.08
3/22/2017	<0.08	<0.08					
4/14/2017							<0.08
5/23/2017			<0.08	<0.08			<0.08
5/24/2017	<0.08	<0.08			<0.08	<0.08	
6/26/2017							<0.08
10/17/2017	<0.08	<0.08	<0.08	<0.08	<0.08	0.025 (J)	<0.08
5/31/2018	<0.08			<0.08	<0.08	0.022 (J)	<0.08
6/1/2018		<0.08	<0.08				
11/7/2018	<0.08	<0.08	<0.08				
11/8/2018				<0.08	<0.08	<0.08	<0.08
4/22/2019	<0.08			<0.08	<0.08	<0.08	<0.08
4/23/2019		<0.08	<0.08				
9/26/2019		<0.08	<0.08	<0.08	<0.08	0.042 (J)	<0.08
9/27/2019	0.0443 (J)						
4/13/2020	<0.08	<0.08	<0.08		<0.08		<0.08
4/14/2020				<0.08		<0.08	
10/21/2020				<0.08			<0.08
10/22/2020	0.103	0.0559 (J)	0.0437 (J)		<0.08	0.0401 (J)	
3/16/2021	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
10/5/2021	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

Constituent: Calcium (mg/L) Analysis Run 12/13/2021 4:11 PM Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			1.3 (B1)	0.61 (B1)	1.4 (B1)	0.93 (B1)	
3/23/2016	<5.9 (*)	<5.9 (*)					
5/18/2016	1.8	5.5	1.2	0.89	1	0.85	
7/11/2016				0.82			
7/12/2016	1.9	5.3	1.1		1.1	0.69	
9/12/2016	2	4.9	1.4		0.98	0.86	0.92
9/13/2016				0.82			
11/17/2016				0.75			
11/18/2016	2				1	0.41	0.68
11/19/2016		4.8	1.3				
1/18/2017		3.8		0.58	1	0.81	0.64
1/19/2017	1.8		1.3				
2/10/2017							0.58
3/21/2017			1.3	0.6	0.91	0.76	0.56
3/22/2017	1.8	3.3					
4/14/2017							0.51
5/23/2017			1.4	0.65			0.54
5/24/2017	2	3.6			0.96	0.8	
6/26/2017							0.66
10/17/2017	2	3.7	1.1	1.1	0.96	0.69	0.58
12/15/2017				0.89 (RS)			
5/31/2018	1.8			1.1	1.1	0.75	0.56
6/1/2018		2.8	0.97				
11/7/2018	2	2.9	1.1				
11/8/2018				0.76	0.96	0.78	0.57
4/22/2019	1.71			1.09	0.946	0.531	0.634
4/23/2019		2.76	1.01				
9/26/2019		2.4	1.08	0.758	1.11	0.631	1.24
9/27/2019	1.99						
4/13/2020	2.03	2.74	1.22		1.03		0.687
4/14/2020				0.92		0.627	
10/21/2020				0.798			0.806
10/22/2020	2.02	2.17	1.35		0.969	0.553	
3/16/2021	1.74	2.4	1.41	0.681	1.12	0.57	2.23
10/5/2021	1.87	1.89	0.632	0.793	0.883	0.43 (J)	3.67

Constituent: Chloride (mg/L) Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

		MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
11	1/16/2006	8.5						
2/5	5/2007	8.8						
4/	12/2007	9.5						
10	0/17/2007	12.1						
4/	17/2008	13.1						
	0/24/2008	13.7						
	21/2009	11.9						
	0/26/2009	11						
	12/2010	12.5						
	0/30/2010	10.8						
	25/2011	10						
	25/2012	10.9						
	28/2013	11.4						
	31/2014	9.2						
	29/2015							
	29/2015	11.5		Q // /D1\	6 Q (R1)	7.3 (B1)	11 /B1\	
		10	9 9 (D1)	8.4 (B1)	6.9 (B1)	7.3 (B1)	11 (B1)	
	23/2016	13	8.8 (B1)	c	E 4	c	0.4	
	18/2016	13	7.2	6	5.4	6	8.4	
	11/2016	10	7.5	7.1	8.1	F 7	7.0	
	12/2016	13	7.5	7.1		5.7	7.9	-
	12/2016	13	8.4	7.3	0.0	5.7	7.6	5
	13/2016				6.2			
	1/17/2016				7.3			
	1/18/2016	14				8.2	8.5	<6.3 (*)
	1/19/2016		12	8.9				
	18/2017		11		6.3	7.4	9.2	5.3
	19/2017	13		8.3				
	10/2017							5.4
3/2	21/2017			8.8	7.3	7.9	10	5.3
	22/2017	15	11					
4/	14/2017							4.9 (B)
5/2	23/2017			9.3	7.4			5.5
5/2	24/2017	14	10			7.4	10	
6/2	26/2017							5.4
10	0/17/2017	15	10	7.1	9.9	6.5	8.6	5.4
12	2/19/2017				7.8 (RS)			
5/3	31/2018	12			8.7	6.5	6.9	5
6/	1/2018		9.9	6.4				
11	1/7/2018	14	10	8				
11	1/8/2018				7.6	6.9	8.7	5.2
4/2	22/2019	13.3			10.2	6.64	6.17	4.91
4/2	23/2019		9.3	6.75				
6/2	25/2019				9.4			
	26/2019		8.35	7.66	6.54	6.7	6.09	5.03
	27/2019	13.4						
	13/2020	14.2	7.9	7.74		6.46		4.9
	14/2020				7.03		6.15	
	0/21/2020				7.36			5.25
	0/22/2020	17.4	6.5	8.69		6.37	6.89	
	16/2021	13.3	7.32	8.94	7.14	6.97	8.18	5.72
	0/5/2021	12.5	6.59	9.3	6.55	5.91	5.72	5.1
. •								

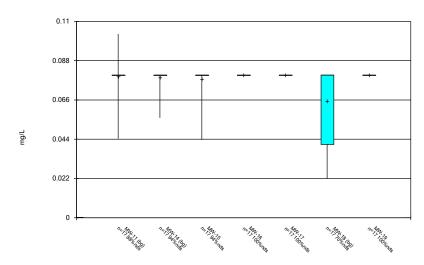
Constituent: Fluoride (mg/L) Analysis Run 12/13/2021 4:11 PM Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19	
3/22/2016			<0.1 (B1)	<0.1 (B1)	<0.1 (B1)	<0.1 (B1)		
3/23/2016	<0.1	<0.1 (B1)						
5/18/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
7/11/2016				<0.1				
7/12/2016	0.04 (J)	<0.1	<0.1		<0.1	0.04 (J)		
9/12/2016	0.04 (J)	<0.1	<0.1		<0.1	<0.1	<0.1	
9/13/2016				<0.1				
11/17/2016				<0.1				
11/18/2016	<0.1				<0.1	<0.1	<0.1	
11/19/2016		<0.1	<0.1					
1/18/2017		<0.1		<0.1	<0.1	<0.1	<0.1	
1/19/2017	<0.1		<0.1					
2/10/2017							<0.1	
3/21/2017			<0.1	<0.1	<0.1	<0.1	<0.1	
3/22/2017	<0.1	<0.1						
4/14/2017							<0.1	
5/23/2017			<0.1	<0.1			<0.1	
5/24/2017	<0.1	<0.1			<0.1	<0.1		
6/26/2017							<0.1	
10/17/2017	0.04 (J)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
5/31/2018	0.04 (J)			<0.1	<0.1	0.04 (J)	<0.1	
6/1/2018		<0.1	<0.1					
11/7/2018	0.05 (J)	<0.1	<0.1					
11/8/2018				<0.1	<0.1	<0.1	<0.1	
4/22/2019	0.0353 (J)			0.029 (J)	<0.1	0.0311 (J)	<0.1	
4/23/2019		0.0335 (J)	0.0275 (J)					
9/26/2019		0.0272 (J)	<0.1	0.0302 (J)	0.0263 (J)	0.0366 (J)	0.0287 (J)	
9/27/2019	0.0438 (J)							
4/13/2020	0.0672 (J)	0.0411 (J)	0.0484 (J)		0.0511 (J)		0.0382 (J)	
4/14/2020				0.0496 (J)		0.0764 (J)		
10/21/2020				<0.1			<0.1	
10/22/2020	<0.1	<0.1	<0.1		<0.1	<0.1		
3/16/2021	0.0269 (J)	<0.1	<0.1	<0.1	<0.1	0.0344 (J)	0.0376 (J)	
10/5/2021	0.0561 (J)	0.03 (J)	<0.1	0.0264 (J)	<0.1	<0.1	<0.1	

Constituent: pH (SU) Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			4.77	4.68	4.89	4.63	
3/23/2016	4.8	5.4					
5/18/2016	4.74	5.38	4.62	4.67	5.09	4.58	
7/11/2016				4.75			
7/12/2016	4.9	5.65	5.03		5.27	4.7	
9/12/2016	4.72	5.14	4.6		4.94	4.6	5.55
9/13/2016				4.56			
11/17/2016				4.6			
11/18/2016	4.65				4.82	4.52	5.14
11/19/2016		5.05	4.46				
1/18/2017		5.11		4.68	5.02	4.63	5.27
1/19/2017	4.77		4.65				
2/10/2017							5.14
3/21/2017			4.47	4.39	4.82	4.45	4.96
3/22/2017	4.46	4.86					
4/14/2017							5.07
5/23/2017			4.69	4.61			5.01
5/24/2017	4.74	5.02			4.87	4.55	
6/26/2017							4.93
10/17/2017	4.72	5.01	4.62	4.51	5	4.61	4.93
11/30/2017	4.61						4.81
5/31/2018	4.93			4.75	5.42	4.84	5.11
6/1/2018		5	4.87				
11/7/2018	4.58	4.81	4.61				
11/8/2018				4.71	5.02	4.63	5.09
4/22/2019	4.67			4.49	4.94	4.64	4.97
4/23/2019		4.93	4.77				
9/26/2019		4.99	4.84	4.62	5.01	4.71	5.19
9/27/2019	4.61						
4/13/2020	4.7	4.96	4.71		4.99		5.06
4/14/2020				4.61		4.75	
10/21/2020				4.5			5.05
10/22/2020	4.66	5.09	4.78		5.01	4.7	
3/16/2021	4.72	5.06	4.65	4.62	5		5.35
10/5/2021	4.67	4.98	4.85	4.6	4.88	4.68	5.53

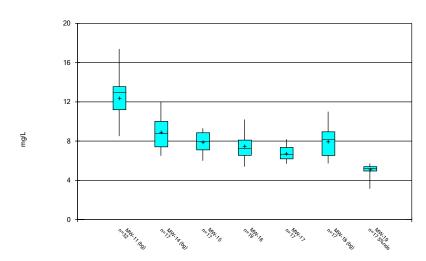
Constituent: Sulfate (mg/L) Analysis Run 12/13/2021 4:11 PM Plant Daniel Client: Southern Company Data: NAMU CCR


	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
11/16/2006	5						
2/5/2007	<5						
4/12/2007	<5						
10/17/2007	5.7						
4/17/2008	7						
10/24/2008	6.6						
4/21/2009	5.2						
10/26/2009	8.3						
4/12/2010	6.8						
10/30/2010	10.8						
5/25/2011	11.5						
5/25/2012	8.2						
5/28/2013	6.9						
5/31/2014	3.5						
5/29/2015	3.3						
3/22/2016	J.J		<5	<5	<5	3 (1)	
3/22/2016	18(1)	<5	\ 0	\ 0	\ 0	3 (J)	
	1.8 (J)		~E	-E	1.4	20/1	
5/18/2016	4.1	1.9	<5	<5 <5	1.4	3.9 (J)	
7/11/2016	28/1	271	~E	<5	10/1	20/1	
7/12/2016	3.8 (J)	2 (J)	<5		1.8 (J)	3.9 (J)	at .
9/12/2016	3.9 (J)	2 (J)	<5		2.2 (J)	4.5 (J)	<5
9/13/2016				1.7 (J)			
11/17/2016				<5	4.5.4.0	4.5 ()	_
11/18/2016	5.4		_		1.5 (J)	4.2 (J)	<5
11/19/2016		1.7 (J)	<5				
1/18/2017		<5		<5	1.5 (J)	3.8 (J)	<5
1/19/2017	<5		<5				
2/10/2017							<5
3/21/2017			<5	<5	<5	<5 (*)	<5
3/22/2017	<5	<5					
4/14/2017							1.5 (J)
5/23/2017			<5	<5			<5
5/24/2017	2 (J)	<5			1.7 (J)	3 (J)	
6/26/2017							1.5 (J)
10/17/2017	<5	<5	<5	<5	1.8 (J)	3.4 (J)	<5
5/31/2018	3 (J)			2.2 (J)	2.5 (J)	4.1 (J)	1.9 (J)
6/1/2018		1.8 (J)	1.5 (J)				
11/7/2018	3.1 (J)	1.8 (J)	1.5 (J)				
11/8/2018				1.7 (J)	2.2 (J)	3.3 (J)	1.5 (J)
4/22/2019	2.22			2.52	2.96	4.66	2.09
4/23/2019		1.99	1.43				
9/26/2019		1.95	1.2	2.28	2.96	4.23	2.1
9/27/2019	2.36						
4/13/2020	2.47	1.43	0.992 (J)		2.75		1.69
4/14/2020				2.27		3.96	
				2.15			1.31
10/21/2020							
10/21/2020 10/22/2020	2.01	1.76	1.04		2.98	3.37	
	2.01 2.15	1.76 2.23	1.04 1.07	2	2.98 3.06	3.37 3.18	2.72

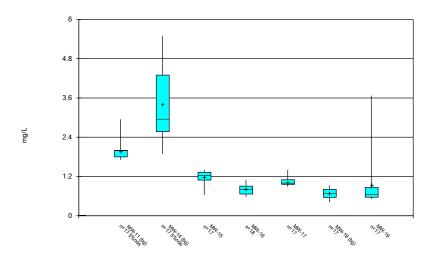
Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			34 (B1)	42 (B1)	32 (B1)	28 (B1)	
3/23/2016	40	48 (B1)					
5/18/2016	52	26	24	<3.4	26	20	
7/11/2016				<3.4			
7/12/2016	42	24	24		22	24	
9/12/2016	42	32	4 (J)		32	48	12
9/13/2016				48			
11/17/2016				20			
11/18/2016	82				16	10	14
11/19/2016		76	44				
1/18/2017		48		18	32	30	20
1/19/2017	32		26				
2/10/2017							28
3/21/2017			20	8	16	6	20
3/22/2017	6	30					
4/14/2017							14
5/23/2017			6	<3.4			<3.4
5/24/2017	48	46			22	30	
6/26/2017							34
10/17/2017	34	8	58	58	26	32	42
12/15/2017			20 (RS)				
5/31/2018	32			24	<3.4	30	22
6/1/2018		44	26				
11/7/2018	52	26	8				
11/8/2018				4 (J)	36	22	8
4/22/2019	50			46	24	36	31
4/23/2019		48	34				
9/26/2019		39	32	27	25	30	29
9/27/2019	50						
4/13/2020	63	28	39		27		20
4/14/2020				36		29	
10/21/2020				33			19
10/22/2020	41	25	34		29	22	
3/16/2021	39	41	34	27	37	31	25
10/5/2021	43	29	25	29	34	29	35

FIGURE B.

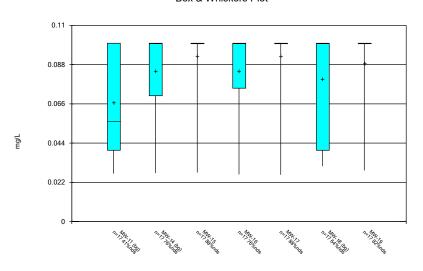

Box & Whiskers Plot

Constituent: Boron Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

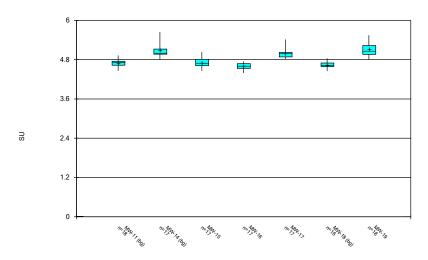
Box & Whiskers Plot

Constituent: Chloride Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Box & Whiskers Plot

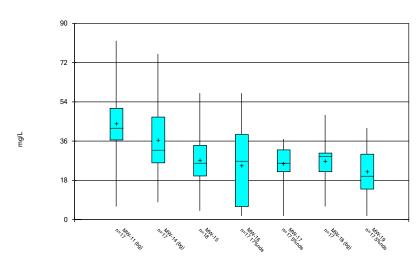
Constituent: Calcium Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

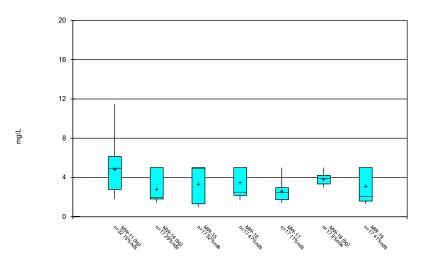
Constituent: Fluoride Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: pH Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Sulfate Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

FIGURE C.

Outlier Summary

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/13/2021, 4:13 PM

No outliers were flagged.

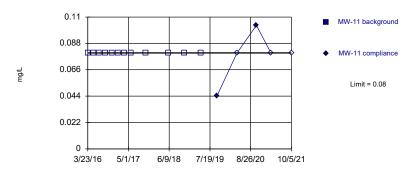
FIGURE D.

Appendix III Intrawell Prediction Limits - Significant Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/14/2021, 3:24 PM

Constituent	Well	Upper Lim. Lower Lin	n. <u>Date</u>	Observ.	Sig. Bg N %NDs	ND Adj. Transform	<u>Alpha</u>	Method
Calcium (mg/L)	MW-19	0.8608 n/a	10/5/2021	3.67	Yes 12 0	None sqrt(x)	0.00188	Param Intra 1 of 2
pH (SU)	MW-19	5.483 4.668	10/5/2021	5.53	Yes 13 0	None No	0.0009398	Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results


Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/14/2021, 3:36 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Date Observ. Sig. Bg N%NDs ND Adj. <u>Transform</u> <u>Alpha</u> Method NP Intra (NDs) 1 of 2 MW-11 10/5/2021 0.08ND No 12 100 0.01077 Boron (ma/L) 0.08 n/a n/a n/a MW-14 10/5/2021 No 12 100 NP Intra (NDs) 1 of 2 Boron (mg/L) 0.08 0.08ND n/a n/a 0.01077 Boron (mg/L) MW-15 0.08 n/a 10/5/2021 0.08ND No 12 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 10/5/2021 12 NP Intra (NDs) 1 of 2 MW-18 0.08 0.08ND No 75 0.01077 Boron (mg/L) n/a n/a n/a Calcium (mg/L) MW-11 2.17 n/a 10/5/2021 1.87 12 8.333 None 0.00188 Param Intra 1 of 2 n/a Calcium (mg/L) M\/\/_14 6.114 10/5/2021 1.89 Nο 12 8.333 None No 0.00188 Param Intra 1 of 2 MW-15 Calcium (mg/L) 1.535 10/5/2021 0.632 No 12 0 None No 0.00188 Param Intra 1 of 2 n/a Calcium (mg/L) MW-16 1.234 n/a 10/5/2021 0.793 No 13 None 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-17 1.4 n/a 10/5/2021 0.883 No 12 0 n/a n/a 0.01077 NP Intra (normality) 1 of 2 MW-18 No 12 0 Param Intra 1 of 2 Calcium (mg/L) 1.062 n/a 10/5/2021 0.43JNone Nο 0.00188 Calcium (mg/L) MW-19 0.8608 n/a 10/5/2021 3.67 Yes 12 None sqrt(x) 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-11 15.58 n/a 10/5/2021 12.5 No 27 0 None No 0.00188 Param Intra 1 of 2 MW-14 10/5/2021 No 12 0 Param Intra 1 of 2 Chloride (ma/L) 12.79 n/a 6.59 None No 0.00188 No 12 0 Chloride (mg/L) MW-15 10.08 10/5/2021 None No 0.00188 Param Intra 1 of 2 n/a Chloride (mg/L) MW-16 10.64 n/a 10/5/2021 6.55 No 13 0 None No 0.00188 Param Intra 1 of 2 10/5/2021 12 MW-17 8.675 No 0 No 0.00188 Param Intra 1 of 2 Chloride (mg/L) n/a 5.91 None Chloride (mg/L) MW-18 11.62 10/5/2021 5.72 12 0.00188 Param Intra 1 of 2 None No n/a Chloride (mg/L) MW-19 5.783 10/5/2021 No 12 8.333 x^5 0.00188 Param Intra 1 of 2 n/a 5.1 None MW-11 12 50 NP Intra (normality) 1 of 2 Fluoride (ma/L) 0.1 n/a 10/5/2021 0.0561.1 Nο n/a n/a 0.01077 Fluoride (mg/L) MW-14 0.1 n/a 10/5/2021 0.03J No 12 91.67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-15 n/a 10/5/2021 0.1ND No 12 91.67 0.01077 NP Intra (NDs) 1 of 2 0.1 n/a n/a MW-16 12 NP Intra (NDs) 1 of 2 Fluoride (mg/L) 0.1 n/a 10/5/2021 0.0264JNο 91.67 n/a n/a 0.01077 MW-17 0.1 10/5/2021 No 12 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) n/a 0.1ND 100 n/a n/a Fluoride (mg/L) MW-18 0.1 n/a 10/5/2021 0.1ND No 12 75 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-19 0.1 n/a 10/5/2021 0.1ND No 12 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 pH (SU) MW-11 4.992 4.437 10/5/2021 4.67 No 13 No 0.0009398 Param Intra 1 of 2 None pH (SU) MW-14 5.663 4 563 10/5/2021 4.98 No 12 0 None No 0.0009398 Param Intra 1 of 2 12 pH (SU) MW-15 5.04 4.32 10/5/2021 4.85 No 0 None No 0.0009398 Param Intra 1 of 2 MW-16 4.866 4.367 10/5/2021 4.6 12 0.0009398 Param Intra 1 of 2 pH (SU) None No 5.411 MW-17 4.605 10/5/2021 4.88 No 12 0 0.0009398 Param Intra 1 of 2 pH (SU) No MW-18 No 12 0 pH (SU) 4 829 4 401 10/5/2021 4 68 None Nο 0.0009398 Param Intra 1 of 2 (US) Ha MW-19 5.483 4.668 10/5/2021 5.53 Yes 13 0 None No 0.0009398 Param Intra 1 of 2 MW-11 9.808 10/5/2021 No 27 18.52 Param Intra 1 of 2 Sulfate (mg/L) 2.57 Kaplan-Meier 0.00188 No 12 41.67 NP Intra (normality) 1 of 2 Sulfate (mg/L) MW-14 5 n/a 10/5/2021 2.46 n/a n/a 0.01077 MW-15 10/5/2021 12 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) n/a 3.38 No 75 n/a n/a MW-16 10/5/2021 12 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) 5 2.22 No 66.67 Sulfate (mg/L) MW-17 3.046 n/a 10/5/2021 2.85 No 12 16.67 Kaplan-Meier sqrt(x) 0.00188 Param Intra 1 of 2 MW-18 Sulfate (mg/L) 5.327 10/5/2021 No 12 8.333 0.00188 Param Intra 1 of 2 3.83 None n/a No Sulfate (mg/L) MW-19 n/a 10/5/2021 No 12 58.33 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 82 24 12 Total Dissolved Solids (mg/L) MW-11 n/a 10/5/2021 43 Nο 0 None Nο 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-14 76.82 10/5/2021 29 No 0.00188 Param Intra 1 of 2 n/a None No 58.47 Total Dissolved Solids (mg/L) MW-15 10/5/2021 25 No 13 0 0.00188 Param Intra 1 of 2 n/a No No. 12 25 Total Dissolved Solids (mg/L) MW-16 66 28 n/a 10/5/2021 29 Kaplan-Meier Nο 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-17 10/5/2021 No 12 8.333 0.00188 Param Intra 1 of 2 44.84 n/a 34 None No Total Dissolved Solids (mg/L) MW-18 10/5/2021 No 12 0 0.00188 Param Intra 1 of 2 51.36 n/a 29 No Total Dissolved Solids (mg/L) MW-19 46.26 n/a 10/5/2021 No. 12 8 333 None No 0.00188 Param Intra 1 of 2

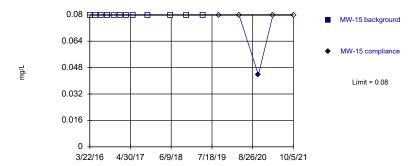
Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Within Limit Prediction Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

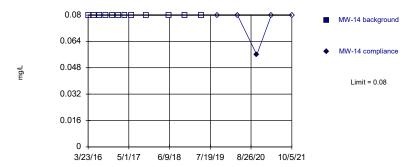

Constituent: Boron Analysis Run 12/14/2021 2:16 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Within Limit Prediction Limit

Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

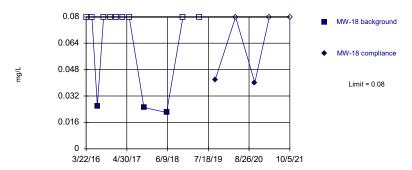
Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Within Limit Prediction Limit

Intrawell Non-parametric

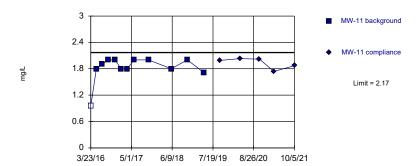
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background velues (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).


Constituent: Boron Analysis Run 12/14/2021 2:16 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Within Limit Prediction Limit


Intrawell Non-parametric

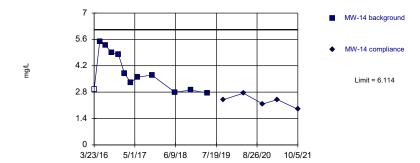
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary (based on x⁴ transformation): Mean=12.03, Std. Dev.=4.544, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8072, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

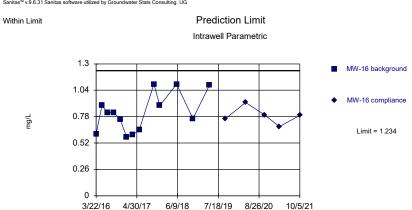
> Constituent: Calcium Analysis Run 12/14/2021 2:16 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Within Limit Intrawell Parametric 1.6 MW-15 background 1.28 MW-15 compliance 0.96 Limit = 1.535 0.64 0.32 3/22/16 4/30/17 6/9/18 7/18/19 8/26/20 10/5/21

Background Data Summary: Mean=1.207, Std. Dev.=0.1472, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9076, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

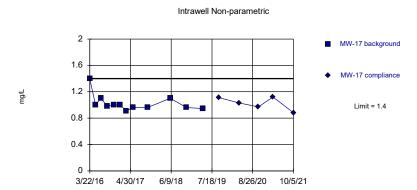
Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=3.859, Std. Dev.=1.01, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8805, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Calcium Analysis Run 12/14/2021 2:16 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

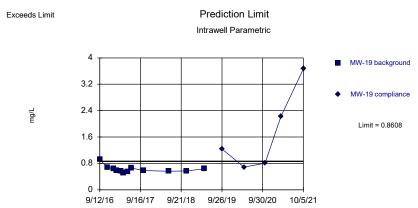


Background Data Summary: Mean=0.82, Std. Dev.=0.1886, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9011, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

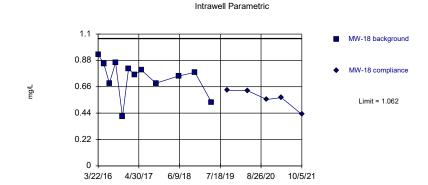
Within Limit

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit



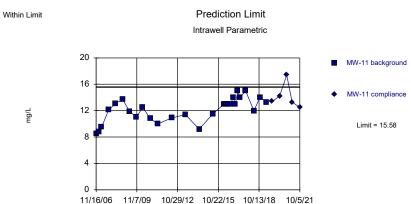
Prediction Limit


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Calcium Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary (based on square root transformation): Mean=0.7847, Std. Dev.=0.06412, n=12. Normality test: Shapiro Wilk (@alpha = 0.01, calculated = 0.8069, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.



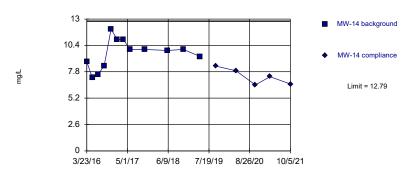
Prediction Limit

Background Data Summary: Mean=0.7384, Std. Dev.=0.1448, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9007, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188

Constituent: Calcium Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

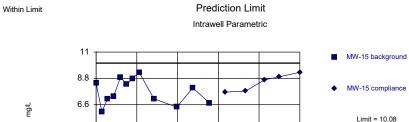
Background Data Summary: Mean=12.12, Std. Dev.=1.814, n=27. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9502, critical = 0.894. Kappa = 1.906 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

4.4

2.2

3/22/16 4/30/17


Background Data Summary: Mean=9.592, Std. Dev.=1.433, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9613, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

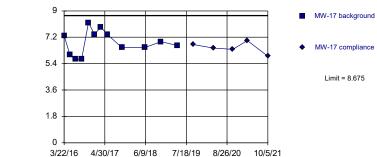
> Constituent: Chloride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Within Limit Intrawell Parametric MW-16 background MW-16 compliance 6.6 Limit = 10.64 4.4 2.2 3/22/16 4/30/17 6/9/18

Background Data Summary: Mean=7.623, Std. Dev.=1.377, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9538, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Background Data Summary: Mean=7.696, Std. Dev.=1.067, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9552, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

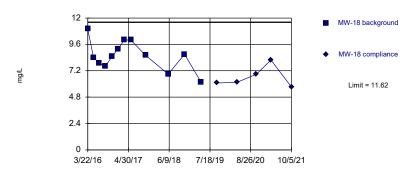

6/9/18 7/18/19 8/26/20

10/5/21

Constituent: Chloride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Within Limit Intrawell Parametric

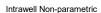


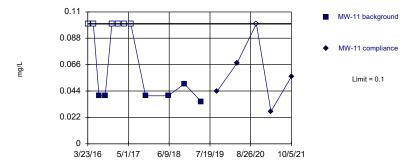
Background Data Summary: Mean=6.845, Std. Dev.=0.8197, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9524, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

7/18/19 8/26/20

10/5/21

Within Limit Prediction Limit
Intrawell Parametric

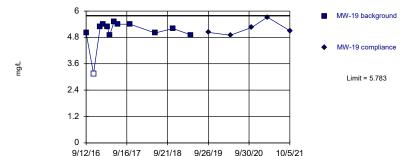



Background Data Summary: Mean=8.581, Std. Dev.=1.361, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9827, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.019

Constituent: Chloride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit

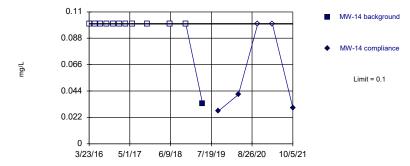


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. 50% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Parametric

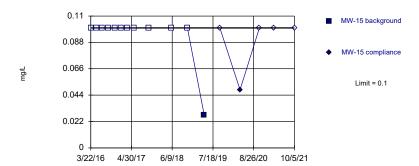
Background Data Summary (based on x^5 transformation): Mean=3601, Std. Dev.=1285, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8476, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Chloride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

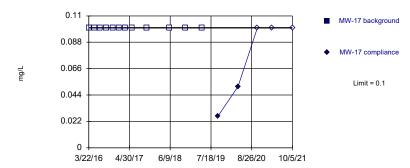
Within Limit Prediction Limit


Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric



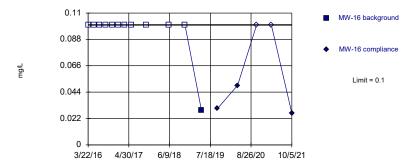
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Fluoride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

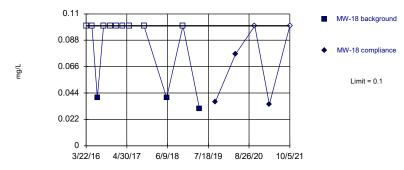

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Intrawell Non-parametric

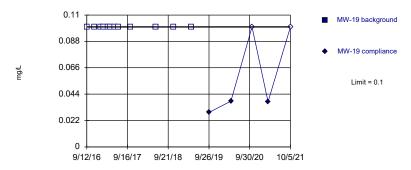

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Fluoride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Hollow symbols indicate censored values.

Prediction Limit Within Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

> Constituent: Fluoride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

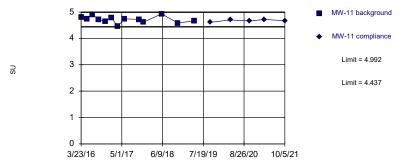
Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

5/1/17

6/9/18

3/23/16

Prediction Limit Within Limits Intrawell Parametric MW-14 background MW-14 compliance Limit = 5.663 3.6 Limit = 4.563 2.4 1.2

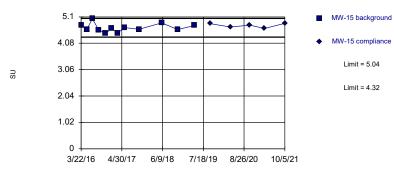

Background Data Summary: Mean=5.113, Std. Dev.=0.2464, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9046, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

7/19/19 8/26/20

10/5/21

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

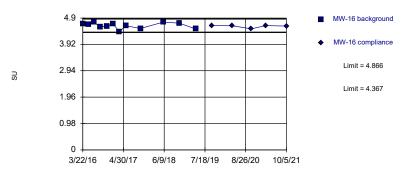
Prediction Limit Within Limits Intrawell Parametric



Background Data Summary: Mean=4.715, Std. Dev.=0.1267, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9755, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: pH Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

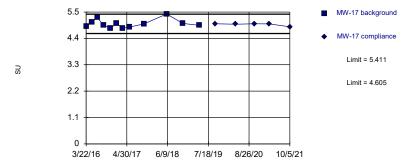

Prediction Limit Within Limits Intrawell Parametric

Background Data Summary: Mean=4.68, Std. Dev.=0.1615, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9345, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Within Limits Intrawell Parametric

Background Data Summary: Mean=4.617, Std. Dev.=0.1118, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9361, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =


> Constituent: pH Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Within Limits Intrawell Parametric MW-18 background MW-18 compliance 3.92 Limit = 4.829 2.94 Limit = 4.401 1.96 0.98 3/22/16 4/30/17 6/9/18 7/18/19 8/26/20 10/5/21

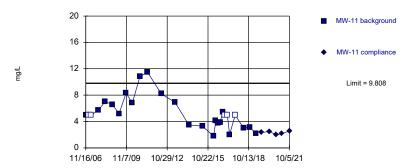
Background Data Summary: Mean=4.615, Std. Dev.=0.09587, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.925, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Prediction Limit Within Limits Intrawell Parametric

Background Data Summary: Mean=5.008, Std. Dev.=0.1805, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8737, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: pH Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

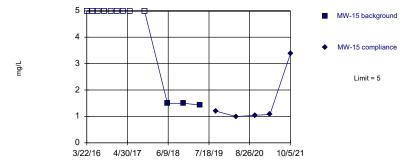
Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG


Prediction Limit Exceeds Limits Intrawell Parametric MW-19 background MW-19 compliance Limit = 5.483 3.36 SU Limit = 4.668 2.24 1.12 9/12/16 9/16/17 9/21/18 9/26/19 9/30/20 10/5/21

Background Data Summary: Mean=5.075, Std. Dev.=0.1858, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9001, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Hollow symbols indicate censored values.

Within Limit

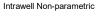

Background Data Summary (after Kaplan-Meier Adjustment): Mean=4.944, Std. Dev.=2.552, n=27, 18.52% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9272, critical = 0.894. Kappa = 1.906 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.051480.

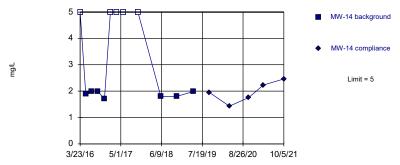
Constituent: Sulfate Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit

Intrawell Non-parametric



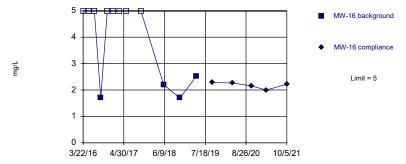

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Within Limit Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. 41.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

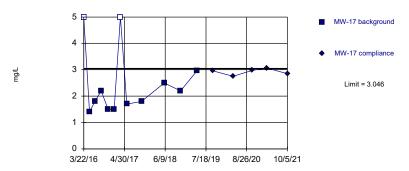

Constituent: Sulfate Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Within Limit Prediction Limit

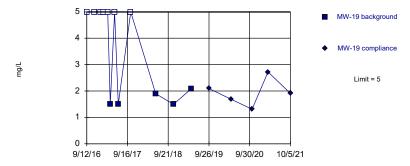
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Hollow symbols indicate censored values.

Within Limit

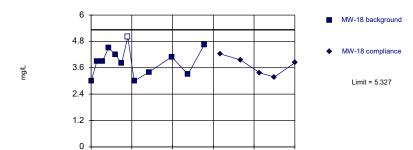

Background Data Summary (based on square root transformation) (after Kaplan-Meier Adjustment): Mean=1.349, Std. Dev.=0.1777, n=12, 16.67% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8093, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Sulfate Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric



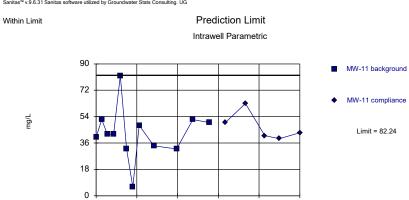
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 58.33% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

3/22/16 4/30/17

Background Data Summary: Mean=3.897, Std. Dev.=0.6408, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9606, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


> Constituent: Sulfate Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

6/9/18 7/18/19 8/26/20 10/5/21

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

3/23/16

5/1/17

Background Data Summary: Mean=42.67, Std. Dev.=17.73, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9141, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

6/9/18

7/19/19 8/26/20

10/5/21

0

3/23/16

Within Limit

3/22/16 4/30/17

Intrawell Parametric

80

64

MW-14 background

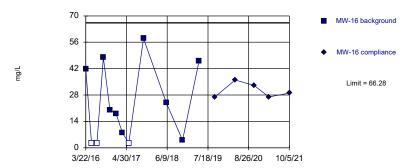
MW-14 compliance

Limit = 76.82

Prediction Limit

Background Data Summary: Mean=38, Std. Dev.=17.39, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9323, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0192

6/9/18 7/19/19 8/26/20


10/5/21

Constituent: Total Dissolved Solids Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Parametric

5/1/17

Background Data Summary (after Kaplan-Meier Adjustment): Mean=23.33, Std. Dev.=19.24, n=12, 25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8666, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

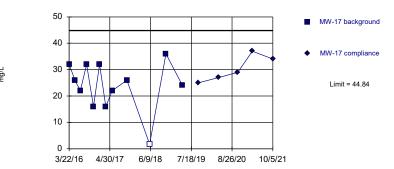
Within Limit Prediction Limit Intrawell Parametric

MW-15 background

MW-15 compliance

Limit = 58.47

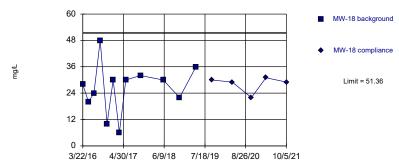
Background Data Summary: Mean=25.23, Std. Dev.=15.16, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9437, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


6/9/18 7/18/19 8/26/20

10/5/21

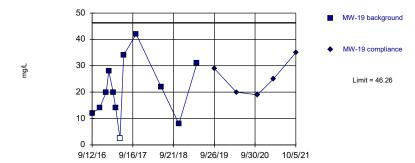
Constituent: Total Dissolved Solids Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=23.81, Std. Dev.=9.424, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9134, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=26.33, Std. Dev.=11.21, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9551, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=20.63, Std. Dev.=11.48, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9792, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Total Dissolved Solids Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11	MW-11
3/23/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/18/2016	<0.08	
1/19/2017	<0.08	
3/22/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	<0.08	
5/31/2018	<0.08	
11/7/2018	<0.08	
4/22/2019	<0.08	
9/27/2019		0.0443 (J)
4/13/2020		<0.08
10/22/2020		0.103
3/16/2021		<0.08
10/5/2021		<0.08

	MW-14	MW-14
3/23/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/19/2016	<0.08	
1/18/2017	<0.08	
3/22/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	<0.08	
6/1/2018	<0.08	
11/7/2018	<0.08	
4/23/2019	<0.08	
9/26/2019		<0.08
4/13/2020		<0.08
10/22/2020		0.0559 (J)
3/16/2021		<0.08
10/5/2021		<0.08

	MW-15	MW-15
3/22/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/19/2016	<0.08	
1/19/2017	<0.08	
3/21/2017	<0.08	
5/23/2017	<0.08	
10/17/2017	<0.08	
6/1/2018	<0.08	
11/7/2018	<0.08	
4/23/2019	<0.08	
9/26/2019		<0.08
4/13/2020		<0.08
10/22/2020		0.0437 (J)
3/16/2021		<0.08
10/5/2021		<0.08

	MW-18	MW-18
3/22/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	0.026 (J)	
9/12/2016	<0.08	
11/18/2016	<0.08	
1/18/2017	<0.08	
3/21/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	0.025 (J)	
5/31/2018	0.022 (J)	
11/8/2018	<0.08	
4/22/2019	<0.08	
9/26/2019		0.042 (J)
4/14/2020		<0.08
10/22/2020		0.0401 (J)
3/16/2021		<0.08
10/5/2021		<0.08

		MW-11	MW-11
3/23/201	6	<1.9 (*)	
5/18/201	6	1.8	
7/12/201	6	1.9	
9/12/201	6	2	
11/18/20	16	2	
1/19/201	7	1.8	
3/22/201	7	1.8	
5/24/201	7	2	
10/17/20	17	2	
5/31/201	8	1.8	
11/7/201	8	2	
4/22/201	9	1.71	
9/27/201	9		1.99
4/13/202	0		2.03
10/22/20	20		2.02
3/16/202	1		1.74
10/5/202	1		1.87

	MW-14	MW-14
3/23/2016	<5.9 (*)	
5/18/2016	5.5	
7/12/2016	5.3	
9/12/2016	4.9	
11/19/2016	4.8	
1/18/2017	3.8	
3/22/2017	3.3	
5/24/2017	3.6	
10/17/2017	3.7	
6/1/2018	2.8	
11/7/2018	2.9	
4/23/2019	2.76	
9/26/2019		2.4
4/13/2020		2.74
10/22/2020		2.17
3/16/2021		2.4
10/5/2021		1.89

	MW-15	MW-15
3/22/2016	1.3 (B1)	
5/18/2016	1.2	
7/12/2016	1.1	
9/12/2016	1.4	
11/19/2016	1.3	
1/19/2017	1.3	
3/21/2017	1.3	
5/23/2017	1.4	
10/17/2017	1.1	
6/1/2018	0.97	
11/7/2018	1.1	
4/23/2019	1.01	
9/26/2019		1.08
4/13/2020		1.22
10/22/2020		1.35
3/16/2021		1.41
10/5/2021		0.632

	MW-16	MW-16
3/22/2016	0.61 (B1)	
5/18/2016	0.89	
7/11/2016	0.82	
9/13/2016	0.82	
11/17/2016	0.75	
1/18/2017	0.58	
3/21/2017	0.6	
5/23/2017	0.65	
10/17/2017	1.1	
12/15/2017	0.89 (RS)	
5/31/2018	1.1	
11/8/2018	0.76	
4/22/2019	1.09	
9/26/2019		0.758
4/14/2020		0.92
10/21/2020		0.798
3/16/2021		0.681
10/5/2021		0.793

	MW-17	MW-17
3/22/2016	1.4 (B1)	
5/18/2016	1	
7/12/2016	1.1	
9/12/2016	0.98	
11/18/2016	1	
1/18/2017	1	
3/21/2017	0.91	
5/24/2017	0.96	
10/17/2017	0.96	
5/31/2018	1.1	
11/8/2018	0.96	
4/22/2019	0.946	
9/26/2019		1.11
4/13/2020		1.03
10/22/2020		0.969
3/16/2021		1.12
10/5/2021		0.883

MANA/ 10	MW-18
IVIVV-10	IVIVV-10
0.93 (B1)	
0.85	
0.69	
0.86	
0.41	
0.81	
0.76	
8.0	
0.69	
0.75	
0.78	
0.531	
	0.631
	0.627
	0.553
	0.57
	0.43 (J)
	0.85 0.69 0.86 0.41 0.81 0.76 0.8 0.69 0.75

MW-19	MW-19
0.92	
0.68	
0.64	
0.58	
0.56	
0.51	
0.54	
0.66	
0.58	
0.56	
0.57	
0.634	
	1.24
	0.687
	0.806
	2.23
	3.67
	0.92 0.68 0.64 0.58 0.56 0.51 0.54 0.66 0.58 0.56 0.57

	MW-11	MW-11
11/16/2006	8.5	
2/5/2007	8.8	
4/12/2007	9.5	
10/17/2007	12.1	
4/17/2008	13.1	
10/24/2008	13.7	
4/21/2009	11.9	
10/26/2009	11	
4/12/2010	12.5	
10/30/2010	10.8	
5/25/2011	10	
5/25/2012	10.9	
5/28/2013	11.4	
5/31/2014	9.2	
5/29/2015	11.5	
3/23/2016	13	
5/18/2016	13	
7/12/2016	13	
9/12/2016	13	
11/18/2016	14	
1/19/2017	13	
3/22/2017	15	
5/24/2017	14	
10/17/2017	15	
5/31/2018	12	
11/7/2018	14	
4/22/2019	13.3	
9/27/2019		13.4
4/13/2020		14.2
10/22/2020		17.4
3/16/2021		13.3
10/5/2021		12.5

	MW-14	MW-14
3/23/2016	8.8 (B1)	
5/18/2016	7.2	
7/12/2016	7.5	
9/12/2016	8.4	
11/19/2016	12	
1/18/2017	11	
3/22/2017	11	
5/24/2017	10	
10/17/2017	10	
6/1/2018	9.9	
11/7/2018	10	
4/23/2019	9.3	
9/26/2019		8.35
4/13/2020		7.9
10/22/2020		6.5
3/16/2021		7.32
10/5/2021		6.59

	MW-15	MW-15
3/22/2016	8.4 (B1)	
5/18/2016	6	
7/12/2016	7.1	
9/12/2016	7.3	
11/19/2016	8.9	
1/19/2017	8.3	
3/21/2017	8.8	
5/23/2017	9.3	
10/17/2017	7.1	
6/1/2018	6.4	
11/7/2018	8	
4/23/2019	6.75	
9/26/2019		7.66
4/13/2020		7.74
10/22/2020		8.69
3/16/2021		8.94
10/5/2021		9.3

	MW-16	MW-16
3/22/2016	6.9 (B1)	
5/18/2016	5.4	
7/11/2016	8.1	
9/13/2016	6.2	
11/17/2016	7.3	
1/18/2017	6.3	
3/21/2017	7.3	
5/23/2017	7.4	
10/17/2017	9.9	
12/19/2017	7.8 (RS)	
5/31/2018	8.7	
11/8/2018	7.6	
4/22/2019	10.2	
6/25/2019		9.4
9/26/2019		6.54
4/14/2020		7.03
10/21/2020		7.36
3/16/2021		7.14
10/5/2021		6.55

	MW-17	MW-17
3/22/2016	7.3 (B1)	
5/18/2016	6	
7/12/2016	5.7	
9/12/2016	5.7	
11/18/2016	8.2	
1/18/2017	7.4	
3/21/2017	7.9	
5/24/2017	7.4	
10/17/2017	6.5	
5/31/2018	6.5	
11/8/2018	6.9	
4/22/2019	6.64	
9/26/2019		6.7
4/13/2020		6.46
10/22/2020		6.37
3/16/2021		6.97
10/5/2021		5.91

	MW-18	MW-18
3/22/2016	11 (B1)	
5/18/2016	8.4	
7/12/2016	7.9	
9/12/2016	7.6	
11/18/2016	8.5	
1/18/2017	9.2	
3/21/2017	10	
5/24/2017	10	
10/17/2017	8.6	
5/31/2018	6.9	
11/8/2018	8.7	
4/22/2019	6.17	
9/26/2019		6.09
4/14/2020		6.15
10/22/2020		6.89
3/16/2021		8.18
10/5/2021		5.72

	MW-19	MW-19
9/12/2016	5	
11/18/2016	<6.3 (*)	
1/18/2017	5.3	
2/10/2017	5.4	
3/21/2017	5.3	
4/14/2017	4.9 (B)	
5/23/2017	5.5	
6/26/2017	5.4	
10/17/2017	5.4	
5/31/2018	5	
11/8/2018	5.2	
4/22/2019	4.91	
9/26/2019		5.03
4/13/2020		4.9
10/21/2020		5.25
3/16/2021		5.72
10/5/2021		5.1

		MW-11	MW-11
3	3/23/2016	<0.1	
5	5/18/2016	<0.1	
7	//12/2016	0.04 (J)	
ç)/12/2016	0.04 (J)	
1	1/18/2016	<0.1	
1	/19/2017	<0.1	
3	3/22/2017	<0.1	
5	5/24/2017	<0.1	
1	0/17/2017	0.04 (J)	
5	5/31/2018	0.04 (J)	
1	1/7/2018	0.05 (J)	
4	/22/2019	0.0353 (J)	
ç)/27/2019		0.0438 (J)
4	/13/2020		0.0672 (J)
1	0/22/2020		<0.1
3	3/16/2021		0.0269 (J)
1	0/5/2021		0.0561 (J)

	MW-14	MW-14
3/23/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	<0.1	
9/12/2016	<0.1	
11/19/2016	<0.1	
1/18/2017	<0.1	
3/22/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	<0.1	
6/1/2018	<0.1	
11/7/2018	<0.1	
4/23/2019	0.0335 (J)	
9/26/2019		0.0272 (J)
4/13/2020		0.0411 (J)
10/22/2020		<0.1
3/16/2021		<0.1
10/5/2021		0.03 (J)

	MW-15	MW-15
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	<0.1	
9/12/2016	<0.1	
11/19/2016	<0.1	
1/19/2017	<0.1	
3/21/2017	<0.1	
5/23/2017	<0.1	
10/17/2017	<0.1	
6/1/2018	<0.1	
11/7/2018	<0.1	
4/23/2019	0.0275 (J)	
9/26/2019		<0.1
4/13/2020		0.0484 (J)
10/22/2020		<0.1
3/16/2021		<0.1
10/5/2021		<0.1

	MW-16	MW-16
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/11/2016	<0.1	
9/13/2016	<0.1	
11/17/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/23/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	0.029 (J)	
9/26/2019		0.0302 (J)
4/14/2020		0.0496 (J)
10/21/2020		<0.1
3/16/2021		<0.1
10/5/2021		0.0264 (J)

	MW-17	MW-17
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	<0.1	
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	<0.1	
9/26/2019		0.0263 (J)
4/13/2020		0.0511 (J)
10/22/2020		<0.1
3/16/2021		<0.1
10/5/2021		<0.1

	MW-18	MW-18
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	0.04 (J)	
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	0.04 (J)	
11/8/2018	<0.1	
4/22/2019	0.0311 (J)	
9/26/2019		0.0366 (J)
4/14/2020		0.0764 (J)
10/22/2020		<0.1
3/16/2021		0.0344 (J)
10/5/2021		<0.1

	MW-19	MW-19
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
2/10/2017	<0.1	
3/21/2017	<0.1	
4/14/2017	<0.1	
5/23/2017	<0.1	
6/26/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	<0.1	
9/26/2019		0.0287 (J)
4/13/2020		0.0382 (J)
10/21/2020		<0.1
3/16/2021		0.0376 (J)
10/5/2021		<0.1

	MW-11	MW-11
3/23/2016	4.8	
5/18/2016	4.74	
7/12/2016	4.9	
9/12/2016	4.72	
11/18/2016	4.65	
1/19/2017	4.77	
3/22/2017	4.46	
5/24/2017	4.74	
10/17/2017	4.72	
11/30/2017	4.61	
5/31/2018	4.93	
11/7/2018	4.58	
4/22/2019	4.67	
9/27/2019		4.61
4/13/2020		4.7
10/22/2020		4.66
3/16/2021		4.72
10/5/2021		4.67

	MW-14	MW-14
3/23/2016	5.4	
5/18/2016	5.38	
7/12/2016	5.65	
9/12/2016	5.14	
11/19/2016	5.05	
1/18/2017	5.11	
3/22/2017	4.86	
5/24/2017	5.02	
10/17/2017	5.01	
6/1/2018	5	
11/7/2018	4.81	
4/23/2019	4.93	
9/26/2019		4.99
4/13/2020		4.96
10/22/2020		5.09
3/16/2021		5.06
10/5/2021		4.98

	MW-15	MW-15
3/22/2016	4.77	
5/18/2016	4.62	
7/12/2016	5.03	
9/12/2016	4.6	
11/19/2016	4.46	
1/19/2017	4.65	
3/21/2017	4.47	
5/23/2017	4.69	
10/17/2017	4.62	
6/1/2018	4.87	
11/7/2018	4.61	
4/23/2019	4.77	
9/26/2019		4.84
4/13/2020		4.71
10/22/2020		4.78
3/16/2021		4.65
10/5/2021		4.85

	MW-16	MW-16
3/22/2016	4.68	
5/18/2016	4.67	
7/11/2016	4.75	
9/13/2016	4.56	
11/17/2016	4.6	
1/18/2017	4.68	
3/21/2017	4.39	
5/23/2017	4.61	
10/17/2017	4.51	
5/31/2018	4.75	
11/8/2018	4.71	
4/22/2019	4.49	
9/26/2019		4.62
4/14/2020		4.61
10/21/2020		4.5
3/16/2021		4.62
10/5/2021		4.6

	MW-17	MW-17
3/22/2016	4.89	
5/18/2016	5.09	
7/12/2016	5.27	
9/12/2016	4.94	
11/18/2016	4.82	
1/18/2017	5.02	
3/21/2017	4.82	
5/24/2017	4.87	
10/17/2017	5	
5/31/2018	5.42	
11/8/2018	5.02	
4/22/2019	4.94	
9/26/2019		5.01
4/13/2020		4.99
10/22/2020		5.01
3/16/2021		5
10/5/2021		4.88

	MW-18	MW-18
3/22/2016	4.63	
5/18/2016	4.58	
7/12/2016	4.7	
9/12/2016	4.6	
11/18/2016	4.52	
1/18/2017	4.63	
3/21/2017	4.45	
5/24/2017	4.55	
10/17/2017	4.61	
5/31/2018	4.84	
11/8/2018	4.63	
4/22/2019	4.64	
9/26/2019		4.71
4/14/2020		4.75
10/22/2020		4.7
10/5/2021		4.68

	MW-19	MW-19
9/12/2016	5.55	
11/18/2016	5.14	
1/18/2017	5.27	
2/10/2017	5.14	
3/21/2017	4.96	
4/14/2017	5.07	
5/23/2017	5.01	
6/26/2017	4.93	
10/17/2017	4.93	
11/30/2017	4.81	
5/31/2018	5.11	
11/8/2018	5.09	
4/22/2019	4.97	
9/26/2019		5.19
4/13/2020		5.06
10/21/2020		5.05
3/16/2021		5.35
10/5/2021		5.53
	11/18/2016 1/18/2017 2/10/2017 3/21/2017 4/14/2017 5/23/2017 6/26/2017 10/17/2017 11/30/2017 5/31/2018 11/8/2018 4/22/2019 9/26/2019 4/13/2020 10/21/2020 3/16/2021	9/12/2016 5.55 11/18/2016 5.14 1/18/2017 5.27 2/10/2017 5.14 3/21/2017 4.96 4/14/2017 5.07 5/23/2017 5.01 6/26/2017 4.93 10/17/2017 4.93 11/30/2017 4.81 5/31/2018 5.11 11/8/2018 5.09 4/22/2019 4.97 9/26/2019 4/13/2020 10/21/2020 3/16/2021

	MW-11	MW-11
11/16/2006	5	
2/5/2007	<5	
4/12/2007	<5	
10/17/2007	5.7	
4/17/2008	7	
10/24/2008	6.6	
4/21/2009	5.2	
10/26/2009	8.3	
4/12/2010	6.8	
10/30/2010	10.8	
5/25/2011	11.5	
5/25/2012	8.2	
5/28/2013	6.9	
5/31/2014	3.5	
5/29/2015	3.3	
3/23/2016	1.8 (J)	
5/18/2016	4.1	
7/12/2016	3.8 (J)	
9/12/2016	3.9 (J)	
11/18/2016	5.4	
1/19/2017	<5	
3/22/2017	<5	
5/24/2017	2 (J)	
10/17/2017	<5	
5/31/2018	3 (J)	
11/7/2018	3.1 (J)	
4/22/2019	2.22	
9/27/2019		2.36
4/13/2020		2.47
10/22/2020		2.01
3/16/2021		2.15
10/5/2021		2.57

	MW-14	MW-14
3/23/2016	<5	
5/18/2016	1.9	
7/12/2016	2 (J)	
9/12/2016	2 (J)	
11/19/2016	1.7 (J)	
1/18/2017	<5	
3/22/2017	<5	
5/24/2017	<5	
10/17/2017	<5	
6/1/2018	1.8 (J)	
11/7/2018	1.8 (J)	
4/23/2019	1.99	
9/26/2019		1.95
4/13/2020		1.43
10/22/2020		1.76
3/16/2021		2.23
10/5/2021		2.46

	MW-15	MW-15
3/22/2016	<5	
5/18/2016	<5	
7/12/2016	<5	
9/12/2016	<5	
11/19/2016	<5	
1/19/2017	<5	
3/21/2017	<5	
5/23/2017	<5	
10/17/2017	<5	
6/1/2018	1.5 (J)	
11/7/2018	1.5 (J)	
4/23/2019	1.43	
9/26/2019		1.2
4/13/2020		0.992 (J)
10/22/2020		1.04
3/16/2021		1.07
10/5/2021		3.38

	MW-16	MW-16
3/22/2016	<5	
5/18/2016	<5	
7/11/2016	<5	
9/13/2016	1.7 (J)	
11/17/2016	<5	
1/18/2017	<5	
3/21/2017	<5	
5/23/2017	<5	
10/17/2017	<5	
5/31/2018	2.2 (J)	
11/8/2018	1.7 (J)	
4/22/2019	2.52	
9/26/2019		2.28
4/14/2020		2.27
10/21/2020		2.15
3/16/2021		2
10/5/2021		2.22

	MW-17	MW-17
3/22/2016	<5	
5/18/2016	1.4	
7/12/2016	1.8 (J)	
9/12/2016	2.2 (J)	
11/18/2016	1.5 (J)	
1/18/2017	1.5 (J)	
3/21/2017	<5	
5/24/2017	1.7 (J)	
10/17/2017	1.8 (J)	
5/31/2018	2.5 (J)	
11/8/2018	2.2 (J)	
4/22/2019	2.96	
9/26/2019		2.96
4/13/2020		2.75
10/22/2020		2.98
3/16/2021		3.06
10/5/2021		2.85

	MW-18	MW-18
3/22/2016	3 (J)	
5/18/2016	3.9 (J)	
7/12/2016	3.9 (J)	
9/12/2016	4.5 (J)	
11/18/2016	4.2 (J)	
1/18/2017	3.8 (J)	
3/21/2017	<5 (*)	
5/24/2017	3 (J)	
10/17/2017	3.4 (J)	
5/31/2018	4.1 (J)	
11/8/2018	3.3 (J)	
4/22/2019	4.66	
9/26/2019		4.23
4/14/2020		3.96
10/22/2020		3.37
3/16/2021		3.18
10/5/2021		3.83

	MW-19	MW-19
9/12/2016	<5	
11/18/2016	<5	
1/18/2017	<5	
2/10/2017	<5	
3/21/2017	<5	
4/14/2017	1.5 (J)	
5/23/2017	<5	
6/26/2017	1.5 (J)	
10/17/2017	<5	
5/31/2018	1.9 (J)	
11/8/2018	1.5 (J)	
4/22/2019	2.09	
9/26/2019		2.1
4/13/2020		1.69
10/21/2020		1.31
3/16/2021		2.72
10/5/2021		1.91

	MW-11	MW-11
3/23/2016	40	
5/18/2016	52	
7/12/2016	42	
9/12/2016	42	
11/18/2016	82	
1/19/2017	32	
3/22/2017	6	
5/24/2017	48	
10/17/2017	34	
5/31/2018	32	
11/7/2018	52	
4/22/2019	50	
9/27/2019		50
4/13/2020		63
10/22/2020		41
3/16/2021		39
10/5/2021		43

	MW-14	MW-14
3/23/2016	48 (B1)	
5/18/2016	26	
7/12/2016	24	
9/12/2016	32	
11/19/2016	76	
1/18/2017	48	
3/22/2017	30	
5/24/2017	46	
10/17/2017	8	
6/1/2018	44	
11/7/2018	26	
4/23/2019	48	
9/26/2019		39
4/13/2020		28
10/22/2020		25
3/16/2021		41
10/5/2021		29

	MW-15	MW-15
3/22/2016	34 (B1)	
5/18/2016	24	
7/12/2016	24	
9/12/2016	4 (J)	
11/19/2016	44	
1/19/2017	26	
3/21/2017	20	
5/23/2017	6	
10/17/2017	58	
12/15/2017	20 (RS)	
6/1/2018	26	
11/7/2018	8	
4/23/2019	34	
9/26/2019		32
4/13/2020		39
10/22/2020		34
3/16/2021		34
10/5/2021		25

	MW-16	MW-16
3/22/2016	42 (B1)	
5/18/2016	<5	
7/11/2016	<5	
9/13/2016	48	
11/17/2016	20	
1/18/2017	18	
3/21/2017	8	
5/23/2017	<5	
10/17/2017	58	
5/31/2018	24	
11/8/2018	4 (J)	
4/22/2019	46	
9/26/2019		27
4/14/2020		36
10/21/2020		33
3/16/2021		27
10/5/2021		29

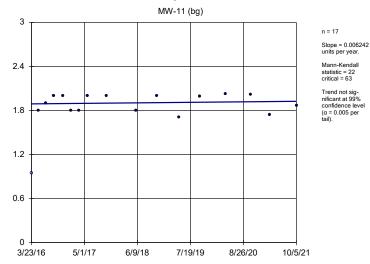
	MW-17	MW-17
3/22/2016	32 (B1)	
5/18/2016	26	
7/12/2016	22	
9/12/2016	32	
11/18/2016	16	
1/18/2017	32	
3/21/2017	16	
5/24/2017	22	
10/17/2017	26	
5/31/2018	<3.4	
11/8/2018	36	
4/22/2019	24	
9/26/2019		25
4/13/2020		27
10/22/2020		29
3/16/2021		37
10/5/2021		34

	MW-18	MW-18
3/22/2016	28 (B1)	
5/18/2016	20	
7/12/2016	24	
9/12/2016	48	
11/18/2016	10	
1/18/2017	30	
3/21/2017	6	
5/24/2017	30	
10/17/2017	32	
5/31/2018	30	
11/8/2018	22	
4/22/2019	36	
9/26/2019		30
4/14/2020		29
10/22/2020		22
3/16/2021		31
10/5/2021		29

	MW-19	MW-19
9/12/2016	12	
11/18/2016	14	
1/18/2017	20	
2/10/2017	28	
3/21/2017	20	
4/14/2017	14	
5/23/2017	<5	
6/26/2017	34	
10/17/2017	42	
5/31/2018	22	
11/8/2018	8	
4/22/2019	31	
9/26/2019		29
4/13/2020		20
10/21/2020		19
3/16/2021		25
10/5/2021		35

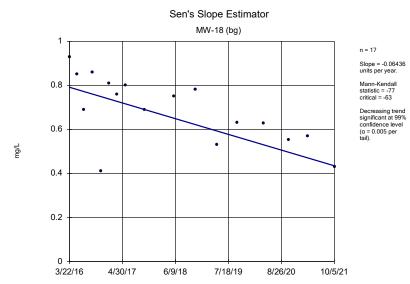
FIGURE E.

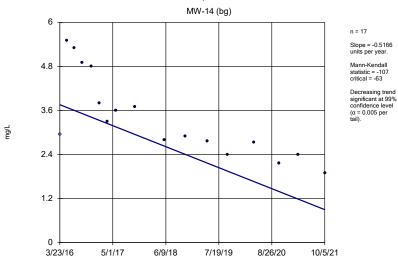
Appendix III Trend Tests - Prediction Limits Exceedances - Significant Results


Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/15/2021, 5:11 PM Constituent Well Calc. Critical Sig. N %NDs Normality Xform <u>Alpha</u> Method Slope Calcium (mg/L) MW-14 (bg) -0.5166 -107 -63 Yes 17 5.882 n/a n/a 0.01 -0.06436 -77 -63 Yes 17 0 n/a NP Calcium (mg/L) MW-18 (bg) n/a 0.01 pH (SU) MW-14 (bg) -0.05378 -64 -63 Yes 17 0 n/a n/a 0.01 NP

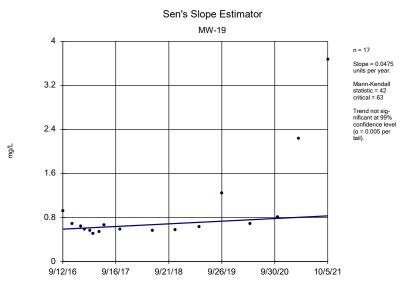
Appendix III Trend Tests - Prediction Limits Exceedances - All Results

	Plant Daniel	Client: Southern Compar	ny Data: NA	MU CCR	Printed 12	2/15/20	021, 5:1	1 PM				
Constituent	Well		Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	MW-11 (bg)		0.006242	22	63	No	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-14 (bg)		-0.5166	-107	-63	Yes	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-18 (bg)		-0.06436	-77	-63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-19		0.0475	42	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	MW-11 (bg)		-0.01917	-41	-68	No	18	0	n/a	n/a	0.01	NP
pH (SU)	MW-14 (bg)		-0.05378	-64	-63	Yes	17	0	n/a	n/a	0.01	NP
pH (SU)	MW-18 (bg)		0.02083	44	58	No	16	0	n/a	n/a	0.01	NP
pH (SU)	MW-19		-0.003948	-5	-68	No	18	0	n/a	n/a	0.01	NP

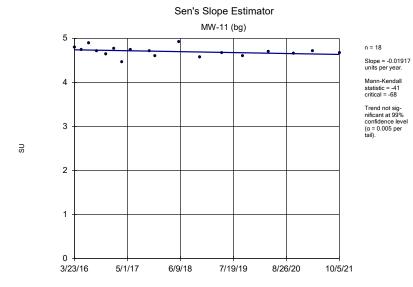

mg/L


Constituent: Calcium Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

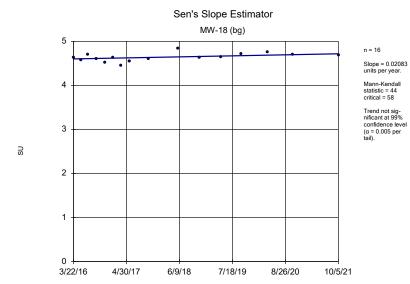

Constituent: Calcium Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

Sen's Slope Estimator

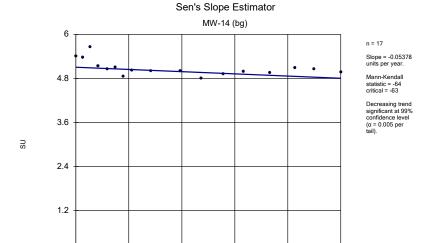


Constituent: Calcium Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR



Constituent: pH Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

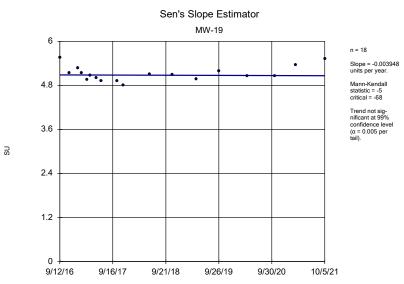
Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Constituent: pH Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

Constituent: pH Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

7/19/19

8/26/20


10/5/21

6/9/18

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

3/23/16

5/1/17

Constituent: pH Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

Appendix C

ALTERNATE SOURCE DEMONSTRATION

2021 Semi-Annual Monitoring Events

MISSISSIPPI POWER COMPANY PLANT VICTOR DANIEL NORTH ASH MANAGEMENT UNIT

January 31, 2022

Prepared for

Mississippi Power Company Gulfport, Mississippi

By

Southern Company Services Environmental Solutions

CERTIFICATION STATEMENT

This Alternate Source Demonstration, Mississippi Power Company – Plant Daniel North Ash Management Unit, has been prepared to comply with the United States Environmental Protection Agency coal combustion residual rule (40 Code of Federal Regulations (CFR) Part 257, Subpart D) under the supervision of a licensed professional engineer with Southern Company Services, Inc.

I hereby certify that the information presented in this Alternate Source Demonstration is accurate as required by 40 CFR § 257.94(e)(2).

James C. Agues, PB

MS Licensed Professional Engineer No. 18942

_1/31/2022

Date

Prepared by:

Robert F. Singleton III, PG

Originator

Mississippi PG No. 1015

Eric E. Wallis, PG

Supervising Principal Hydroge

Mississippi PG No. 0926

TABLE OF CONTENTS

TABLE OF	CONTENTSi
1.0 INTROE	DUCTION2
2.0 BACKG	ROUND2
3.0 ALTERI	NATE SOURCE DEMONSTRATION
3.1	Sulfate at MW-173
3.2	Calcium and pH at MW-193
4.0 CONCL	USION4
Tables	
Table 1	Monitoring Well Network Summary
Figures	
Figure 1	Monitoring Well Location Map
Appendices	
Appendix A	Statistical Data Evaluation

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015) (CCR Rule or The Rule), this Alternate Source Demonstration, Mississippi Power Company Plant Victor Daniel (Plant Daniel) North Ash Management Unit (NAMU), has been prepared to document an alternate source for Statistically Significant Increases (SSIs) observed at the NAMU during detection monitoring in the 2021 monitoring period. This document is prepared to satisfy the requirements of \$257.94(e)(2), which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSI or that the SSI was the result of errors in sampling, analysis, statistical evaluation, or caused by natural variation in groundwater quality.

2.0 BACKGROUND

Plant Daniel NAMU is presently in detection monitoring and the semi-annual groundwater sampling events occurred in March and October of 2021. The groundwater monitoring network is comprised of seven monitoring wells. Monitoring well locations are presented on **Figure 1**, **Monitoring Well Location Map**, and **Table 1**, **Monitoring Well Network Summary**, summarizes the monitoring well construction details and design purpose for the NAMU. As detailed in the NAMU's PE-certified statistical analysis plan, intrawell prediction limits are used to compare the most recent sample results to prediction limits constructed from historical data from within the same well to determine if any concentrations exceed background levels. The selected statistical method includes a 1-of-2 verification resample plan.

Following statistical analysis of analytical data from the March 2021 detection monitoring event, the following SSIs were identified:

• Sulfate: MW-17

• Calcium: MW-19

The Sulfate SSI was not verified during the subsequent monitoring event. Following statistical analysis of analytical data from the October 2021 detection monitoring event, the following SSIs were identified:

• Calcium: MW-19

• pH: MW-19

As discussed in the following section, the SSIs identified at the NAMU are attributed to natural variability in groundwater quality and are not the result of a release from the CCR unit. Statistical analyses are included as **Appendix A, Statistical Analysis.**

3.0 ALTERNATE SOURCE DEMONSTRATION

Pursuant to 40 CFR § 257.94(e)(2), the following provides a demonstration that the SSIs reported during the 2021 semi-annual detection monitoring events are not the result of a release from the NAMU and that assessment monitoring is not required.

3.1 Sulfate at MW-17

Review of statistical analysis for well MW-17 identified a sulfate SSI resulting from a concentration slightly above the intrawell prediction limit. This SSI is likely the result of natural variability not accommodated by the background data for the site and are not the result of a release from the CCR unit. The following lines of evidence support this conclusion:

- The sulfate SSI observed during the first semi-annual monitoring event was not observed during
 the second-semi-annual monitoring event and concentrations are below the prediction limit.
 Therefore, there is no longer an SSI for sulfate observed at MW-17 and further action is not
 required.
- Sulfate concentrations are relatively low and there is no discernable trend. The SSI was the result of a slight increase in the data that was not repeated during the second semi-annual. Review of the PL charts in **Appendix A** show that sulfate concentrations in the well were low (3.06 milligrams per liter [mg/L]) during the first semi-annual event, and they only slightly exceed the prediction limit of 3.046 mg/L.
- The sulfate SSI occurred as a single-parameter exceedance at well MW-17. A release from the CCR unit will result in multiple parameters exceeding statistical limits. That was not observed.
- Trend test results included in **Appendix A** indicate sulfate trends in MW-17 are not statistically significant. A release from the unit would result in statistically significant increasing trends. These are not observed.

Based on the information provided here, the SSI for sulfate was the result of natural groundwater variability and not caused by a release from the CCR unit. Furthermore, the SSI is no longer observed in this well. Therefore, assessment monitoring will not be initiated as a result of the SSI observed during the first semi-annual monitoring event.

3.2 Calcium and pH at MW-19

Review of statistical analysis for well MW-19 identified a calcium SSI during the first semi-annual sampling event and SSIs for calcium and pH during the second semi-annual sampling event. As discussed below, the SSIs are not the results of a release from the NAMU. The following lines of evidence support

this conclusion:

- The increase in calcium concentrations is limited to MW-19. A release from the NAMU would likely result in lateral dispersion as the water migrates vertically through the unsaturated zone, and horizontally through the uppermost aquifer, resulting in a wide zone of impact that would be identifiable in multiple wells. This has not occurred.
- Historical concentrations of calcium observed in upgradient wells during previous monitoring
 periods have been similar to the concentrations observed at MW-19 during the 2021 monitoring
 period. Therefore, the concentration observed at well MW-19 is within the range of concentrations
 observed upgradient of the site.
- An upward trend in calcium concentrations has been observed; however, the lack of additional
 constituents usually associated with a release at MW-19 indicates that the upward trend is not
 associated with the NAMU. Boron and fluoride remain non-detect, and chloride and sulfate exhibit
 stable or decreasing trends.

For the reasons described above the SSI for calcium was the result of natural groundwater variability and not caused by a release from the CCR unit. Therefore, assessment monitoring will not be initiated as a result of the calcium SSI.

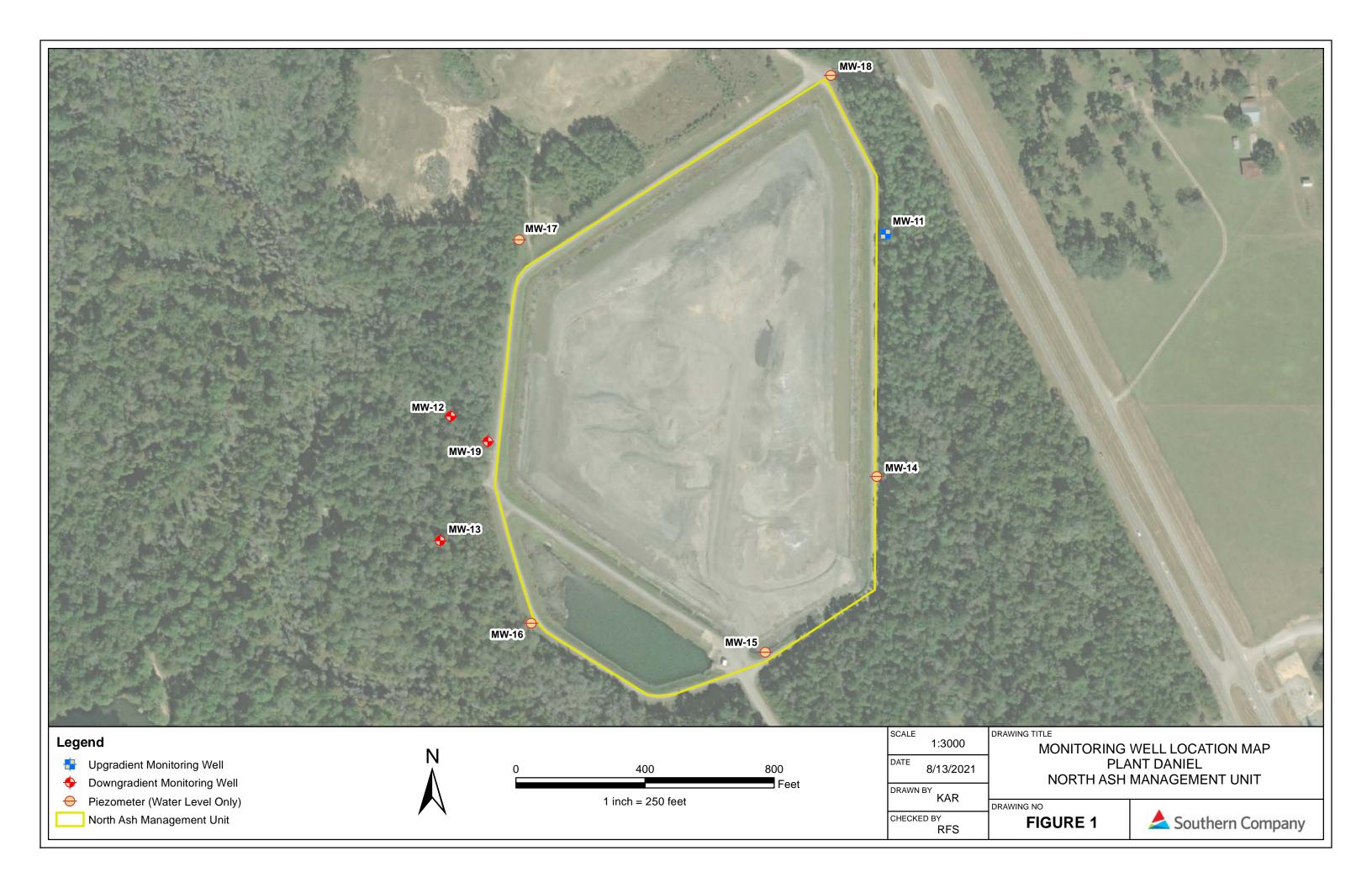
- pH is a field reading subject to instrument and user variability. Results may vary based on instrument calibration, changes in temperature, different instrumentation, purging, and user.
- The pH observed (5.53 Standard Units [SU]) only slightly exceeded the upper prediction limit of 5.483 SU and does not exhibit a statistically increasing trend.

For the reasons described above the SSI for pH was likely the result of natural groundwater variability or sampling error and not caused by a release from the CCR unit. Therefore, assessment monitoring will not be initiated as a result of the pH SSI.

4.0 CONCLUSION

This ASD has been prepared in response to SSIs identified for calcium, sulfate and pH in groundwater monitoring wells at the site. In accordance with § 257.94(e)(2), this ASD demonstrates that the SSIs are not the result of a release from the NAMU. Therefore, in accordance with § 257.94(e)(2), the NAMU will remain in detection monitoring.

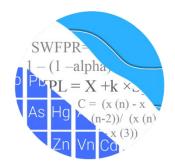
Table


Table 1.
Monitoring Well Network Summary

Well ID	Purpose	Installation Date	Northing	Easting	Total Hole Depth (feet)	Top of Casing Elevation (feet MSL)	Ground Elevation (feet MSL)	Top of Screen Elevation (feet MSL)	Bottom of Screen Elevation (feet MSL)
MW-11	Upgradient	5/2/2006	384797.922	1068943.907	32.00	25.24	23.22	-3.78	-8.78
MW-14	Upgradient	7/24/2015	384048.468	1068916.529	47.00	23.65	20.87	-11.83	-16.83
MW-15	Downgradient	7/24/2015	383503.877	1068571.153	37.00	21.53	18.69	-12.61	-17.61
MW-16	Downgradient	7/24/2015	383593.548	1067845.867	28.00	16.12	13.16	-6.94	-11.94
MW-17	Downgradient	7/24/2015	384781.265	1067808.459	27.00	15.41	12.59	-7.91	-12.91
MW-18	Upgradient	7/24/2015	385290.588	1068774.386	47.00	28.86	26.33	-10.27	-15.27
MW-19	Downgradient	7/26/2016	384157.41	1067711.624	30.00	24.42	21.56	-3.04	-8.04

Notes:

- 1. Northing and Easting are referenced to MS SPCS (NAD 83) East Zone U.S. Survey Feet (2301).
- 2. Elevations shown are referenced Mean Sea Level (MSL) to NAVD 88 (G12) U.S. Survey Feet.
- 3. MSL refers to Mean Sea Level.


Figure

Appendix A

1st Semi-Annual Monitoring Event

GROUNDWATER STATS CONSULTING

May 20, 2021

Southern Company Services Attn: Ms. Lauren Collins 3535 Colonnade Parkway Birmingham, AL 35243

Re: Plant Daniel North Ash Management Unit (NAMU)

2021 Annual Statistical Analysis – March 2021 Sample Event

Dear Ms. Collins,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of groundwater data for the 2021 Groundwater Monitoring Annual report for Mississippi Power Company's Plant Daniel NAMU. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at Daniel NAMU for the CCR program in 2016. The monitoring well network, as provided by Southern Company Services, consists of the following:

- o **Upgradient wells:** MW-11, MW-14, and MW-18
- o **Downgradient wells:** MW-15, MW-16, MW-17, and MW-19

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting.

The CCR program monitors the constituents listed below. The terms "parameters" and "constituents" are used interchangeably throughout this report.

 Appendix III (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A list of well/constituent pairs with 100% non-detects follow this letter.

For all constituents, a substitution of the most recent reporting limit is used for non-detect data. For calculating intrawell prediction limits, the substitution is performed for individual wells and may differ across wells. This generally gives the most conservative limit in each case. In the time series plots, a single reporting limit substitution is used across all wells for a given parameter since the wells are plotted as a group. Note that in the case of boron, the reporting limit increased to 0.08 mg/L from 0.05 mg/L in 2020 due to changing laboratory practices.

Time series plots for Appendix III parameters are provided for all wells and are used to evaluate concentrations over time as well as for the purpose of updating statistical limits (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graph; however, no values were flagged as outliers (Figure C). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

During the previous screening, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods were recommended. Power curves were provided with the screening to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below.

Summary of Statistical Methods:

Based on the evaluation for federal regulatory requirements, the following methods were selected for Appendix III constituents:

 Intrawell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS

The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. Parametric prediction limits (or tolerance limits or confidence intervals as applicable) are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The following approaches are used for handling non-detects (USEPA, 2009):

- No statistical analyses are required on wells and analytes containing 100% non-detects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Note that values shown on data pages reflect raw data and any non-detects that have been substituted with one-half of the reporting limit will be shown as the original reporting limit.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents are re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. While this was not required for this report, in some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly

detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening – Conducted in October 2017

Outlier and Trend Testing

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

No suspected outliers were observed in any of the data sets for Appendix III parameters. When any values are identified as outliers, they are plotted in a lighter font on the time series graph. A substitution of the most recent reporting limit was applied when varying detection limits existed in data.

No true seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed a few statistically significant decreasing and increasing trends. All trends noted were relatively low in magnitude when compared to average concentrations; therefore, no adjustments were made to any of the data sets.

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified variation among upgradient well data at Plant Daniel NAMU for the majority of the Appendix III parameters. This facility is a lined unit with pre-waste data; therefore, due to variation noted among upgradient wells, intrawell prediction limits were recommended for this facility to accommodate the groundwater quality. A summary table of the ANOVA results was included with the screening.

Summary of Background Update - Appendix III Parameters - November 2019

Prior to updating background data, samples were re-evaluated for Appendix III constituents at all wells using Tukey's outlier test and visual screening on all historical data through the April 2019 sample event. Only one value was noted by Tukey's as a potential outlier; however, when Tukey's outlier test detects an outlier for the most recent sample, it often will not be flagged in the event that the data precede a trend that is more representative of current concentrations. Therefore, no values for Appendix III constituents were flagged as outliers at the time of the screening. An updated summary of Tukey's test results was included with the screening.

The Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through June 2017 to the new compliance samples at each well through April 2019 to evaluate whether the groups are statistically different at the 99% confidence level for each of the Appendix III parameters. When no differences exist, background data sets may be updated to include newer data for construction of prediction limits. This results in statistical limits that are representative of present-day conditions. No statistically significant differences were found between the two groups except for the following: calcium and sulfate in well MW-15. Note that the Mann-Whitney test could not be produced due to insufficient variation in the data for boron in wells MW-14, MW-15, MW-16, MW-17, and MW-19.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background are not updated to include the newer data but will be reconsidered in the future. For all well/constituent pairs except for sulfate in well MW-15, due to the limited data available and the variability in data shows some of the more recent data has similar concentrations to those reported in background, these data sets were updated. In the case of calcium at well MW-15, while there is a statistically significant difference between the two medians, the magnitude of the difference is minimal, and newer data more accurately represent concentrations present in nearby wells. Therefore, the background for this well/constituent pair was updated with new data. A summary of these results was included in the 2019 Background Update report.

Statistical Analysis of Appendix III Parameters - March 2021

Intrawell prediction limits, combined with a 1-of-2 resample strategy, were established for each of the Appendix III parameters at each well using historical data through April 2019 for the March 2021 sample event (Figure D). Intrawell prediction limits use screened historical data within a given well to establish limits for parameters at that well. The most recent sample from each well were compared to the prediction limits to determine whether there are statistically significant increases (SSIs).

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary. Complete graphical results of the prediction limits may be found following this letter. Exceedances were identified for the following well/constituent pairs:

MW-17: SulfateMW-19: Calcium

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure E). Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. The existence of similar trends in both upgradient and downgradient wells is an

913.829.1470

indication of natural variability in groundwater that is unrelated to practices at the site. Although no statistically significant increasing trends were noted, statistically significant decreasing trends were identified for the following well/constituent pairs:

Decreasing:

MW-11 (upgradient): Sulfate
 MW-14 (upgradient): Calcium
 MW-18 (upgradient): Calcium

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Daniel North Ash Management Unit. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Tristan Clark

Tristan Clark

Groundwater Analyst

Andrew Collins Project Manager

Alollina

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG

100% Non-Detects

Analysis Run 5/18/2021 1:45 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Boron (mg/L) MW-16, MW-17, MW-19

Appendix III Trend Test - Prediction Limit Exceedances - Significant Results Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/18/2021, 3:59 PM

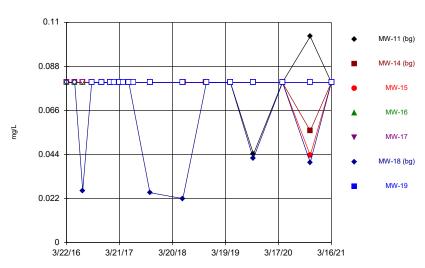
	Plant Daniel	Client: Southern C	ompany D	Data: NAMU CCR Printed 5/18/2021, 3:59 PM								
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Calcium (mg/L)	MW-14 (bg)	-0.5456	-91	-58	Yes	16	6.25	n/a	n/a	0.01	NP	
Calcium (mg/L)	MW-18 (bg)	-0.05969	-63	-58	Yes	16	0	n/a	n/a	0.01	NP	
Sulfate (mg/L)	MW-11 (ba)	-0.2963	-210	-152	Yes	31	16.13	n/a	n/a	0.01	NP	

Appendix III Trend Test - Prediction Limit Exceedances - All Results

Plant Daniel C	Client: Southern Co	ompany D	ata: NAMU Co	CR PI	rinted 5/18	3/2021, 3	:59 PM			
Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
MW-11 (bg)	0.007498	24	58	No	16	6.25	n/a	n/a	0.01	NP
MW-14 (bg)	-0.5456	-91	-58	Yes	16	6.25	n/a	n/a	0.01	NP
MW-18 (bg)	-0.05969	-63	-58	Yes	16	0	n/a	n/a	0.01	NP
MW-19	0.03558	26	58	No	16	0	n/a	n/a	0.01	NP
MW-11 (bg)	-0.2963	-210	-152	Yes	31	16.13	n/a	n/a	0.01	NP
MW-14 (bg)	-0.04474	-28	-58	No	16	31.25	n/a	n/a	0.01	NP
MW-17	0.2933	49	58	No	16	12.5	n/a	n/a	0.01	NP
MW-18 (bg)	-0.05772	-6	-58	No	16	6.25	n/a	n/a	0.01	NP
	Well MW-11 (bg) MW-14 (bg) MW-18 (bg) MW-19 MW-11 (bg) MW-14 (bg) MW-17	Well Slope MW-11 (bg) 0.007498 MW-14 (bg) -0.5456 MW-18 (bg) -0.05969 MW-19 0.03558 MW-11 (bg) -0.2963 MW-14 (bg) -0.04474 MW-17 0.2933	Well Slope Calc. MW-11 (bg) 0.007498 24 MW-14 (bg) -0.5456 -91 MW-18 (bg) -0.05969 -63 MW-19 0.03558 26 MW-11 (bg) -0.2963 -210 MW-14 (bg) -0.04474 -28 MW-17 0.2933 49	Well Slope Calc. Critical MW-11 (bg) 0.007498 24 58 MW-14 (bg) -0.5456 -91 -58 MW-18 (bg) -0.05969 -63 -58 MW-19 0.03558 26 58 MW-11 (bg) -0.2963 -210 -152 MW-14 (bg) -0.04474 -28 -58 MW-17 0.2933 49 58	Well Slope Calc. Critical Sig. MW-11 (bg) 0.007498 24 58 No MW-14 (bg) -0.5456 -91 -58 Yes MW-18 (bg) -0.05969 -63 -58 Yes MW-19 0.03558 26 58 No MW-11 (bg) -0.2963 -210 -152 Yes MW-14 (bg) -0.04474 -28 -58 No MW-17 0.2933 49 58 No	Well Slope Calc. Critical Sig. N MW-11 (bg) 0.007498 24 58 No 16 MW-14 (bg) -0.5456 -91 -58 Yes 16 MW-18 (bg) -0.05969 -63 -58 Yes 16 MW-19 0.03558 26 58 No 16 MW-11 (bg) -0.2963 -210 -152 Yes 31 MW-14 (bg) -0.04474 -28 -58 No 16 MW-17 0.2933 49 58 No 16	Well Slope Calc. Critical Sig. N %NDs MW-11 (bg) 0.007498 24 58 No 16 6.25 MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 MW-18 (bg) -0.05969 -63 -58 Yes 16 0 MW-19 0.03558 26 58 No 16 0 MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 MW-14 (bg) -0.04474 -28 -58 No 16 31.25 MW-17 0.2933 49 58 No 16 12.5	Well Slope Calc. Critical Sig. N %NDs Normality MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a MW-19 0.03558 26 58 No 16 0 n/a MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a MW-17 0.2933 49 58 No 16 12.5 n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a n/a MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a n/a MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a n/a MW-19 0.03558 26 58 No 16 0 n/a n/a MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a n/a MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a n/a MW-17 0.2933 49 58 No 16 12.5 n/a n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform Alpha MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a n/a 0.01 MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a n/a 0.01 MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a n/a 0.01 MW-19 0.03558 26 58 No 16 0 n/a n/a 0.01 MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a n/a 0.01 MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a n/a 0.01 MW-17 0.2933 49 58 No 16 12.5 n/a n/a 0.01

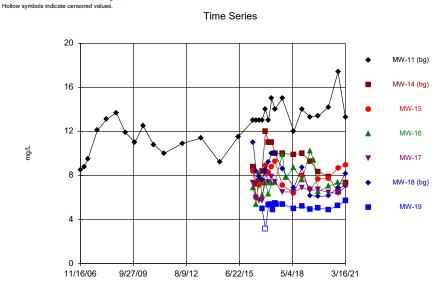
Appendix III Intrawell Prediction Limits - Significant Results

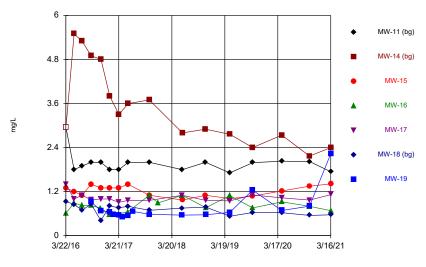
Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/19/2021, 4:44 PM


Constituent	Well	Upper Lim	. Lower Lim	n. Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%ND	s ND Adj.	Transform	m Alpha	Method
Calcium (mg/L)	MW-19	0.8608	n/a	3/16/2021	2.23	Yes 12	0.7847	0.06412	0	None	sqrt(x)	0.00188	Param Intra 1 of 2
Sulfate (mg/L)	MW-17	3.046	n/a	3/16/2021	3.06	Yes 12	1.349	0.1777	16.67	′ Kaplan-Mei	er sqrt(x)	0.00188	Param Intra 1 of 2

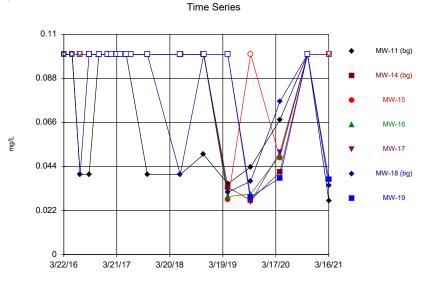
Appendix III Intrawell Prediction Limits - All Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/19/2021, 4:44 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Bg N Bg Mean Std. Dev. %NDs ND Adj. Method Date Observ. Transform Alpha Boron (mg/L) MW-11 n/a 3/16/2021 0.08ND No 12 n/a n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 3/16/2021 0.08ND Boron (mg/L) MW-14 0.08 n/a No 12 n/a n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Boron (mg/L) MW-15 0.08 n/a 3/16/2021 0.08ND 12 100 n/a 0.01077 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Boron (mg/L) 0.08 3/16/2021 0.08ND 75 MW-18 n/a No 12 n/a n/a n/a n/a 0.01077 Param Intra 1 of 2 Calcium (mg/L) MW-11 2.17 n/a 3/16/2021 No 12 12.03 4.544 8.333 None 0.00188 Calcium (mg/L) MW-14 6.114 3/16/2021 2.4 No 12 3.859 1.01 8.333 0.00188 Param Intra 1 of 2 n/a None No Calcium (mg/L) MW-15 1.535 n/a 3/16/2021 1.41 No 12 1.207 0.1472 0 None 0.00188 Param Intra 1 of 2 No Param Intra 1 of 2 Calcium (mg/L) MW-16 3/16/2021 0.681 13 0 0.00188 1.234 No 0.82 0.1886 None No n/a Calcium (mg/L) MW-17 1.4 n/a 3/16/2021 1.12 No 12 n/a 0 n/a 0.01077 NP Intra (normality) 1 of 2 n/a n/a 0.1448 Calcium (mg/L) MW-18 1.062 n/a 3/16/2021 0.57 No 12 0.7384 0 None No 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-19 0.8608 n/a 3/16/2021 2.23 Yes 12 0.7847 0.06412 0 None sqrt(x) 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-11 15.58 n/a 3/16/2021 13.3 No 12.12 1.814 0 None No 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-14 12.79 n/a 3/16/2021 7.32 Nο 12 9.592 1.433 0 None Nο 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-15 10.08 n/a 3/16/2021 8.94 No 12 7.696 1.067 0 None 0.00188 Param Intra 1 of 2 3/16/2021 7.14 Param Intra 1 of 2 Chloride (mg/L) MW-16 10.64 13 7.623 1.377 0 0.00188 n/a No None No Chloride (mg/L) MW-17 8.675 3/16/2021 6.97 12 6.845 0.8197 0 None 0.00188 Param Intra 1 of 2 n/a No No Chloride (mg/L) MW-18 3/16/2021 8.18 12 8.581 1.361 0 0.00188 Param Intra 1 of 2 11.62 n/a No None No Chloride (mg/L) MW-19 5.783 3/16/2021 5.72 No 12 3601 1285 8.333 None x^5 0.00188 Param Intra 1 of 2 n/a Fluoride (mg/L) MW-11 0.1 3/16/2021 0.0269J 12 50 0.01077 NP Intra (normality) 1 of 2 n/a No n/a n/a n/a n/a NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-14 0.1 n/a 3/16/2021 0 1ND Nο 12 n/a n/a 91 67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-15 0.1 n/a 3/16/2021 0.1ND No 12 n/a n/a 91.67 n/a 0.01077 Fluoride (mg/L) NP Intra (NDs) 1 of 2 MW-16 0.1 n/a 3/16/2021 0.1ND No 12 n/a n/a 91.67 n/a n/a 0.01077 12 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-17 0.1 n/a 3/16/2021 0.1ND No 100 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-18 0.1 n/a 3/16/2021 0.0344J No 12 n/a n/a 75 n/a n/a 0.01077 Fluoride (mg/L) MW-19 0.1 n/a 3/16/2021 0.0376J No 12 n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 pH (SU) MW-11 4.992 4.437 3/16/2021 4.72 13 4 715 0.1267 0 0.0009398 Param Intra 1 of 2 No None No pH (SU) MW-14 5.663 4.563 3/16/2021 5.06 No 12 5.113 0.2464 0 None No 0.0009398 Param Intra 1 of 2 3/16/2021 4.65 12 Param Intra 1 of 2 pH (SU) MW-15 5.04 4.32 No 4.68 0.1615 0 None No 0.0009398 pH (SU) MW-16 4.866 4.367 3/16/2021 4.62 No 12 4 617 0.1118 0 None No 0.0009398 Param Intra 1 of 2 pH (SU) MW-17 5.411 4.605 3/16/2021 5 No 12 5.008 0.1805 0 None No 0.0009398 Param Intra 1 of 2 pH (SU) MW-18 4.829 4.401 3/16/2021 4.68 No 12 4.615 0.09587 0 None Nο 0.0009398 Param Intra 1 of 2 0.0009398 pH (SU) MW-19 5.483 4.668 3/16/2021 5.35 No 13 5.075 0.1858 0 Param Intra 1 of 2 Sulfate (mg/L) MW-11 9.808 3/16/2021 2.15 27 4.944 2.552 0.00188 Param Intra 1 of 2 n/a Nο 18.52 Kaplan-Meier No. Sulfate (mg/L) MW-14 5 n/a 3/16/2021 2.23 No 12 41.67 0.01077 NP Intra (normality) 1 of 2 n/a n/a n/a n/a 3/16/2021 1.07 NP Intra (NDs) 1 of 2 Sulfate (mg/L) MW-15 5 12 75 0.01077 n/a No n/a n/a n/a n/a Sulfate (mg/L) MW-16 5 n/a 3/16/2021 2 No 12 n/a 66.67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) MW-17 3.046 n/a 3/16/2021 3.06 Yes 12 1.349 0.1777 Kaplan-Meier sqrt(x) 0.00188 Param Intra 1 of 2 16.67 Sulfate (mg/L) MW-18 5.327 n/a 3/16/2021 3.18 No 12 3 897 0.6408 8.333 None No 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-19 5 n/a 3/16/2021 2.72 No 12 n/a n/a 58.33 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Total Dissolved Solids (mg/L) MW-11 82.24 n/a 3/16/2021 39 No 12 42.67 17.73 0 None No 0.00188 Param Intra 1 of 2 3/16/2021 Total Dissolved Solids (mg/L) MW-14 n/a No 12 38 17.39 0 No 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) 3/16/2021 34 MW-15 58.47 13 25.23 0.00188 Param Intra 1 of 2 n/a Nο 15.16 0 None Nο Total Dissolved Solids (mg/L) MW-16 66.28 3/16/2021 27 12 23.33 19.24 25 0.00188 Param Intra 1 of 2 n/a No Kaplan-Meier 3/16/2021 37 12 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-17 44.84 n/a No 23.81 9.424 8.333 None 0.00188 No Total Dissolved Solids (mg/L) MW-18 51.36 3/16/2021 31 No 12 26.33 0 0.00188 Param Intra 1 of 2 n/a 11.21 None No Total Dissolved Solids (mg/L) MW-19 46.26 3/16/2021 25 12 20.63 8.333 0.00188 Param Intra 1 of 2 n/a No 11.48 None No


FIGURE A.

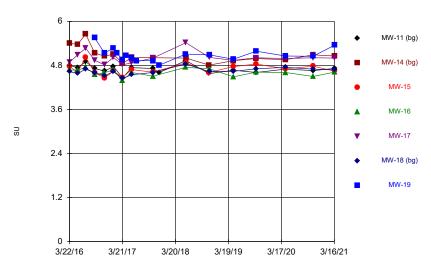

Constituent: Boron Analysis Run 5/19/2021 4:30 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Constituent: Chloride Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

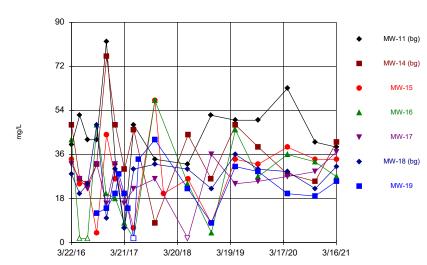
Time Series

Constituent: Calcium Analysis Run 5/19/2021 4:30 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

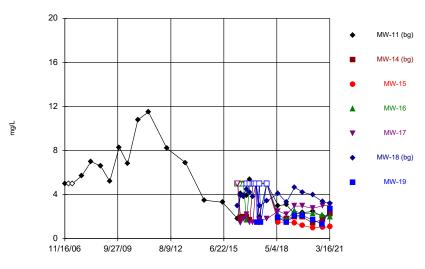
Constituent: Fluoride Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Time Series

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Time Series

Constituent: Sulfate Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Constituent: Boron (mg/L) Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

		MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/20	016			<0.08 (B1)	<0.08 (B1)	<0.08 (B1)	<0.08 (B1)	
3/23/20	016	<0.08 (B1)	<0.08 (B1)					
5/18/20	016	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
7/11/20	016				<0.08			
7/12/20	016	<0.08	<0.08	<0.08		<0.08	0.026 (J)	
9/12/20	016	<0.08	<0.08	<0.08		<0.08	<0.08	<0.08
9/13/20	016				<0.08			
11/17/2	2016				<0.08			
11/18/2	2016	<0.08				<0.08	<0.08	<0.08
11/19/2	2016		<0.08	<0.08				
1/18/20	017		<0.08		<0.08	<0.08	<0.08	<0.08
1/19/20	017	<0.08		<0.08				
2/10/20	017							<0.08
3/21/20	017			<0.08	<0.08	<0.08	<0.08	<0.08
3/22/20	017	<0.08	<0.08					
4/14/20	017							<0.08
5/23/20	017			<0.08	<0.08			<0.08
5/24/20	017	<0.08	<0.08			<0.08	<0.08	
6/26/20	017							<0.08
10/17/2	2017	<0.08	<0.08	<0.08	<0.08	<0.08	0.025 (J)	<0.08
5/31/20	018	<0.08			<0.08	<0.08	0.022 (J)	<0.08
6/1/20	18		<0.08	<0.08				
11/7/20	018	<0.08	<0.08	<0.08				
11/8/20	018				<0.08	<0.08	<0.08	<0.08
4/22/20	019	<0.08			<0.08	<0.08	<0.08	<0.08
4/23/20	019		<0.08	<0.08				
9/26/20	019		<0.08	<0.08	<0.08	<0.08	0.042 (J)	<0.08
9/27/20	019	0.0443 (J)						
4/13/20	020	<0.08	<0.08	<0.08		<0.08		<0.08
4/14/20	020				<0.08		<0.08	
10/21/2	2020				<0.08			<0.08
10/22/2	2020	0.103	0.0559 (J)	0.0437 (J)		<0.08	0.0401 (J)	
3/16/20	021	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

Constituent: Calcium (mg/L) Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

						. ,		
		MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/	/22/2016			1.3 (B1)	0.61 (B1)	1.4 (B1)	0.93 (B1)	
3/	/23/2016	<5.9 (*)	<5.9 (*)					
5/	/18/2016	1.8	5.5	1.2	0.89	1	0.85	
7/	/11/2016				0.82			
7/	/12/2016	1.9	5.3	1.1		1.1	0.69	
9/	/12/2016	2	4.9	1.4		0.98	0.86	0.92
9/	/13/2016				0.82			
11	1/17/2016				0.75			
11	1/18/2016	2				1	0.41	0.68
11	1/19/2016		4.8	1.3				
1/	18/2017		3.8		0.58	1	0.81	0.64
1/	/19/2017	1.8		1.3				
2/	10/2017							0.58
3/	21/2017			1.3	0.6	0.91	0.76	0.56
3/	/22/2017	1.8	3.3					
4/	14/2017							0.51
5/	/23/2017			1.4	0.65			0.54
5/	/24/2017	2	3.6			0.96	0.8	
6/	/26/2017							0.66
10	0/17/2017	2	3.7	1.1	1.1	0.96	0.69	0.58
12	2/15/2017				0.89 (RS)			
5/	/31/2018	1.8			1.1	1.1	0.75	0.56
6/	/1/2018		2.8	0.97				
11	1/7/2018	2	2.9	1.1				
11	1/8/2018				0.76	0.96	0.78	0.57
4/	/22/2019	1.71			1.09	0.946	0.531	0.634
4/	/23/2019		2.76	1.01				
9/	/26/2019		2.4	1.08	0.758	1.11	0.631	1.24
9/	27/2019	1.99						
4/	/13/2020	2.03	2.74	1.22		1.03		0.687
4/	/14/2020				0.92		0.627	
10	0/21/2020				0.798			0.806
10	0/22/2020	2.02	2.17	1.35		0.969	0.553	
3/	16/2021	1.74	2.4	1.41	0.681	1.12	0.57	2.23

Constituent: Chloride (mg/L) Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

						,	
	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
11/16/2006	8.5						
2/5/2007	8.8						
4/12/2007	9.5						
10/17/2007							
4/17/2008	13.1						
10/24/2008							
4/21/2009	11.9						
10/26/2009							
4/12/2010	12.5						
10/30/2010							
5/25/2011	10						
5/25/2012	10.9						
5/28/2013	11.4						
5/31/2014	9.2						
5/29/2015	11.5						
3/22/2016			8.4 (B1)	6.9 (B1)	7.3 (B1)	11 (B1)	
3/23/2016	13	8.8 (B1)	- (= -)	- ()	- ()	(/	
5/18/2016	13	7.2	6	5.4	6	8.4	
7/11/2016		- 	-	8.1	-	-	
7/12/2016	13	7.5	7.1	U	5.7	7.9	
9/12/2016	13	8.4	7.3		5.7	7.6	5
9/13/2016	.0		•	6.2			-
11/17/2016	S			7.3			
11/18/2016				7.0	8.2	8.5	<6.3 (*)
11/19/2016		12	8.9		J.2	0.0	-0.0 ()
1/18/2017	•	11	0.0	6.3	7.4	9.2	5.3
1/19/2017	13		8.3	0.0	7.4	J. <u>L</u>	0.0
2/10/2017	.0		0.0				5.4
3/21/2017			8.8	7.3	7.9	10	5.3
3/21/2017	15	11	0.0	7.5	7.5	10	5.5
4/14/2017	13	11					4.9 (B)
5/23/2017			9.3	7.4			4.9 (B) 5.5
5/23/2017	14	10	3.3	7.4	7.4	10	5.5
6/26/2017	14	10			7.4	10	5.4
	7 15	10	7.1	0.0	6.5	8.6	
10/17/2017		10	7.1	9.9	6.5	8.6	5.4
12/19/2017				7.8 (RS)	6.6	6.0	_
5/31/2018	12	0.0	6.4	8.7	6.5	6.9	5
6/1/2018	14	9.9	6.4				
11/7/2018	14	10	8	7.0	0.0	0.7	F.0
11/8/2018	10.5			7.6	6.9	8.7	5.2
4/22/2019	13.3	0.2	6.75	10.2	6.64	6.17	4.91
4/23/2019		9.3	6.75	0.4			
6/25/2019		0.05	7.00	9.4	0.7	0.00	F.60
9/26/2019		8.35	7.66	6.54	6.7	6.09	5.03
9/27/2019	13.4						, -
4/13/2020	14.2	7.9	7.74	_	6.46	_	4.9
4/14/2020				7.03		6.15	
10/21/2020				7.36			5.25
10/22/2020		6.5	8.69		6.37	6.89	
3/16/2021	13.3	7.32	8.94	7.14	6.97	8.18	5.72

Constituent: Fluoride (mg/L) Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

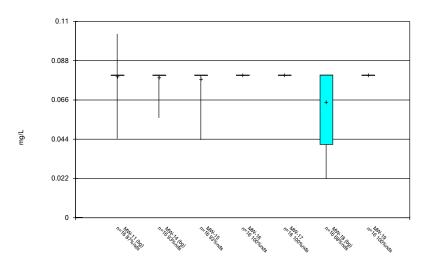
	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			<0.1 (B1)	<0.1 (B1)	<0.1 (B1)	<0.1 (B1)	
3/23/2016	<0.1	<0.1 (B1)					
5/18/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
7/11/2016				<0.1			
7/12/2016	0.04 (J)	<0.1	<0.1		<0.1	0.04 (J)	
9/12/2016	0.04 (J)	<0.1	<0.1		<0.1	<0.1	<0.1
9/13/2016				<0.1			
11/17/2016				<0.1			
11/18/2016	<0.1				<0.1	<0.1	<0.1
11/19/2016		<0.1	<0.1				
1/18/2017		<0.1		<0.1	<0.1	<0.1	<0.1
1/19/2017	<0.1		<0.1				
2/10/2017							<0.1
3/21/2017			<0.1	<0.1	<0.1	<0.1	<0.1
3/22/2017	<0.1	<0.1					
4/14/2017							<0.1
5/23/2017			<0.1	<0.1			<0.1
5/24/2017	<0.1	<0.1			<0.1	<0.1	
6/26/2017							<0.1
10/17/2017	0.04 (J)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
5/31/2018	0.04 (J)			<0.1	<0.1	0.04 (J)	<0.1
6/1/2018		<0.1	<0.1				
11/7/2018	0.05 (J)	<0.1	<0.1				
11/8/2018				<0.1	<0.1	<0.1	<0.1
4/22/2019	0.0353 (J)			0.029 (J)	<0.1	0.0311 (J)	<0.1
4/23/2019		0.0335 (J)	0.0275 (J)				
9/26/2019		0.0272 (J)	<0.1	0.0302 (J)	0.0263 (J)	0.0366 (J)	0.0287 (J)
9/27/2019	0.0438 (J)						
4/13/2020	0.0672 (J)	0.0411 (J)	0.0484 (J)		0.0511 (J)		0.0382 (J)
4/14/2020				0.0496 (J)		0.0764 (J)	
10/21/2020				<0.1			<0.1
10/22/2020	<0.1	<0.1	<0.1		<0.1	<0.1	
3/16/2021	0.0269 (J)	<0.1	<0.1	<0.1	<0.1	0.0344 (J)	0.0376 (J)

Constituent: pH (SU) Analysis Run 5/19/2021 4:31 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			4.77	4.68	4.89	4.63	
3/23/2016	4.8	5.4					
5/18/2016	4.74	5.38	4.62	4.67	5.09	4.58	
7/11/2016				4.75			
7/12/2016	4.9	5.65	5.03		5.27	4.7	
9/12/2016	4.72	5.14	4.6		4.94	4.6	5.55
9/13/2016				4.56			
11/17/2016				4.6			
11/18/2016	4.65				4.82	4.52	5.14
11/19/2016		5.05	4.46				
1/18/2017		5.11		4.68	5.02	4.63	5.27
1/19/2017	4.77		4.65				
2/10/2017							5.14
3/21/2017			4.47	4.39	4.82	4.45	4.96
3/22/2017	4.46	4.86					
4/14/2017							5.07
5/23/2017			4.69	4.61			5.01
5/24/2017	4.74	5.02			4.87	4.55	
6/26/2017							4.93
10/17/2017	4.72	5.01	4.62	4.51	5	4.61	4.93
11/30/2017	4.61						4.81
5/31/2018	4.93			4.75	5.42	4.84	5.11
6/1/2018		5	4.87				
11/7/2018	4.58	4.81	4.61				
11/8/2018				4.71	5.02	4.63	5.09
4/22/2019	4.67			4.49	4.94	4.64	4.97
4/23/2019		4.93	4.77				
9/26/2019		4.99	4.84	4.62	5.01	4.71	5.19
9/27/2019	4.61						
4/13/2020	4.7	4.96	4.71		4.99		5.06
4/14/2020				4.61		4.75	
10/21/2020				4.5			5.05
10/22/2020	4.66	5.09	4.78		5.01	4.7	
3/16/2021	4.72	5.06	4.65	4.62	5	4.68	5.35

Constituent: Sulfate (mg/L) Analysis Run 5/19/2021 4:31 PM Plant Daniel Client: Southern Company Data: NAMU CCR

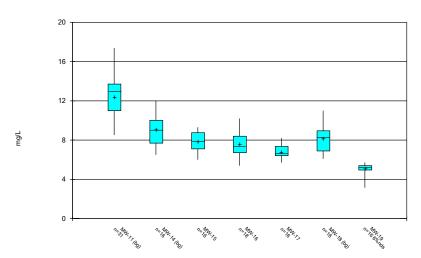
		MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
1	11/16/2006	5						
	2/5/2007	<5						
	1/12/2007	<5						
	10/17/2007	5.7						
	1/17/2008	7						
	10/24/2008	6.6						
	1/21/2009	5.2						
	10/26/2009	8.3						
	1/12/2010	6.8						
	10/30/2010	10.8						
	5/25/2011	11.5						
	5/25/2012	8.2						
	5/28/2013	6.9						
	5/31/2014	3.5						
	5/29/2015	3.3		_	_	_	240	
	3/22/2016		_	<5	<5	<5	3 (J)	
	3/23/2016	1.8 (J)	<5		_			
	5/18/2016	4.1	1.9	<5	<5	1.4	3.9 (J)	
	7/11/2016				<5			
	7/12/2016	3.8 (J)	2 (J)	<5		1.8 (J)	3.9 (J)	
	9/12/2016	3.9 (J)	2 (J)	<5		2.2 (J)	4.5 (J)	<5
	9/13/2016				1.7 (J)			
1	11/17/2016				<5			
1	11/18/2016	5.4				1.5 (J)	4.2 (J)	<5
1	11/19/2016		1.7 (J)	<5				
1	1/18/2017		<5		<5	1.5 (J)	3.8 (J)	<5
1	1/19/2017	<5		<5				
2	2/10/2017							<5
3	3/21/2017			<5	<5	<5	<5 (*)	<5
3	3/22/2017	<5	<5					
4	1/14/2017							1.5 (J)
	5/23/2017			<5	<5			<5
	5/24/2017	2 (J)	<5			1.7 (J)	3 (J)	
	6/26/2017	. ,				ν-/	` '	1.5 (J)
	10/17/2017	<5	<5	<5	<5	1.8 (J)	3.4 (J)	<5
	5/31/2018	3 (J)	-	-	2.2 (J)	2.5 (J)	4.1 (J)	1.9 (J)
	6/1/2018	- (-/	1.8 (J)	1.5 (J)	(-)	(0)	(3)	(0)
	11/7/2018	3.1 (J)	1.8 (J)	1.5 (J)				
	11/8/2018	J. 1 (U)	(0)	1.0 (0)	1.7 (J)	2.2 (J)	3.3 (J)	15/1
	1/22/2019	2 22			2.52		3.3 (J) 4.66	1.5 (J) 2.09
		2.22	1.00	1.40	2.52	2.96	4.00	2.09
	1/23/2019		1.99	1.43	2.20	2.00	4.00	0.4
	9/26/2019	0.00	1.95	1.2	2.28	2.96	4.23	2.1
	9/27/2019	2.36						
	1/13/2020	2.47	1.43	0.992 (J)		2.75		1.69
	1/14/2020				2.27		3.96	
	10/21/2020				2.15			1.31
1	10/22/2020	2.01	1.76	1.04		2.98	3.37	
3	3/16/2021	2.15	2.23	1.07	2	3.06	3.18	2.72


Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/19/2021 4:31 PM

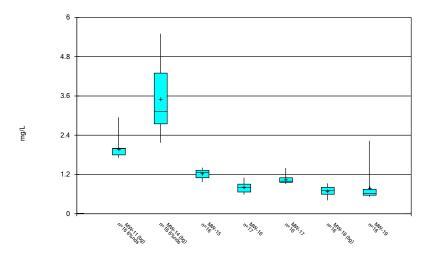
Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			34 (B1)	42 (B1)	32 (B1)	28 (B1)	
3/23/2016	40	48 (B1)					
5/18/2016	52	26	24	<3.4	26	20	
7/11/2016				<3.4			
7/12/2016	42	24	24		22	24	
9/12/2016	42	32	4 (J)		32	48	12
9/13/2016				48			
11/17/2016				20			
11/18/2016	82				16	10	14
11/19/2016		76	44				
1/18/2017		48		18	32	30	20
1/19/2017	32		26				
2/10/2017							28
3/21/2017			20	8	16	6	20
3/22/2017	6	30					
4/14/2017							14
5/23/2017			6	<3.4			<3.4
5/24/2017	48	46			22	30	
6/26/2017							34
10/17/2017	34	8	58	58	26	32	42
12/15/2017			20 (RS)				
5/31/2018	32			24	<3.4	30	22
6/1/2018		44	26				
11/7/2018	52	26	8				
11/8/2018				4 (J)	36	22	8
4/22/2019	50			46	24	36	31
4/23/2019		48	34				
9/26/2019		39	32	27	25	30	29
9/27/2019	50						
4/13/2020	63	28	39		27		20
4/14/2020				36		29	
10/21/2020				33			19
10/22/2020	41	25	34		29	22	
3/16/2021	39	41	34	27	37	31	25

FIGURE B.

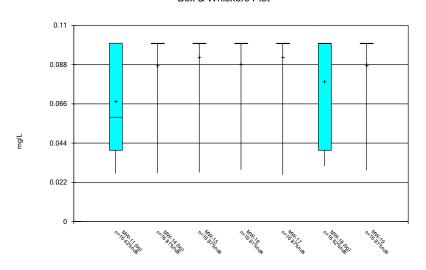

Box & Whiskers Plot

Constituent: Boron Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas[™] v.9.6.28 Groundwater Stats Consulting. UG

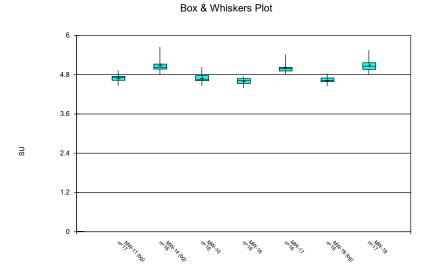
Box & Whiskers Plot

Constituent: Chloride Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Box & Whiskers Plot

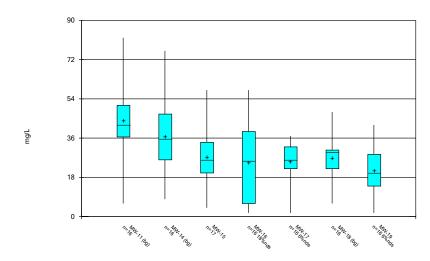
Constituent: Calcium Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

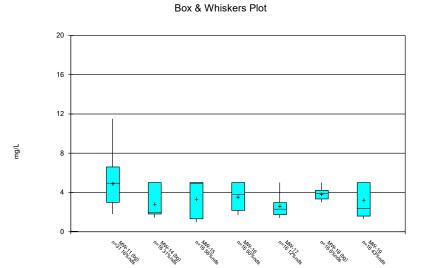
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Box & Whiskers Plot

Constituent: Fluoride Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Constituent: pH Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Constituent: Sulfate Analysis Run 5/19/2021 4:32 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

FIGURE C.

Outlier Summary

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/17/2021, 2:36 PM

No outliers were flagged.

FIGURE D.

Appendix III Intrawell Prediction Limits - Significant Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/19/2021, 4:44 PM

Constituent	Well	Upper Lim	. Lower Lim	n. Date	Observ.	Sig. Bg N	Bg Mean	Std. Dev.	%ND	s ND Adj.	Transform	m Alpha	Method
Calcium (mg/L)	MW-19	0.8608	n/a	3/16/2021	2.23	Yes 12	0.7847	0.06412	0	None	sqrt(x)	0.00188	Param Intra 1 of 2
Sulfate (mg/L)	MW-17	3.046	n/a	3/16/2021	3.06	Yes 12	1.349	0.1777	16.67	′ Kaplan-Mei	er sqrt(x)	0.00188	Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/19/2021, 4:44 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Bg N Bg Mean Std. Dev. %NDs ND Adj. Method Date Observ. Transform Alpha Boron (mg/L) MW-11 n/a 3/16/2021 0.08ND No 12 n/a n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 3/16/2021 0.08ND Boron (mg/L) MW-14 0.08 n/a No 12 n/a n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Boron (mg/L) MW-15 0.08 n/a 3/16/2021 0.08ND 12 100 n/a 0.01077 NP Intra (NDs) 1 of 2 NP Intra (NDs) 1 of 2 Boron (mg/L) 0.08 3/16/2021 0.08ND 75 MW-18 n/a No 12 n/a n/a n/a n/a 0.01077 Param Intra 1 of 2 Calcium (mg/L) MW-11 2.17 n/a 3/16/2021 No 12 12.03 4.544 8.333 None 0.00188 Calcium (mg/L) MW-14 6.114 3/16/2021 2.4 No 12 3.859 1.01 8.333 0.00188 Param Intra 1 of 2 n/a None No Calcium (mg/L) MW-15 1.535 n/a 3/16/2021 1.41 No 12 1.207 0.1472 0 None 0.00188 Param Intra 1 of 2 No Param Intra 1 of 2 Calcium (mg/L) MW-16 3/16/2021 0.681 13 0 0.00188 1.234 No 0.82 0.1886 None No n/a Calcium (mg/L) MW-17 1.4 n/a 3/16/2021 1.12 No 12 n/a 0 n/a 0.01077 NP Intra (normality) 1 of 2 n/a n/a 0.1448 Calcium (mg/L) MW-18 1.062 n/a 3/16/2021 0.57 No 12 0.7384 0 None No 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-19 0.8608 n/a 3/16/2021 2.23 Yes 12 0.7847 0.06412 0 None sqrt(x) 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-11 15.58 n/a 3/16/2021 13.3 No 12.12 1.814 0 None No 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-14 12.79 n/a 3/16/2021 7.32 Nο 12 9.592 1.433 0 None Nο 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-15 10.08 n/a 3/16/2021 8.94 No 12 7.696 1.067 0 None 0.00188 Param Intra 1 of 2 3/16/2021 7.14 Param Intra 1 of 2 Chloride (mg/L) MW-16 10.64 13 7.623 1.377 0 0.00188 n/a No None No Chloride (mg/L) MW-17 8.675 3/16/2021 6.97 12 6.845 0.8197 0 None 0.00188 Param Intra 1 of 2 n/a No No Chloride (mg/L) MW-18 3/16/2021 8.18 12 8.581 1.361 0 0.00188 Param Intra 1 of 2 11.62 n/a No None No Chloride (mg/L) MW-19 5.783 3/16/2021 5.72 No 12 3601 1285 8.333 None x^5 0.00188 Param Intra 1 of 2 n/a Fluoride (mg/L) MW-11 0.1 3/16/2021 0.0269J 12 50 0.01077 NP Intra (normality) 1 of 2 n/a No n/a n/a n/a n/a NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-14 0.1 n/a 3/16/2021 0 1ND Nο 12 n/a n/a 91 67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-15 0.1 n/a 3/16/2021 0.1ND No 12 n/a n/a 91.67 n/a 0.01077 Fluoride (mg/L) NP Intra (NDs) 1 of 2 MW-16 0.1 n/a 3/16/2021 0.1ND No 12 n/a n/a 91.67 n/a n/a 0.01077 12 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-17 0.1 n/a 3/16/2021 0.1ND No 100 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-18 0.1 n/a 3/16/2021 0.0344J No 12 n/a n/a 75 n/a n/a 0.01077 Fluoride (mg/L) MW-19 0.1 n/a 3/16/2021 0.0376J No 12 n/a 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 pH (SU) MW-11 4.992 4.437 3/16/2021 4.72 13 4 715 0.1267 0 0.0009398 Param Intra 1 of 2 No None No pH (SU) MW-14 5.663 4.563 3/16/2021 5.06 No 12 5.113 0.2464 0 None No 0.0009398 Param Intra 1 of 2 3/16/2021 4.65 12 Param Intra 1 of 2 pH (SU) MW-15 5.04 4.32 No 4.68 0.1615 0 None No 0.0009398 pH (SU) MW-16 4.866 4.367 3/16/2021 4.62 No 12 4 617 0.1118 0 None No 0.0009398 Param Intra 1 of 2 pH (SU) MW-17 5.411 4.605 3/16/2021 5 No 12 5.008 0.1805 0 None No 0.0009398 Param Intra 1 of 2 pH (SU) MW-18 4.829 4.401 3/16/2021 4.68 No 12 4.615 0.09587 0 None Nο 0.0009398 Param Intra 1 of 2 0.0009398 pH (SU) MW-19 5.483 4.668 3/16/2021 5.35 No 13 5.075 0.1858 0 Param Intra 1 of 2 Sulfate (mg/L) MW-11 9.808 3/16/2021 2.15 27 4.944 2.552 0.00188 Param Intra 1 of 2 n/a Nο 18.52 Kaplan-Meier No. Sulfate (mg/L) MW-14 5 n/a 3/16/2021 2.23 No 12 41.67 0.01077 NP Intra (normality) 1 of 2 n/a n/a n/a n/a 3/16/2021 1.07 NP Intra (NDs) 1 of 2 Sulfate (mg/L) MW-15 5 12 75 0.01077 n/a No n/a n/a n/a n/a Sulfate (mg/L) MW-16 5 n/a 3/16/2021 2 No 12 n/a 66.67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) MW-17 3.046 n/a 3/16/2021 3.06 Yes 12 1.349 0.1777 Kaplan-Meier sqrt(x) 0.00188 Param Intra 1 of 2 16.67 Sulfate (mg/L) MW-18 5.327 n/a 3/16/2021 3.18 No 12 3 897 0.6408 8.333 None No 0.00188 Param Intra 1 of 2 Sulfate (mg/L) MW-19 5 n/a 3/16/2021 2.72 No 12 n/a n/a 58.33 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Total Dissolved Solids (mg/L) MW-11 82.24 n/a 3/16/2021 39 No 12 42.67 17.73 0 None No 0.00188 Param Intra 1 of 2 3/16/2021 Total Dissolved Solids (mg/L) MW-14 n/a No 12 38 17.39 0 No 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) 3/16/2021 34 MW-15 58.47 13 25.23 0.00188 Param Intra 1 of 2 n/a Nο 15.16 0 None Nο Total Dissolved Solids (mg/L) MW-16 66.28 3/16/2021 27 12 23.33 19.24 25 0.00188 Param Intra 1 of 2 n/a No Kaplan-Meier 3/16/2021 37 12 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-17 44.84 n/a No 23.81 9.424 8.333 None 0.00188 No Total Dissolved Solids (mg/L) MW-18 51.36 3/16/2021 31 No 12 26.33 0 0.00188 Param Intra 1 of 2 n/a 11.21 None No Total Dissolved Solids (mg/L) MW-19 46.26 3/16/2021 25 12 20.63 8.333 0.00188 Param Intra 1 of 2 n/a No 11.48 None No

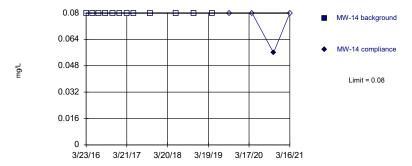
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values

Prediction Limit Within Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

> Constituent: Boron Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

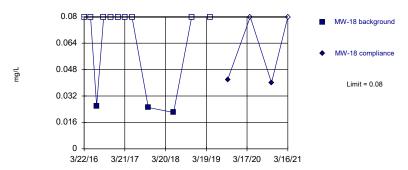
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Prediction Limit Within Limit Intrawell Non-parametric 0.08 MW-15 background 0.064 MW-15 compliance 0.048 Limit = 0.08 0.032 0.016 3/22/16 3/21/17 3/20/18 3/19/19 3/17/20 3/16/21

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

> Constituent: Boron Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

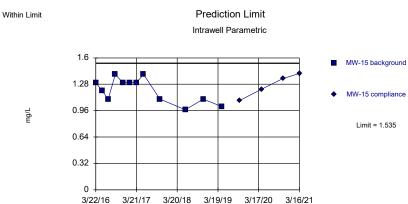
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

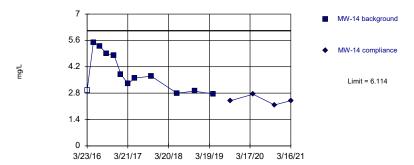
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit


Prediction Limit
Intrawell Parametric

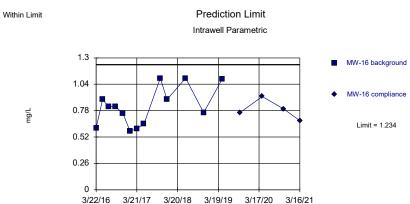
Background Data Summary (based on x^4 transformation): Mean=12.03, Std. Dev.=4.544, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8072, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=1.207, Std. Dev.=0.1472, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9076, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=3.859, Std. Dev.=1.01, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8805, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=0.82, Std. Dev.=0.1886, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9011, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

0

Within Limit

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Intrawell Non-parametric

MW-17 background

MW-17 compliance

Limit = 1.4

3/22/16 3/21/17 3/20/18 3/19/19 3/17/20 3/16/21

Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Calcium Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

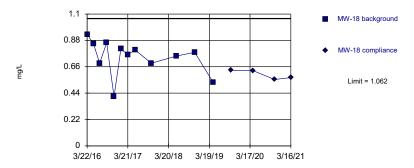
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Exceeds Limit Intrawell Parametric

MW-19 background

AMW-19 compliance

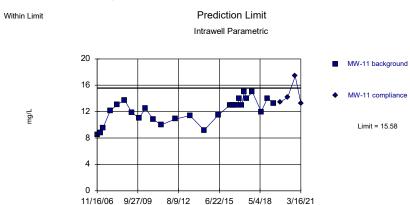
1.8


1.2

0.6

9/12/16 8/7/17 7/2/18 5/27/19 4/20/20 3/16/21

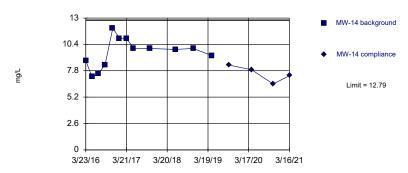
Background Data Summary (based on square root transformation): Mean=0.7847, Std. Dev.=0.06412, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8069, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=0.7384, Std. Dev.=0.1448, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9007, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Calcium Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Background Data Summary: Mean=12.12, Std. Dev.=1.814, n=27. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9502, critical = 0.894. Kappa = 1.906 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

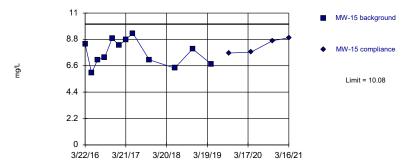
Within Limit Prediction Limit

Background Data Summary: Mean=9.592, Std. Dev.=1.433, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9613, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Constituent: Chloride Analysis Run 5/19/2021 4:41 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

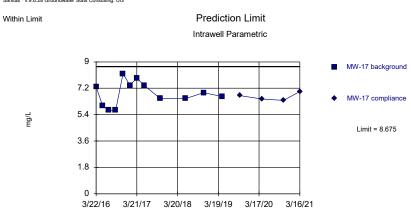
Within Limit
Intrawell Parametric


MW-16 background

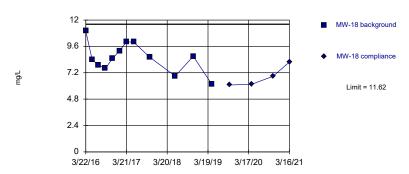
MW-16 compliance

Limit = 10.64

Background Data Summary: Mean=7.623, Std. Dev.=1.377, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9538, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

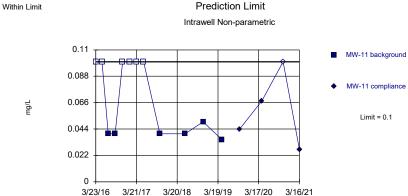

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=7.696, Std. Dev.=1.067, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9552, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Chloride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

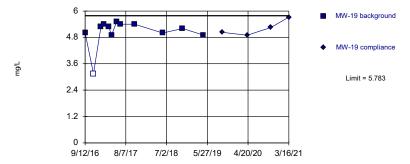
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=6.845, Std. Dev.=0.8197, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9524, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Prediction Limit Within Limit Intrawell Parametric

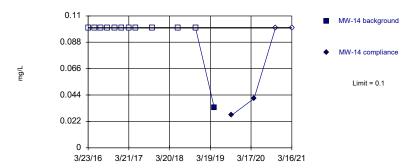
Background Data Summary: Mean=8.581, Std. Dev.=1.361, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9827, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Chloride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. 50% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

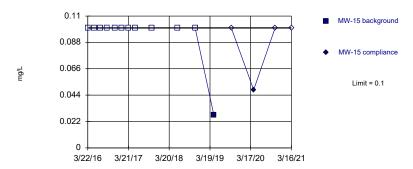


Background Data Summary (based on x^5 transformation): Mean=3601, Std. Dev.=1285, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8476, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Chloride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit

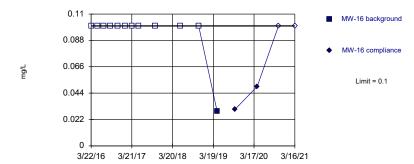
Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Fluoride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

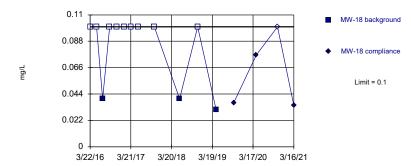
 $\mbox{Sanitas}^{\mbox{\tiny{IM}}} \ \mbox{v.9.6.28 Groundwater Stats Consulting. UG} \\ \mbox{Hollow symbols indicate censored values.} \\$


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

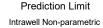
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

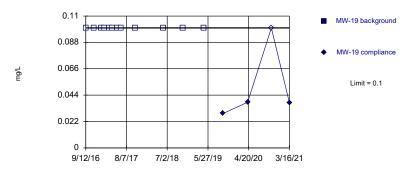
Intrawell Non-parametric


Prediction Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Fluoride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas $^{\text{\tiny{to}}}$ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

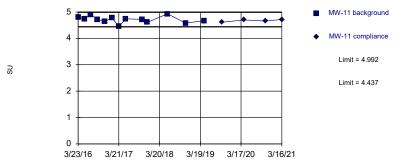

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

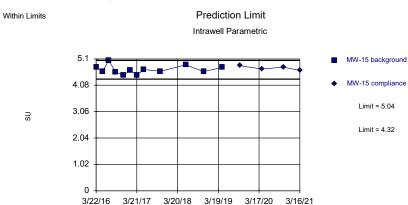
> Constituent: Fluoride Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Prediction Limit Within Limits Intrawell Parametric MW-14 background MW-14 compliance Limit = 5.663 3.6 Limit = 4.563 2.4 1.2 3/23/16 3/21/17 3/20/18 3/19/19 3/17/20 3/16/21

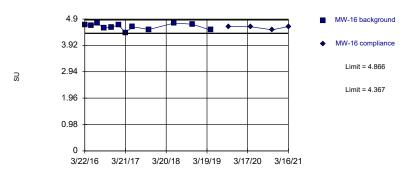
Background Data Summary: Mean=5.113, Std. Dev.=0.2464, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9046, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Prediction Limit Within Limits Intrawell Parametric

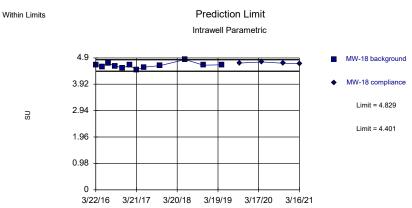
Background Data Summary: Mean=4.715, Std. Dev.=0.1267, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9755, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: pH Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

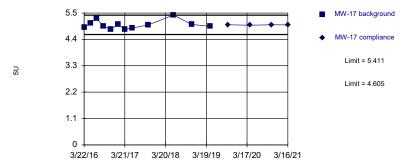

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=4.68, Std. Dev.=0.1615, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9345, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

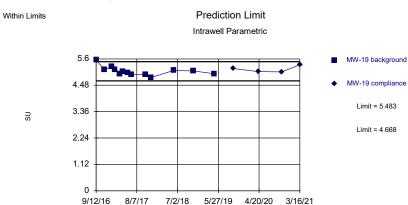

Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=4.617, Std. Dev.=0.1118, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9361, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188


Constituent: pH Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=4.615, Std. Dev.=0.09587, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.925, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Within Limits Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=5.008, Std. Dev.=0.1805, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8737, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00182

Constituent: pH Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Background Data Summary: Mean=5.075, Std. Dev.=0.1858, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9001, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

11/16/06 9/27/09

Within Limit

Intrawell Parametric

MW-11 background

MW-11 compliance

Limit = 9.808

Prediction Limit

Background Data Summary (after Kaplan-Meier Adjustment): Mean=4.944, Std. Dev.=2.552, n=27, 18.52% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9272, critical = 0.894. Kappa = 1.906 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00184

6/22/15

5/4/18

3/16/21

8/9/12

Constituent: Sulfate Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

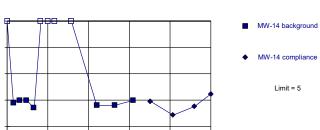
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

in Limit

Prediction Limit

Intrawell Non-parametric

MW-15 background

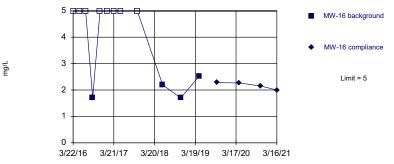

MW-15 compliance

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

3/22/16 3/21/17 3/20/18 3/19/19 3/17/20 3/16/21

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. 41.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

3/23/16 3/21/17 3/20/18 3/19/19 3/17/20 3/16/21

Constituent: Sulfate Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas $^{\text{\tiny{to}}}$ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Exceeds Limit

Intrawell Parametric

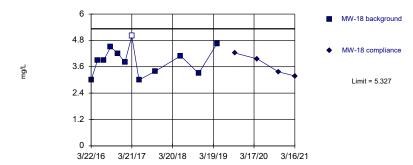
MW-17 background

MW-17 compliance

Limit = 3.046

Prediction Limit

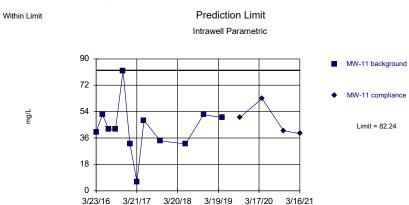
Background Data Summary (based on square root transformation) (after Kaplan-Meier Adjustment): Mean=1.349, Std. Dev=0.1777, n=12, 16.67% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8093, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Sulfate Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

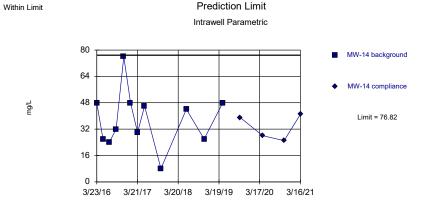
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 58.33% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

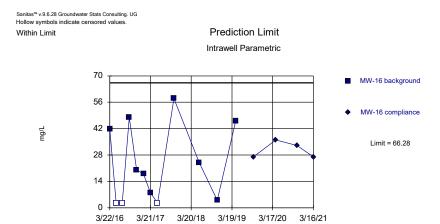
Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit


Prediction Limit
Intrawell Parametric

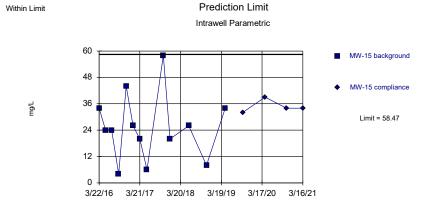
Background Data Summary: Mean=3.897, Std. Dev.=0.6408, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9606, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


Constituent: Sulfate Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG


Background Data Summary: Mean=42.67, Std. Dev.=17.73, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9141, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



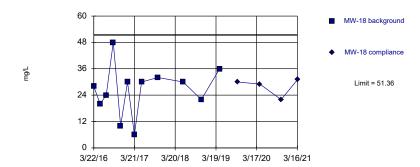
Background Data Summary: Mean=38, Std. Dev.=17.39, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9323, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0192

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Background Data Summary (after Kaplan-Meier Adjustment): Mean=23.33, Std. Dev.=19.24, n=12, 25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8666, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Background Data Summary: Mean=25.23, Std. Dev.=15.16, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9437, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

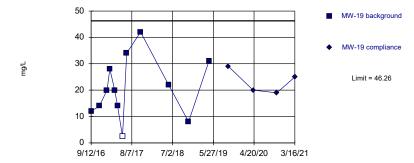


Background Data Summary: Mean=23.81, Std. Dev.=9.424, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9134, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

3/22/16 3/21/17 3/20/18 3/19/19 3/17/20 3/16/21

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Within Limit Prediction Limit
Intrawell Parametric



Background Data Summary: Mean=26.33, Std. Dev.=11.21, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9551, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.01188

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit

Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=20.63, Std. Dev.=11.48, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9792, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Total Dissolved Solids Analysis Run 5/19/2021 4:42 PM View: Intrawell Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11	MW-11
3/23/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/18/2016	<0.08	
1/19/2017	<0.08	
3/22/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	<0.08	
5/31/2018	<0.08	
11/7/2018	<0.08	
4/22/2019	<0.08	
9/27/2019		0.0443 (J)
4/13/2020		<0.08
10/22/2020		0.103
3/16/2021		<0.08

	MW-14	MW-14
3/23/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/19/2016	<0.08	
1/18/2017	<0.08	
3/22/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	<0.08	
6/1/2018	<0.08	
11/7/2018	<0.08	
4/23/2019	<0.08	
9/26/2019		<0.08
4/13/2020		<0.08
10/22/2020		0.0559 (J)
3/16/2021		<0.08

	MW-15	MW-15
3/22/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/19/2016	<0.08	
1/19/2017	<0.08	
3/21/2017	<0.08	
5/23/2017	<0.08	
10/17/2017	<0.08	
6/1/2018	<0.08	
11/7/2018	<0.08	
4/23/2019	<0.08	
9/26/2019		<0.08
4/13/2020		<0.08
10/22/2020		0.0437 (J)
3/16/2021		<0.08

	MW-18	MW-18
3/22/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	0.026 (J)	
9/12/2016	<0.08	
11/18/2016	<0.08	
1/18/2017	<0.08	
3/21/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	0.025 (J)	
5/31/2018	0.022 (J)	
11/8/2018	<0.08	
4/22/2019	<0.08	
9/26/2019		0.042 (J)
4/14/2020		<0.08
10/22/2020		0.0401 (J)
3/16/2021		<0.08

MW-11	MW-11
<1.9 (*)	
1.8	
1.9	
2	
2	
1.8	
1.8	
2	
2	
1.8	
2	
1.71	
	1.99
	2.03
	2.02
	1.74
	<1.9 (*) 1.8 1.9 2 2 1.8 1.8 2 2 1.8 2

 $\label{eq:constituent: Calcium (mg/L)} \begin{array}{lll} \text{Canalysis Run 5/19/2021 4:44 PM} & \text{View: Intrawell} \\ \text{Plant Daniel} & \text{Client: Southern Company} & \text{Data: NAMU CCR} \\ \end{array}$

	MW-14	MW-14
3/23/2016	<5.9 (*)	
5/18/2016	5.5	
7/12/2016	5.3	
9/12/2016	4.9	
11/19/2016	4.8	
1/18/2017	3.8	
3/22/2017	3.3	
5/24/2017	3.6	
10/17/2017	3.7	
6/1/2018	2.8	
11/7/2018	2.9	
4/23/2019	2.76	
9/26/2019		2.4
4/13/2020		2.74
10/22/2020		2.17
3/16/2021		2.4

	MW-15	MW-15
	IVIVV-15	CI-VVIVI
3/22/2016	1.3 (B1)	
5/18/2016	1.2	
7/12/2016	1.1	
9/12/2016	1.4	
11/19/2016	1.3	
1/19/2017	1.3	
3/21/2017	1.3	
5/23/2017	1.4	
10/17/2017	1.1	
6/1/2018	0.97	
11/7/2018	1.1	
4/23/2019	1.01	
9/26/2019		1.08
4/13/2020		1.22
10/22/2020		1.35
3/16/2021		1.41

	MW-16	MW-16
3/22/2016	0.61 (B1)	
5/18/2016	0.89	
7/11/2016	0.82	
9/13/2016	0.82	
11/17/2016	0.75	
1/18/2017	0.58	
3/21/2017	0.6	
5/23/2017	0.65	
10/17/2017	1.1	
12/15/2017	0.89 (RS)	
5/31/2018	1.1	
11/8/2018	0.76	
4/22/2019	1.09	
9/26/2019		0.758
4/14/2020		0.92
10/21/2020		0.798
3/16/2021		0.681

 $\label{eq:constituent: Calcium (mg/L)} \begin{array}{lll} \text{Canalysis Run 5/19/2021 4:44 PM} & \text{View: Intrawell} \\ \text{Plant Daniel} & \text{Client: Southern Company} & \text{Data: NAMU CCR} \\ \end{array}$

	MW-17	MW-17
3/22/2016	1.4 (B1)	
5/18/2016	1	
7/12/2016	1.1	
9/12/2016	0.98	
11/18/2016	1	
1/18/2017	1	
3/21/2017	0.91	
5/24/2017	0.96	
10/17/2017	0.96	
5/31/2018	1.1	
11/8/2018	0.96	
4/22/2019	0.946	
9/26/2019		1.11
4/13/2020		1.03
10/22/2020		0.969
3/16/2021		1.12

	MW-18	MW-18
3/22/2016	0.93 (B1)	
5/18/2016	0.85	
7/12/2016	0.69	
9/12/2016	0.86	
11/18/2016	0.41	
1/18/2017	0.81	
3/21/2017	0.76	
5/24/2017	0.8	
10/17/2017	0.69	
5/31/2018	0.75	
11/8/2018	0.78	
4/22/2019	0.531	
9/26/2019		0.631
4/14/2020		0.627
10/22/2020		0.553
3/16/2021		0.57

 $\label{eq:constituent: Calcium (mg/L)} \begin{array}{lll} \text{Canalysis Run 5/19/2021 4:44 PM} & \text{View: Intrawell} \\ \text{Plant Daniel} & \text{Client: Southern Company} & \text{Data: NAMU CCR} \\ \end{array}$

	MW-19	MW-19
9/12/2016	0.92	
11/18/2016	0.68	
1/18/2017	0.64	
2/10/2017	0.58	
3/21/2017	0.56	
4/14/2017	0.51	
5/23/2017	0.54	
6/26/2017	0.66	
10/17/2017	0.58	
5/31/2018	0.56	
11/8/2018	0.57	
4/22/2019	0.634	
9/26/2019		1.24
4/13/2020		0.687
10/21/2020		0.806
3/16/2021		2.23

	MW-11	MW-11
11/16/2006	8.5	
2/5/2007	8.8	
4/12/2007	9.5	
10/17/2007	12.1	
4/17/2008	13.1	
10/24/2008	13.7	
4/21/2009	11.9	
10/26/2009	11	
4/12/2010	12.5	
10/30/2010	10.8	
5/25/2011	10	
5/25/2012	10.9	
5/28/2013	11.4	
5/31/2014	9.2	
5/29/2015	11.5	
3/23/2016	13	
5/18/2016	13	
7/12/2016	13	
9/12/2016	13	
11/18/2016	14	
1/19/2017	13	
3/22/2017	15	
5/24/2017	14	
10/17/2017	15	
5/31/2018	12	
11/7/2018	14	
4/22/2019	13.3	
9/27/2019		13.4
4/13/2020		14.2
10/22/2020		17.4
3/16/2021		13.3

 $\label{eq:constituent: Chloride (mg/L)} Constituent: Chloride (mg/L) \quad Analysis Run 5/19/2021 4:44 PM \quad View: Intrawell \\ Plant Daniel \quad Client: Southern Company \quad Data: NAMU CCR$

	MW-14	MW-14
3/23/2016	8.8 (B1)	
5/18/2016	7.2	
7/12/2016	7.5	
9/12/2016	8.4	
11/19/2016	12	
1/18/2017	11	
3/22/2017	11	
5/24/2017	10	
10/17/2017	10	
6/1/2018	9.9	
11/7/2018	10	
4/23/2019	9.3	
9/26/2019		8.35
4/13/2020		7.9
10/22/2020		6.5
3/16/2021		7.32

	MW-15	MW-15
3/22/2016	8.4 (B1)	
5/18/2016	6	
7/12/2016	7.1	
9/12/2016	7.3	
11/19/2016	8.9	
1/19/2017	8.3	
3/21/2017	8.8	
5/23/2017	9.3	
10/17/2017	7.1	
6/1/2018	6.4	
11/7/2018	8	
4/23/2019	6.75	
9/26/2019		7.66
4/13/2020		7.74
10/22/2020		8.69
3/16/2021		8.94

	MW-16	MW-16
3/22/2016	6.9 (B1)	
5/18/2016	5.4	
7/11/2016	8.1	
9/13/2016	6.2	
11/17/2016	7.3	
1/18/2017	6.3	
3/21/2017	7.3	
5/23/2017	7.4	
10/17/2017	9.9	
12/19/2017	7.8 (RS)	
5/31/2018	8.7	
11/8/2018	7.6	
4/22/2019	10.2	
6/25/2019		9.4
9/26/2019		6.54
4/14/2020		7.03
10/21/2020		7.36
3/16/2021		7.14

	MW-17	MW-17
3/22/2016	7.3 (B1)	
5/18/2016	6	
7/12/2016	5.7	
9/12/2016	5.7	
11/18/2016	8.2	
1/18/2017	7.4	
3/21/2017	7.9	
5/24/2017	7.4	
10/17/2017	6.5	
5/31/2018	6.5	
11/8/2018	6.9	
4/22/2019	6.64	
9/26/2019		6.7
4/13/2020		6.46
10/22/2020		6.37
3/16/2021		6.97

	MW-18	MW-18
3/22/2016	11 (B1)	
5/18/2016	8.4	
7/12/2016	7.9	
9/12/2016	7.6	
11/18/2016	8.5	
1/18/2017	9.2	
3/21/2017	10	
5/24/2017	10	
10/17/2017	8.6	
5/31/2018	6.9	
11/8/2018	8.7	
4/22/2019	6.17	
9/26/2019		6.09
4/14/2020		6.15
10/22/2020		6.89
3/16/2021		8.18

	MW-19	MW-19
9/12/2016	5	
11/18/2016	<6.3 (*)	
1/18/2017	5.3	
2/10/2017	5.4	
3/21/2017	5.3	
4/14/2017	4.9 (B)	
5/23/2017	5.5	
6/26/2017	5.4	
10/17/2017	5.4	
5/31/2018	5	
11/8/2018	5.2	
4/22/2019	4.91	
9/26/2019		5.03
4/13/2020		4.9
10/21/2020		5.25
3/16/2021		5.72

	MW-11	MW-11
3/23/2016	<0.1	
5/18/2016	<0.1	
7/12/2016	0.04 (J)	
9/12/2016	0.04 (J)	
11/18/2016	<0.1	
1/19/2017	<0.1	
3/22/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	0.04 (J)	
5/31/2018	0.04 (J)	
11/7/2018	0.05 (J)	
4/22/2019	0.0353 (J)	
9/27/2019		0.0438 (J)
4/13/2020		0.0672 (J)
10/22/2020		<0.1
3/16/2021		0.0269 (J)

MW-14	MW-14
<0.1 (B1)	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
<0.1	
0.0335 (J)	
	0.0272 (J)
	0.0411 (J)
	<0.1
	<0.1
	<0.1 (B1) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

	MW-15	MW-15
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	<0.1	
9/12/2016	<0.1	
11/19/2016	<0.1	
1/19/2017	<0.1	
3/21/2017	<0.1	
5/23/2017	<0.1	
10/17/2017	<0.1	
6/1/2018	<0.1	
11/7/2018	<0.1	
4/23/2019	0.0275 (J)	
9/26/2019		<0.1
4/13/2020		0.0484 (J)
10/22/2020		<0.1
3/16/2021		<0.1

	MW-16	MW-16
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/11/2016	<0.1	
9/13/2016	<0.1	
11/17/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/23/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	0.029 (J)	
9/26/2019		0.0302 (J)
4/14/2020		0.0496 (J)
10/21/2020		<0.1
3/16/2021		<0.1

	MW-17	MW-17
		IVI V V - 1 7
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	<0.1	
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	<0.1	
9/26/2019		0.0263 (J)
4/13/2020		0.0511 (J)
10/22/2020		<0.1
3/16/2021		<0.1

 $\label{eq:constituent: Fluoride (mg/L)} Constituent: Fluoride (mg/L) & Analysis Run 5/19/2021 4:44 PM & View: Intrawell \\ Plant Daniel & Client: Southern Company & Data: NAMU CCR \\ \\$

	MW-18	MW-18
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	0.04 (J)	
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	0.04 (J)	
11/8/2018	<0.1	
4/22/2019	0.0311 (J)	
9/26/2019		0.0366 (J)
4/14/2020		0.0764 (J)
10/22/2020		<0.1
3/16/2021		0.0344 (J)

	MW-19	MW-19
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
2/10/2017	<0.1	
3/21/2017	<0.1	
4/14/2017	<0.1	
5/23/2017	<0.1	
6/26/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	<0.1	
9/26/2019		0.0287 (J)
4/13/2020		0.0382 (J)
10/21/2020		<0.1
3/16/2021		0.0376 (J)

	MW-11	MW-11
3/23/2016	4.8	
5/18/2016	4.74	
7/12/2016	4.9	
9/12/2016	4.72	
11/18/2016	4.65	
1/19/2017	4.77	
3/22/2017	4.46	
5/24/2017	4.74	
10/17/2017	4.72	
11/30/2017	4.61	
5/31/2018	4.93	
11/7/2018	4.58	
4/22/2019	4.67	
9/27/2019		4.61
4/13/2020		4.7
10/22/2020		4.66
3/16/2021		4.72

	MW-14	MW-14
3/23/2016	5.4	
5/18/2016	5.38	
7/12/2016	5.65	
9/12/2016	5.14	
11/19/2016	5.05	
1/18/2017	5.11	
3/22/2017	4.86	
5/24/2017	5.02	
10/17/2017	5.01	
6/1/2018	5	
11/7/2018	4.81	
4/23/2019	4.93	
9/26/2019		4.99
4/13/2020		4.96
10/22/2020		5.09
3/16/2021		5.06

	MW-15	MW-15
3/22/2016	4.77	
5/18/2016	4.62	
7/12/2016	5.03	
9/12/2016	4.6	
11/19/2016	4.46	
1/19/2017	4.65	
3/21/2017	4.47	
5/23/2017	4.69	
10/17/2017	4.62	
6/1/2018	4.87	
11/7/2018	4.61	
4/23/2019	4.77	
9/26/2019		4.84
4/13/2020		4.71
10/22/2020		4.78
3/16/2021		4.65

	MW-16	MW-16
3/22/2016	4.68	
5/18/2016	4.67	
7/11/2016	4.75	
9/13/2016	4.56	
11/17/2016	4.6	
1/18/2017	4.68	
3/21/2017	4.39	
5/23/2017	4.61	
10/17/2017	4.51	
5/31/2018	4.75	
11/8/2018	4.71	
4/22/2019	4.49	
9/26/2019		4.62
4/14/2020		4.61
10/21/2020		4.5
3/16/2021		4.62

	MW-17	MW-17
3/22/2016	4.89	
5/18/2016	5.09	
7/12/2016	5.27	
9/12/2016	4.94	
11/18/2016	4.82	
1/18/2017	5.02	
3/21/2017	4.82	
5/24/2017	4.87	
10/17/2017	5	
5/31/2018	5.42	
11/8/2018	5.02	
4/22/2019	4.94	
9/26/2019		5.01
4/13/2020		4.99
10/22/2020		5.01
3/16/2021		5

	MW-18	MW-18
3/22/2016	4.63	
5/18/2016	4.58	
7/12/2016	4.7	
9/12/2016	4.6	
11/18/2016	4.52	
1/18/2017	4.63	
3/21/2017	4.45	
5/24/2017	4.55	
10/17/2017	4.61	
5/31/2018	4.84	
11/8/2018	4.63	
4/22/2019	4.64	
9/26/2019		4.71
4/14/2020		4.75
10/22/2020		4.7
3/16/2021		4.68

	MW-19	MW-19
9/12/2016	5.55	
11/18/2016	5.14	
1/18/2017	5.27	
2/10/2017	5.14	
3/21/2017	4.96	
4/14/2017	5.07	
5/23/2017	5.01	
6/26/2017	4.93	
10/17/2017	4.93	
11/30/2017	4.81	
5/31/2018	5.11	
11/8/2018	5.09	
4/22/2019	4.97	
9/26/2019		5.19
4/13/2020		5.06
10/21/2020		5.05
3/16/2021		5.35
	11/18/2016 1/18/2017 2/10/2017 3/21/2017 4/14/2017 5/23/2017 6/26/2017 10/17/2017 11/30/2017 5/31/2018 11/8/2018 4/22/2019 9/26/2019 4/13/2020 10/21/2020	9/12/2016 5.55 11/18/2016 5.14 1/18/2017 5.27 2/10/2017 5.14 3/21/2017 4.96 4/14/2017 5.07 5/23/2017 5.01 6/26/2017 4.93 10/17/2017 4.93 11/30/2017 4.81 5/31/2018 5.11 11/8/2018 5.09 4/22/2019 4.97 9/26/2019 4/13/2020 10/21/2020

	MW-11	MW-11
11/16/2006	5	
2/5/2007	<5	
4/12/2007	<5	
10/17/2007	5.7	
4/17/2008	7	
10/24/2008	6.6	
4/21/2009	5.2	
10/26/2009	8.3	
4/12/2010	6.8	
10/30/2010	10.8	
5/25/2011	11.5	
5/25/2012	8.2	
5/28/2013	6.9	
5/31/2014	3.5	
5/29/2015	3.3	
3/23/2016	1.8 (J)	
5/18/2016	4.1	
7/12/2016	3.8 (J)	
9/12/2016	3.9 (J)	
11/18/2016	5.4	
1/19/2017	<5	
3/22/2017	<5	
5/24/2017	2 (J)	
10/17/2017	<5	
5/31/2018	3 (J)	
11/7/2018	3.1 (J)	
4/22/2019	2.22	
9/27/2019		2.36
4/13/2020		2.47
10/22/2020		2.01
3/16/2021		2.15

	MW-14	MW-14
3/23/2016	<5	
5/18/2016	1.9	
7/12/2016	2 (J)	
9/12/2016	2 (J)	
11/19/2016	1.7 (J)	
1/18/2017	<5	
3/22/2017	<5	
5/24/2017	<5	
10/17/2017	<5	
6/1/2018	1.8 (J)	
11/7/2018	1.8 (J)	
4/23/2019	1.99	
9/26/2019		1.95
4/13/2020		1.43
10/22/2020		1.76
3/16/2021		2.23

	MW-15	MW-15
3/22/2016	<5	
5/18/2016	<5	
7/12/2016	<5	
9/12/2016	<5	
11/19/2016	<5	
1/19/2017	<5	
3/21/2017	<5	
5/23/2017	<5	
10/17/2017	<5	
6/1/2018	1.5 (J)	
11/7/2018	1.5 (J)	
4/23/2019	1.43	
9/26/2019		1.2
4/13/2020		0.992 (J)
10/22/2020		1.04
3/16/2021		1.07

	MW-16	MW-16
3/22/2016	<5	
5/18/2016	<5	
7/11/2016	<5	
9/13/2016	1.7 (J)	
11/17/2016	<5	
1/18/2017	<5	
3/21/2017	<5	
5/23/2017	<5	
10/17/2017	<5	
5/31/2018	2.2 (J)	
11/8/2018	1.7 (J)	
4/22/2019	2.52	
9/26/2019		2.28
4/14/2020		2.27
10/21/2020		2.15
3/16/2021		2

	MW-17	MW-17
3/22/2016	<5	
5/18/2016	1.4	
7/12/2016	1.8 (J)	
9/12/2016	2.2 (J)	
11/18/2016	1.5 (J)	
1/18/2017	1.5 (J)	
3/21/2017	<5	
5/24/2017	1.7 (J)	
10/17/2017	1.8 (J)	
5/31/2018	2.5 (J)	
11/8/2018	2.2 (J)	
4/22/2019	2.96	
9/26/2019		2.96
4/13/2020		2.75
10/22/2020		2.98
3/16/2021		3.06

	MW-18	MW-18
3/22/2016	3 (J)	
5/18/2016	3.9 (J)	
7/12/2016	3.9 (J)	
9/12/2016	4.5 (J)	
11/18/2016	4.2 (J)	
1/18/2017	3.8 (J)	
3/21/2017	<5 (*)	
5/24/2017	3 (J)	
10/17/2017	3.4 (J)	
5/31/2018	4.1 (J)	
11/8/2018	3.3 (J)	
4/22/2019	4.66	
9/26/2019		4.23
4/14/2020		3.96
10/22/2020		3.37
3/16/2021		3.18

	MW-19	MW-19
9/12/2016	<5	
11/18/2016	<5	
1/18/2017	<5	
2/10/2017	<5	
3/21/2017	<5	
4/14/2017	1.5 (J)	
5/23/2017	<5	
6/26/2017	1.5 (J)	
10/17/2017	<5	
5/31/2018	1.9 (J)	
11/8/2018	1.5 (J)	
4/22/2019	2.09	
9/26/2019		2.1
4/13/2020		1.69
10/21/2020		1.31
3/16/2021		2.72

MW-11	MW-11
40	
52	
42	
42	
82	
32	
6	
48	
34	
32	
52	
50	
	50
	63
	41
	39
	40 52 42 42 42 82 32 6 48 34 32 52

		MW-14	MW-14
3	/23/2016	48 (B1)	
5	/18/2016	26	
7	//12/2016	24	
9	/12/2016	32	
1	1/19/2016	76	
1	/18/2017	48	
3	/22/2017	30	
5	/24/2017	46	
1	0/17/2017	8	
6	/1/2018	44	
1	1/7/2018	26	
4	/23/2019	48	
9	/26/2019		39
4	/13/2020		28
1	0/22/2020		25
3	/16/2021		41

	MW-15	MW-15
3/22/2016	34 (B1)	
5/18/2016	24	
7/12/2016	24	
9/12/2016	4 (J)	
11/19/2016	44	
1/19/2017	26	
3/21/2017	20	
5/23/2017	6	
10/17/2017	58	
12/15/2017	20 (RS)	
6/1/2018	26	
11/7/2018	8	
4/23/2019	34	
9/26/2019		32
4/13/2020		39
10/22/2020		34
3/16/2021		34

	MW-16	MW-16
3/22/2016	42 (B1)	
5/18/2016	<5	
7/11/2016	<5	
9/13/2016	48	
11/17/2016	20	
1/18/2017	18	
3/21/2017	8	
5/23/2017	<5	
10/17/2017	58	
5/31/2018	24	
11/8/2018	4 (J)	
4/22/2019	46	
9/26/2019		27
4/14/2020		36
10/21/2020		33
3/16/2021		27

	MW-17	MW-17
3/22/2016	32 (B1)	
5/18/2016	26	
7/12/2016	22	
9/12/2016	32	
11/18/2016	16	
1/18/2017	32	
3/21/2017	16	
5/24/2017	22	
10/17/2017	26	
5/31/2018	<3.4	
11/8/2018	36	
4/22/2019	24	
9/26/2019		25
4/13/2020		27
10/22/2020		29
3/16/2021		37

	MW-18	MW-18
3/22/2016	28 (B1)	
5/18/2016	20	
7/12/2016	24	
9/12/2016	48	
11/18/2016	10	
1/18/2017	30	
3/21/2017	6	
5/24/2017	30	
10/17/2017	32	
5/31/2018	30	
11/8/2018	22	
4/22/2019	36	
9/26/2019		30
4/14/2020		29
10/22/2020		22
3/16/2021		31

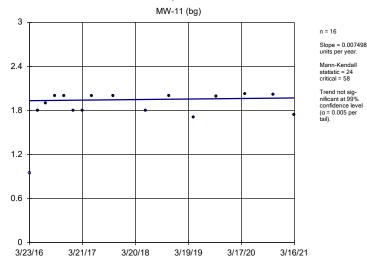
	MW-19	MW-19
9/12/2016	12	
11/18/2016	14	
1/18/2017	20	
2/10/2017	28	
3/21/2017	20	
4/14/2017	14	
5/23/2017	<5	
6/26/2017	34	
10/17/2017	42	
5/31/2018	22	
11/8/2018	8	
4/22/2019	31	
9/26/2019		29
4/13/2020		20
10/21/2020		19
3/16/2021		25

FIGURE E.

Appendix III Trend Test - Prediction Limit Exceedances - Significant Results Plant Daniel Client: Southern Company Data: NAMU CCR Printed 5/18/2021, 3:59 PM

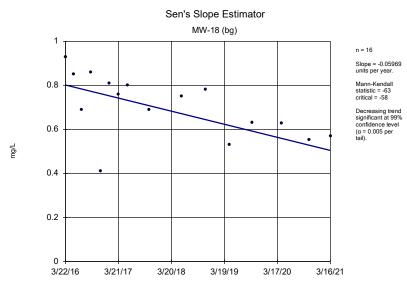
	Plant Daniel	Client: Southern C	ompany D	ata: NAMU C	CR P	rinted 5/1	8/2021, 3	:59 PM			
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	MW-14 (bg)	-0.5456	-91	-58	Yes	16	6.25	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-18 (bg)	-0.05969	-63	-58	Yes	16	0	n/a	n/a	0.01	NP
Sulfate (mg/L)	MW-11 (ba)	-0.2963	-210	-152	Yes	31	16.13	n/a	n/a	0.01	NP

Appendix III Trend Test - Prediction Limit Exceedances - All Results

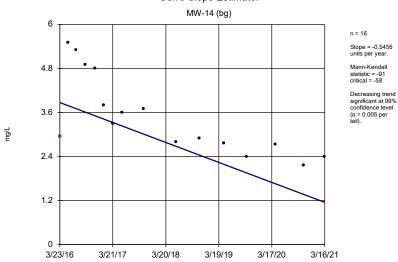

Plant Daniel C	Client: Southern Co	ompany D	ata: NAMU Co	CR PI	rinted 5/18	3/2021, 3	:59 PM			
Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
MW-11 (bg)	0.007498	24	58	No	16	6.25	n/a	n/a	0.01	NP
MW-14 (bg)	-0.5456	-91	-58	Yes	16	6.25	n/a	n/a	0.01	NP
MW-18 (bg)	-0.05969	-63	-58	Yes	16	0	n/a	n/a	0.01	NP
MW-19	0.03558	26	58	No	16	0	n/a	n/a	0.01	NP
MW-11 (bg)	-0.2963	-210	-152	Yes	31	16.13	n/a	n/a	0.01	NP
MW-14 (bg)	-0.04474	-28	-58	No	16	31.25	n/a	n/a	0.01	NP
MW-17	0.2933	49	58	No	16	12.5	n/a	n/a	0.01	NP
MW-18 (bg)	-0.05772	-6	-58	No	16	6.25	n/a	n/a	0.01	NP
	Well MW-11 (bg) MW-14 (bg) MW-18 (bg) MW-19 MW-11 (bg) MW-14 (bg) MW-17	Well Slope MW-11 (bg) 0.007498 MW-14 (bg) -0.5456 MW-18 (bg) -0.05969 MW-19 0.03558 MW-11 (bg) -0.2963 MW-14 (bg) -0.04474 MW-17 0.2933	Well Slope Calc. MW-11 (bg) 0.007498 24 MW-14 (bg) -0.5456 -91 MW-18 (bg) -0.05969 -63 MW-19 0.03558 26 MW-11 (bg) -0.2963 -210 MW-14 (bg) -0.04474 -28 MW-17 0.2933 49	Well Slope Calc. Critical MW-11 (bg) 0.007498 24 58 MW-14 (bg) -0.5456 -91 -58 MW-18 (bg) -0.05969 -63 -58 MW-19 0.03558 26 58 MW-11 (bg) -0.2963 -210 -152 MW-14 (bg) -0.04474 -28 -58 MW-17 0.2933 49 58	Well Slope Calc. Critical Sig. MW-11 (bg) 0.007498 24 58 No MW-14 (bg) -0.5456 -91 -58 Yes MW-18 (bg) -0.05969 -63 -58 Yes MW-19 0.03558 26 58 No MW-11 (bg) -0.2963 -210 -152 Yes MW-14 (bg) -0.04474 -28 -58 No MW-17 0.2933 49 58 No	Well Slope Calc. Critical Sig. N MW-11 (bg) 0.007498 24 58 No 16 MW-14 (bg) -0.5456 -91 -58 Yes 16 MW-18 (bg) -0.05969 -63 -58 Yes 16 MW-19 0.03558 26 58 No 16 MW-11 (bg) -0.2963 -210 -152 Yes 31 MW-14 (bg) -0.04474 -28 -58 No 16 MW-17 0.2933 49 58 No 16	Well Slope Calc. Critical Sig. N %NDs MW-11 (bg) 0.007498 24 58 No 16 6.25 MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 MW-18 (bg) -0.05969 -63 -58 Yes 16 0 MW-19 0.03558 26 58 No 16 0 MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 MW-14 (bg) -0.04474 -28 -58 No 16 31.25 MW-17 0.2933 49 58 No 16 12.5	Well Slope Calc. Critical Sig. N %NDs Normality MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a MW-19 0.03558 26 58 No 16 0 n/a MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a MW-17 0.2933 49 58 No 16 12.5 n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a n/a MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a n/a MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a n/a MW-19 0.03558 26 58 No 16 0 n/a n/a MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a n/a MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a n/a MW-17 0.2933 49 58 No 16 12.5 n/a n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform Alpha MW-11 (bg) 0.007498 24 58 No 16 6.25 n/a n/a 0.01 MW-14 (bg) -0.5456 -91 -58 Yes 16 6.25 n/a n/a 0.01 MW-18 (bg) -0.05969 -63 -58 Yes 16 0 n/a n/a 0.01 MW-19 0.03558 26 58 No 16 0 n/a n/a 0.01 MW-11 (bg) -0.2963 -210 -152 Yes 31 16.13 n/a n/a 0.01 MW-14 (bg) -0.04474 -28 -58 No 16 31.25 n/a n/a 0.01 MW-17 0.2933 49 58 No 16 12.5 n/a n/a 0.01

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG

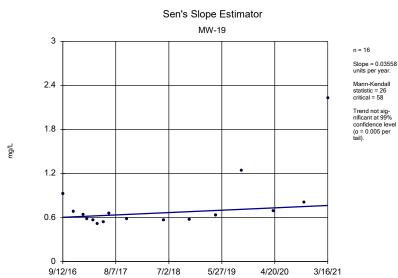
Hollow symbols indicate censored values.


mg/L

Constituent: Calcium Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG

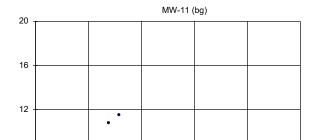
Constituent: Calcium Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sen's Slope Estimator

Constituent: Calcium Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

mg/L

Sen's Slope Estimator

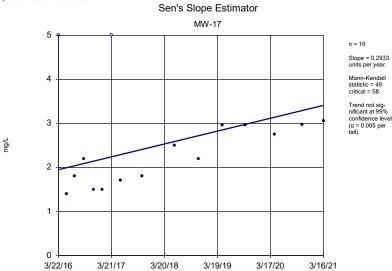
Slope = -0.2963

units per year.

Mann-Kendall

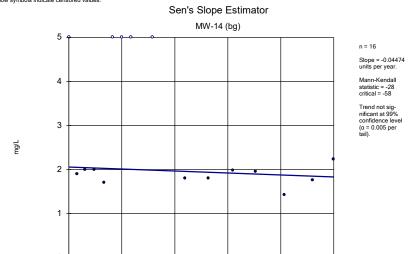
statistic = -210 critical = -152

Decreasing trend significant at 99% confidence level


(α = 0.005 per tail).

12 8 4 0 11/16/06 9/27/09 8/9/12 6/22/15 5/4/18 3/16/21

Constituent: Sulfate Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Constituent: Sulfate Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Sulfate Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

3/19/19

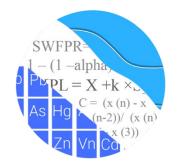
3/17/20


3/16/21

3/20/18

3/21/17

Sanitas™ v.9.6.28 Sanitas software utilized by Groundwater Stats Consulting. UG


3/23/16

Constituent: Sulfate Analysis Run 5/18/2021 3:58 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

2nd Semi-Annual Monitoring Event

GROUNDWATER STATS CONSULTING

December 15, 2021

Southern Company Services Attn: Mr. Trey Singleton 3535 Colonnade Parkway Birmingham, AL 35243

Re: Plant Daniel North Ash Management Unit (NAMU)

2021 Annual Statistical Analysis – October 2021 Sample Event

Dear Mr. Singleton,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the statistical analysis of groundwater data for the 2021 Groundwater Monitoring Annual report for Mississippi Power Company's Plant Daniel NAMU. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015) as well as with the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling began at Daniel NAMU for the CCR program in 2016. The monitoring well network, as provided by Southern Company Services, consists of the following:

- Upgradient wells: MW-11, MW-14, and MW-18
- o **Downgradient wells:** MW-15, MW-16, MW-17, and MW-19

Data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed by Andrew Collins, Project Manager of Groundwater Stats Consulting.

The CCR program monitors the constituents listed below. The terms "parameters" and "constituents" are used interchangeably throughout this report.

 Appendix III (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A list of well/constituent pairs containing 100% non-detects follow this letter.

For all constituents, a substitution of the most recent reporting limit is used for non-detect data. For calculating intrawell prediction limits, the substitution is performed for individual wells and may differ across wells. This generally gives the most conservative limit in each case. For the time series plots, a single reporting limit substitution is used across all wells for a given parameter since the wells are plotted as a group.

Time series plots for Appendix III parameters are provided for all wells and are used to evaluate concentrations over time as well as for the purpose of updating statistical limits (Figure A). Additionally, box plots are included for all constituents at upgradient and downgradient wells (Figure B). Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graph; however, no values were flagged as outliers (Figure C). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between all wells.

During the previous screening, data at all wells were evaluated for the following: 1) outliers; 2) trends; 3) most appropriate statistical method for Appendix III parameters based on site characteristics of groundwater data upgradient of the facility; and 4) eligibility of downgradient wells when intrawell statistical methods were recommended. Power curves were provided with the screening to demonstrate that the selected statistical methods for Appendix III parameters comply with the USEPA Unified Guidance recommendations as discussed below.

Summary of Statistical Methods

Based on the evaluation for federal regulatory requirements, the following methods were selected for Appendix III constituents:

 Intrawell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. Parametric prediction limits (or tolerance limits or confidence intervals as applicable) are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The following approaches are used for handling non-detects (USEPA, 2009):

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of one-half the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Note that values shown on data pages reflect raw data and any non-detects that have been substituted with one-half of the reporting limit will be shown as the original reporting limit.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the intrawell case, data for all wells and constituents are re-evaluated when a minimum of 4 new data points are available to determine whether earlier concentrations are representative of present-day groundwater quality. While this was not required for this report, in some cases, deselecting the earlier portion of data may be necessary prior to construction of limits so that resulting statistical limits are conservative (lower) from a regulatory perspective and capable of rapidly detecting changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

Summary of Background Screening – Conducted in October 2017

Outlier Analysis

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not conservative from a regulatory perspective, in proposed background data. Suspected outliers at all wells for Appendix III parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

No suspected outliers were observed in any of the data sets for Appendix III parameters. When any values are identified as outliers, they are plotted in a lighter font on the time series graph.

Seasonality

No seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

Trend Test Evaluation

While trends may be visual, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, earlier data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When the historical records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed a few statistically significant decreasing and increasing trends. All trends noted were relatively low in magnitude when compared to average concentrations; therefore, no adjustments were made to any of the data sets.

<u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells would not be conservative from a regulatory perspective; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified variation among upgradient well data at Plant Daniel NAMU for the majority of the Appendix III parameters. This facility is a lined unit with pre-waste data; therefore, due to variation noted among upgradient wells, intrawell prediction limits were recommended for this facility to accommodate the groundwater quality. A summary table of the ANOVA results was included with the screening.

Summary of Background Update – Appendix III Parameters – November 2019

Prior to updating background data, samples were re-evaluated for Appendix III constituents at all wells using Tukey's outlier test and visual screening on all historical data through the April 2019 sample event. Only one value was noted by Tukey's as a potential outlier; however, when Tukey's outlier test detects an outlier for the most recent sample, it often will not be flagged in the event that the data precede a trend that is more representative of current concentrations. Therefore, no values for Appendix III constituents were flagged as outliers at the time of the screening. An updated summary of Tukey's test results was included with the screening.

The Mann-Whitney (Wilcoxon Rank Sum) test was used to compare the medians of historical data through June 2017 to the new compliance samples at each well through April 2019 to evaluate whether the groups are statistically different at the 99% confidence level for each of the Appendix III parameters. When no differences exist, background data sets may be updated to include newer data for construction of prediction limits. This results in statistical limits that are representative of present-day conditions. No statistically significant differences were found between the two groups except for the following: calcium and sulfate in well MW-15. Note that the Mann-Whitney test could not be produced due to insufficient variation in the data for boron in wells MW-14, MW-15, MW-16, MW-17, and MW-19.

Typically, when the test concludes that the medians of the two groups are significantly different, particularly in the downgradient wells, the background are not updated to include the newer data but will be reconsidered in the future. For all well/constituent pairs except for sulfate in well MW-15, due to the limited data available and the variability in data shows some of the more recent data has similar concentrations to those reported in background, these data sets were updated. In the case of calcium at well MW-15, while there is a statistically significant difference between the two medians, the magnitude of the difference is minimal, and newer data more accurately represent concentrations present in nearby wells. Therefore, the background for this well/constituent pair was updated with new data. A summary of these results was included in the 2019 Background Update report.

Statistical Analysis of Appendix III Parameters - October 2021

Intrawell Prediction Limits

Intrawell prediction limits, combined with a 1-of-2 resample strategy, were established for each of the Appendix III parameters at each well using historical data through April 2019 for the October 2021 sample event (Figure D). Intrawell prediction limits use screened historical data within a given well to establish limits for parameters at that well. The October 2021 sample from each well was compared to the prediction limits to determine whether initial exceedances are present.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When the resample confirms the initial exceedance, a statistically significant increase (SSI) is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no further action is necessary. Complete graphical results of the prediction limits may be found following this letter. Exceedances were identified for the following well/constituent pairs:

MW-19: Calcium and pH

Trend Test Evaluation

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure E). Upgradient

wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. The existence of similar trends in both upgradient and downgradient wells is an indication of natural variability in groundwater that is unrelated to practices at the site. Although no statistically significant increasing trends were noted, statistically significant decreasing trends were identified for the following well/constituent pairs:

Decreasing:

MW-14 (upgradient): Calcium, pHMW-18 (upgradient): Calcium

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Daniel North Ash Management Unit. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

Tristan Clark

Groundwater Analyst

Tristan Clark

Andrew Collins
Project Manager

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

100% Non-Detects

Analysis Run 12/14/2021 2:16 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Boron (mg/L) MW-16, MW-17, MW-19

Appendix III Intrawell Prediction Limits - Significant Results

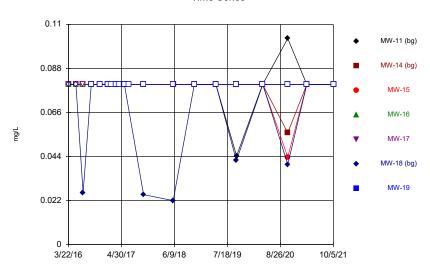
Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/14/2021, 3:24 PM

Constituent	Well	Upper Lim. Lower Lin	n. Date	Observ.	Sig. Bg N %NDs	ND Adj. Transform	<u>Alpha</u>	Method
Calcium (mg/L)	MW-19	0.8608 n/a	10/5/2021	3.67	Yes 12 0	None sqrt(x)	0.00188	Param Intra 1 of 2
pH (SU)	MW-19	5.483 4.668	10/5/2021	5.53	Yes 13 0	None No	0.0009398	Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results

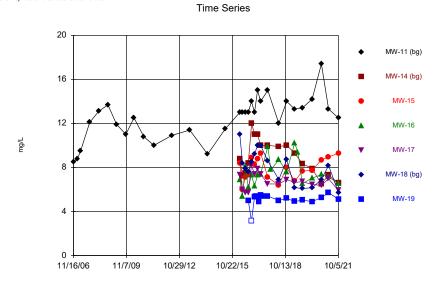
Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/14/2021, 3:36 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Date Observ. Sig. Bg N%NDs ND Adj. <u>Transform</u> <u>Alpha</u> Method NP Intra (NDs) 1 of 2 MW-11 10/5/2021 0.08ND No 12 100 0.01077 Boron (ma/L) 0.08 n/a n/a n/a MW-14 10/5/2021 No 12 100 NP Intra (NDs) 1 of 2 Boron (mg/L) 0.08 0.08ND n/a n/a 0.01077 Boron (mg/L) MW-15 0.08 n/a 10/5/2021 0.08ND No 12 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 10/5/2021 12 NP Intra (NDs) 1 of 2 MW-18 0.08 0.08ND No 75 0.01077 Boron (mg/L) n/a n/a n/a Calcium (mg/L) MW-11 2.17 n/a 10/5/2021 1.87 12 8.333 None 0.00188 Param Intra 1 of 2 n/a Calcium (mg/L) M\/\/_14 6.114 10/5/2021 1.89 Nο 12 8.333 None No 0.00188 Param Intra 1 of 2 MW-15 Calcium (mg/L) 1.535 10/5/2021 0.632 No 12 0 None No 0.00188 Param Intra 1 of 2 n/a Calcium (mg/L) MW-16 1.234 n/a 10/5/2021 0.793 No 13 None 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-17 1.4 n/a 10/5/2021 0.883 No 12 0 n/a n/a 0.01077 NP Intra (normality) 1 of 2 MW-18 No 12 0 Param Intra 1 of 2 Calcium (mg/L) 1.062 n/a 10/5/2021 0.43JNone Nο 0.00188 Calcium (mg/L) MW-19 0.8608 n/a 10/5/2021 3.67 Yes 12 None sqrt(x) 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-11 15.58 n/a 10/5/2021 12.5 No 27 0 None No 0.00188 Param Intra 1 of 2 MW-14 10/5/2021 No 12 0 Param Intra 1 of 2 Chloride (ma/L) 12.79 n/a 6.59 None No 0.00188 No 12 0 Chloride (mg/L) MW-15 10.08 10/5/2021 None No 0.00188 Param Intra 1 of 2 n/a Chloride (mg/L) MW-16 10.64 n/a 10/5/2021 6.55 No 13 0 None No 0.00188 Param Intra 1 of 2 10/5/2021 12 MW-17 8.675 No 0 No 0.00188 Param Intra 1 of 2 Chloride (mg/L) n/a 5.91 None Chloride (mg/L) MW-18 11.62 10/5/2021 5.72 12 0.00188 Param Intra 1 of 2 None No n/a Chloride (mg/L) MW-19 5.783 10/5/2021 No 12 8.333 x^5 0.00188 Param Intra 1 of 2 n/a 5.1 None MW-11 12 50 NP Intra (normality) 1 of 2 Fluoride (ma/L) 0.1 n/a 10/5/2021 0.0561.1 Nο n/a n/a 0.01077 Fluoride (mg/L) MW-14 0.1 n/a 10/5/2021 0.03J No 12 91.67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-15 n/a 10/5/2021 0.1ND No 12 91.67 0.01077 NP Intra (NDs) 1 of 2 0.1 n/a n/a MW-16 12 NP Intra (NDs) 1 of 2 Fluoride (mg/L) 0.1 n/a 10/5/2021 0.0264JNο 91.67 n/a n/a 0.01077 MW-17 0.1 10/5/2021 No 12 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) n/a 0.1ND 100 n/a n/a Fluoride (mg/L) MW-18 0.1 n/a 10/5/2021 0.1ND No 12 75 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-19 0.1 n/a 10/5/2021 0.1ND No 12 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 pH (SU) MW-11 4.992 4.437 10/5/2021 4.67 No 13 No 0.0009398 Param Intra 1 of 2 None pH (SU) MW-14 5.663 4 563 10/5/2021 4.98 No 12 0 None No 0.0009398 Param Intra 1 of 2 12 pH (SU) MW-15 5.04 4.32 10/5/2021 4.85 No 0 None No 0.0009398 Param Intra 1 of 2 MW-16 4.866 4.367 10/5/2021 4.6 12 0.0009398 Param Intra 1 of 2 pH (SU) None No 5.411 MW-17 4.605 10/5/2021 4.88 No 12 0 0.0009398 Param Intra 1 of 2 pH (SU) No MW-18 No 12 0 pH (SU) 4 829 4 401 10/5/2021 4 68 None Nο 0.0009398 Param Intra 1 of 2 (US) Ha MW-19 5.483 4.668 10/5/2021 5.53 Yes 13 0 None No 0.0009398 Param Intra 1 of 2 MW-11 9.808 10/5/2021 No 27 18.52 Param Intra 1 of 2 Sulfate (mg/L) 2.57 Kaplan-Meier 0.00188 No 12 41.67 NP Intra (normality) 1 of 2 Sulfate (mg/L) MW-14 5 n/a 10/5/2021 2.46 n/a n/a 0.01077 MW-15 10/5/2021 12 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) n/a 3.38 No 75 n/a n/a MW-16 10/5/2021 12 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) 5 2.22 No 66.67 Sulfate (mg/L) MW-17 3.046 n/a 10/5/2021 2.85 No 12 16.67 Kaplan-Meier sqrt(x) 0.00188 Param Intra 1 of 2 MW-18 Sulfate (mg/L) 5.327 10/5/2021 No 12 8.333 0.00188 Param Intra 1 of 2 3.83 None n/a No Sulfate (mg/L) MW-19 n/a 10/5/2021 No 12 58.33 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 82 24 12 Total Dissolved Solids (mg/L) MW-11 n/a 10/5/2021 43 Nο 0 None Nο 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-14 76.82 10/5/2021 29 No 0.00188 Param Intra 1 of 2 n/a None No 58.47 Total Dissolved Solids (mg/L) MW-15 10/5/2021 25 No 13 0 0.00188 Param Intra 1 of 2 n/a No No. 12 25 Total Dissolved Solids (mg/L) MW-16 66 28 n/a 10/5/2021 29 Kaplan-Meier Nο 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-17 10/5/2021 No 12 8.333 0.00188 Param Intra 1 of 2 44.84 n/a 34 None No Total Dissolved Solids (mg/L) MW-18 10/5/2021 No 12 0 0.00188 Param Intra 1 of 2 51.36 n/a 29 No Total Dissolved Solids (mg/L) MW-19 46.26 n/a 10/5/2021 No. 12 8 333 None No 0.00188 Param Intra 1 of 2

Appendix III Trend Tests - Prediction Limits Exceedances - Significant Results

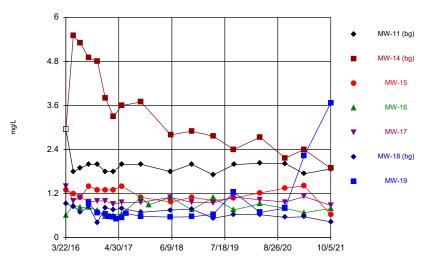

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/15/2021, 5:11 PM Constituent Well Calc. Critical Sig. N %NDs Normality Xform <u>Alpha</u> Method Slope Calcium (mg/L) MW-14 (bg) -0.5166 -107 -63 Yes 17 5.882 n/a n/a 0.01 -0.06436 -77 -63 Yes 17 0 n/a NP Calcium (mg/L) MW-18 (bg) n/a 0.01 pH (SU) MW-14 (bg) -0.05378 -64 -63 Yes 17 0 n/a n/a 0.01 NP

Appendix III Trend Tests - Prediction Limits Exceedances - All Results

	Plant Daniel Client: Southern Comp	any Data: NA	MU CCR	Printed 1	2/15/2	021, 5:1	I1 PM				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	MW-11 (bg)	0.006242	22	63	No	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-14 (bg)	-0.5166	-107	-63	Yes	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-18 (bg)	-0.06436	-77	-63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-19	0.0475	42	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	MW-11 (bg)	-0.01917	-41	-68	No	18	0	n/a	n/a	0.01	NP
pH (SU)	MW-14 (bg)	-0.05378	-64	-63	Yes	17	0	n/a	n/a	0.01	NP
pH (SU)	MW-18 (bg)	0.02083	44	58	No	16	0	n/a	n/a	0.01	NP
pH (SU)	MW-19	-0.003948	-5	-68	No	18	0	n/a	n/a	0.01	NP

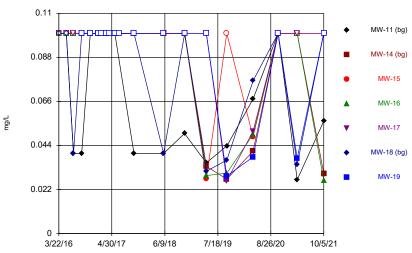

FIGURE A.

Time Series


Constituent: Boron Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

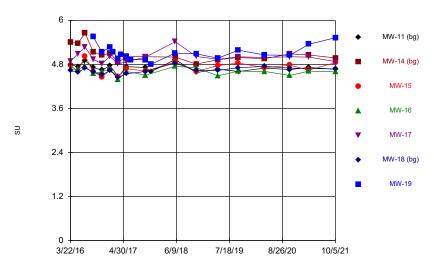
Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Constituent: Chloride Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Time Series

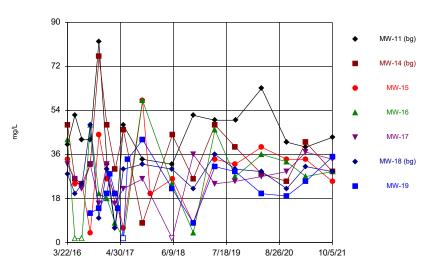
Constituent: Calcium Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Time Series

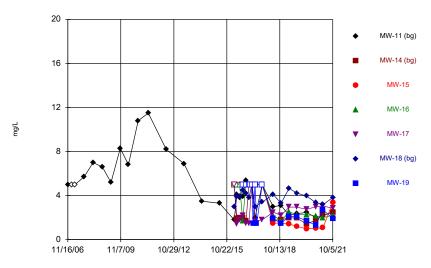
Constituent: Fluoride Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Time Series

Constituent: Total Dissolved Solids Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Time Series

Constituent: Sulfate Analysis Run 12/13/2021 4:10 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Constituent: Boron (mg/L) Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

·	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			<0.08 (B1)	<0.08 (B1)	<0.08 (B1)	<0.08 (B1)	
3/23/2016	<0.08 (B1)	<0.08 (B1)					
5/18/2016	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	
7/11/2016				<0.08			
7/12/2016	<0.08	<0.08	<0.08		<0.08	0.026 (J)	
9/12/2016	<0.08	<0.08	<0.08		<0.08	<0.08	<0.08
9/13/2016				<0.08			
11/17/2016				<0.08			
11/18/2016	<0.08				<0.08	<0.08	<0.08
11/19/2016		<0.08	<0.08				
1/18/2017		<0.08		<0.08	<0.08	<0.08	<0.08
1/19/2017	<0.08		<0.08				
2/10/2017							<0.08
3/21/2017			<0.08	<0.08	<0.08	<0.08	<0.08
3/22/2017	<0.08	<0.08					
4/14/2017							<0.08
5/23/2017			<0.08	<0.08			<0.08
5/24/2017	<0.08	<0.08			<0.08	<0.08	
6/26/2017							<0.08
10/17/2017	<0.08	<0.08	<0.08	<0.08	<0.08	0.025 (J)	<0.08
5/31/2018	<0.08			<0.08	<0.08	0.022 (J)	<0.08
6/1/2018		<0.08	<0.08				
11/7/2018	<0.08	<0.08	<0.08				
11/8/2018				<0.08	<0.08	<0.08	<0.08
4/22/2019	<0.08			<0.08	<0.08	<0.08	<0.08
4/23/2019		<0.08	<0.08				
9/26/2019		<0.08	<0.08	<0.08	<0.08	0.042 (J)	<0.08
9/27/2019	0.0443 (J)						
4/13/2020	<0.08	<0.08	<0.08		<0.08		<0.08
4/14/2020				<0.08		<0.08	
10/21/2020				<0.08			<0.08
10/22/2020	0.103	0.0559 (J)	0.0437 (J)		<0.08	0.0401 (J)	
3/16/2021	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
10/5/2021	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

Constituent: Calcium (mg/L) Analysis Run 12/13/2021 4:11 PM Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			1.3 (B1)	0.61 (B1)	1.4 (B1)	0.93 (B1)	
3/23/2016	<5.9 (*)	<5.9 (*)					
5/18/2016	1.8	5.5	1.2	0.89	1	0.85	
7/11/2016				0.82			
7/12/2016	1.9	5.3	1.1		1.1	0.69	
9/12/2016	2	4.9	1.4		0.98	0.86	0.92
9/13/2016				0.82			
11/17/2016				0.75			
11/18/2016	2				1	0.41	0.68
11/19/2016		4.8	1.3				
1/18/2017		3.8		0.58	1	0.81	0.64
1/19/2017	1.8		1.3				
2/10/2017							0.58
3/21/2017			1.3	0.6	0.91	0.76	0.56
3/22/2017	1.8	3.3					
4/14/2017							0.51
5/23/2017			1.4	0.65			0.54
5/24/2017	2	3.6			0.96	0.8	
6/26/2017							0.66
10/17/2017	2	3.7	1.1	1.1	0.96	0.69	0.58
12/15/2017				0.89 (RS)			
5/31/2018	1.8			1.1	1.1	0.75	0.56
6/1/2018		2.8	0.97				
11/7/2018	2	2.9	1.1				
11/8/2018				0.76	0.96	0.78	0.57
4/22/2019	1.71			1.09	0.946	0.531	0.634
4/23/2019		2.76	1.01				
9/26/2019		2.4	1.08	0.758	1.11	0.631	1.24
9/27/2019	1.99						
4/13/2020	2.03	2.74	1.22		1.03		0.687
4/14/2020				0.92		0.627	
10/21/2020				0.798			0.806
10/22/2020	2.02	2.17	1.35		0.969	0.553	
3/16/2021	1.74	2.4	1.41	0.681	1.12	0.57	2.23
10/5/2021	1.87	1.89	0.632	0.793	0.883	0.43 (J)	3.67

Constituent: Chloride (mg/L) Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
11/16/2006	8.5						
2/5/2007	8.8						
4/12/2007	9.5						
10/17/2007	12.1						
4/17/2008	13.1						
10/24/2008	13.7						
4/21/2009	11.9						
10/26/2009	11						
4/12/2010	12.5						
10/30/2010	10.8						
5/25/2011	10						
5/25/2012	10.9						
5/28/2013	11.4						
5/31/2014	9.2						
5/29/2015	11.5						
3/22/2016	11.3		9.4 (D1)	6 0 (P1)	7.2 (P.1)	11 /D1\	
	12	0 0 /D1\	8.4 (B1)	6.9 (B1)	7.3 (B1)	11 (B1)	
3/23/2016	13	8.8 (B1)	c	E 4	6	0.4	
5/18/2016	13	7.2	6	5.4	6	8.4	
7/11/2016	10	7.5	7.1	8.1	5.7	7.0	
7/12/2016	13	7.5	7.1		5.7	7.9	_
9/12/2016	13	8.4	7.3		5.7	7.6	5
9/13/2016				6.2			
11/17/2016				7.3			
11/18/2016	14				8.2	8.5	<6.3 (*)
11/19/2016		12	8.9				
1/18/2017		11		6.3	7.4	9.2	5.3
1/19/2017	13		8.3				
2/10/2017							5.4
3/21/2017			8.8	7.3	7.9	10	5.3
3/22/2017	15	11					
4/14/2017							4.9 (B)
5/23/2017			9.3	7.4			5.5
5/24/2017	14	10			7.4	10	
6/26/2017							5.4
10/17/2017	15	10	7.1	9.9	6.5	8.6	5.4
12/19/2017				7.8 (RS)			
5/31/2018	12			8.7	6.5	6.9	5
6/1/2018		9.9	6.4				
11/7/2018	14	10	8				
11/8/2018				7.6	6.9	8.7	5.2
4/22/2019	13.3			10.2	6.64	6.17	4.91
4/23/2019		9.3	6.75				
6/25/2019				9.4			
9/26/2019		8.35	7.66	6.54	6.7	6.09	5.03
9/27/2019	13.4						
4/13/2020	14.2	7.9	7.74		6.46		4.9
4/14/2020		-		7.03		6.15	
				7.36			5.25
10/21/2020							
10/21/2020 10/22/2020	17.4	6.5	8.69		6.37	6.89	
10/22/2020	17.4 13.3	6.5 7.32	8.69 8.94	7 14	6.37 6.97	6.89 8.18	5.72
	17.4 13.3 12.5	6.5 7.32 6.59	8.69 8.94 9.3	7.14 6.55	6.37 6.97 5.91	6.89 8.18 5.72	5.72 5.1

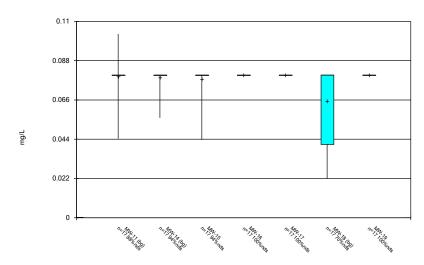
Constituent: Fluoride (mg/L) Analysis Run 12/13/2021 4:11 PM Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19	
3/22/2016			<0.1 (B1)	<0.1 (B1)	<0.1 (B1)	<0.1 (B1)		
3/23/2016	<0.1	<0.1 (B1)						
5/18/2016	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
7/11/2016				<0.1				
7/12/2016	0.04 (J)	<0.1	<0.1		<0.1	0.04 (J)		
9/12/2016	0.04 (J)	<0.1	<0.1		<0.1	<0.1	<0.1	
9/13/2016				<0.1				
11/17/2016				<0.1				
11/18/2016	<0.1				<0.1	<0.1	<0.1	
11/19/2016		<0.1	<0.1					
1/18/2017		<0.1		<0.1	<0.1	<0.1	<0.1	
1/19/2017	<0.1		<0.1					
2/10/2017							<0.1	
3/21/2017			<0.1	<0.1	<0.1	<0.1	<0.1	
3/22/2017	<0.1	<0.1						
4/14/2017							<0.1	
5/23/2017			<0.1	<0.1			<0.1	
5/24/2017	<0.1	<0.1			<0.1	<0.1		
6/26/2017							<0.1	
10/17/2017	0.04 (J)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
5/31/2018	0.04 (J)			<0.1	<0.1	0.04 (J)	<0.1	
6/1/2018		<0.1	<0.1					
11/7/2018	0.05 (J)	<0.1	<0.1					
11/8/2018				<0.1	<0.1	<0.1	<0.1	
4/22/2019	0.0353 (J)			0.029 (J)	<0.1	0.0311 (J)	<0.1	
4/23/2019		0.0335 (J)	0.0275 (J)					
9/26/2019		0.0272 (J)	<0.1	0.0302 (J)	0.0263 (J)	0.0366 (J)	0.0287 (J)	
9/27/2019	0.0438 (J)							
4/13/2020	0.0672 (J)	0.0411 (J)	0.0484 (J)		0.0511 (J)		0.0382 (J)	
4/14/2020				0.0496 (J)		0.0764 (J)		
10/21/2020				<0.1			<0.1	
10/22/2020	<0.1	<0.1	<0.1		<0.1	<0.1		
3/16/2021	0.0269 (J)	<0.1	<0.1	<0.1	<0.1	0.0344 (J)	0.0376 (J)	
10/5/2021	0.0561 (J)	0.03 (J)	<0.1	0.0264 (J)	<0.1	<0.1	<0.1	

Constituent: pH (SU) Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			4.77	4.68	4.89	4.63	
3/23/2016	4.8	5.4					
5/18/2016	4.74	5.38	4.62	4.67	5.09	4.58	
7/11/2016				4.75			
7/12/2016	4.9	5.65	5.03		5.27	4.7	
9/12/2016	4.72	5.14	4.6		4.94	4.6	5.55
9/13/2016				4.56			
11/17/2016				4.6			
11/18/2016	4.65				4.82	4.52	5.14
11/19/2016		5.05	4.46				
1/18/2017		5.11		4.68	5.02	4.63	5.27
1/19/2017	4.77		4.65				
2/10/2017							5.14
3/21/2017			4.47	4.39	4.82	4.45	4.96
3/22/2017	4.46	4.86					
4/14/2017							5.07
5/23/2017			4.69	4.61			5.01
5/24/2017	4.74	5.02			4.87	4.55	
6/26/2017							4.93
10/17/2017	4.72	5.01	4.62	4.51	5	4.61	4.93
11/30/2017	4.61						4.81
5/31/2018	4.93			4.75	5.42	4.84	5.11
6/1/2018		5	4.87				
11/7/2018	4.58	4.81	4.61				
11/8/2018				4.71	5.02	4.63	5.09
4/22/2019	4.67			4.49	4.94	4.64	4.97
4/23/2019		4.93	4.77				
9/26/2019		4.99	4.84	4.62	5.01	4.71	5.19
9/27/2019	4.61						
4/13/2020	4.7	4.96	4.71		4.99		5.06
4/14/2020				4.61		4.75	
10/21/2020				4.5			5.05
10/22/2020	4.66	5.09	4.78		5.01	4.7	
3/16/2021	4.72	5.06	4.65	4.62	5		5.35
10/5/2021	4.67	4.98	4.85	4.6	4.88	4.68	5.53

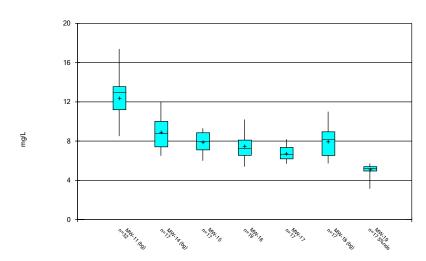
Constituent: Sulfate (mg/L) Analysis Run 12/13/2021 4:11 PM Plant Daniel Client: Southern Company Data: NAMU CCR


	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
11/16/2006	5						
2/5/2007	<5						
4/12/2007	<5						
10/17/2007	5.7						
4/17/2008	7						
10/24/2008	6.6						
4/21/2009	5.2						
10/26/2009	8.3						
4/12/2010	6.8						
10/30/2010	10.8						
5/25/2011	11.5						
5/25/2012	8.2						
5/28/2013	6.9						
5/31/2014	3.5						
5/29/2015	3.3						
3/22/2016	0.0		<5	<5	<5	3 (J)	
3/23/2016	1.8 (J)	<5	~~	-0	-5	J (J)	
5/18/2016	4.1	1.9	<5	<5	1.4	3.9 (J)	
	4.1	1.3	~ 5	<5 <5	1.4	J.J (J)	
7/11/2016 7/12/2016	38/1)	2 (J)	<5	\ 0	19/1	30(1)	
	3.8 (J)				1.8 (J)	3.9 (J)	as .
9/12/2016	3.9 (J)	2 (J)	<5	17/1)	2.2 (J)	4.5 (J)	<5
9/13/2016				1.7 (J)			
11/17/2016	- ·			<5	4570	40.40	-
11/18/2016	5.4	4770			1.5 (J)	4.2 (J)	<5
11/19/2016		1.7 (J)	<5	_	4 = 4 0		_
1/18/2017	_	<5	_	<5	1.5 (J)	3.8 (J)	<5
1/19/2017	<5		<5				_
2/10/2017			_	_	_		<5
3/21/2017			<5	<5	<5	<5 (*)	<5
3/22/2017	<5	<5					
4/14/2017							1.5 (J)
5/23/2017			<5	<5			<5
5/24/2017	2 (J)	<5			1.7 (J)	3 (J)	
6/26/2017							1.5 (J)
10/17/2017	<5	<5	<5	<5	1.8 (J)	3.4 (J)	<5
5/31/2018	3 (J)			2.2 (J)	2.5 (J)	4.1 (J)	1.9 (J)
6/1/2018		1.8 (J)	1.5 (J)				
11/7/2018	3.1 (J)	1.8 (J)	1.5 (J)				
11/8/2018				1.7 (J)	2.2 (J)	3.3 (J)	1.5 (J)
4/22/2019	2.22			2.52	2.96	4.66	2.09
4/23/2019		1.99	1.43				
9/26/2019		1.95	1.2	2.28	2.96	4.23	2.1
9/27/2019	2.36						
4/13/2020	2.47	1.43	0.992 (J)		2.75		1.69
4/14/2020				2.27		3.96	
10/21/2020				2.15			1.31
10/21/2020			4.04		2.98	2.27	
10/22/2020	2.01	1.76	1.04		2.90	3.37	
	2.01 2.15	1./6 2.23	1.04	2	3.06	3.37	2.72

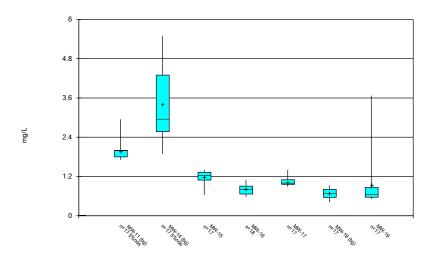
Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11 (bg)	MW-14 (bg)	MW-15	MW-16	MW-17	MW-18 (bg)	MW-19
3/22/2016			34 (B1)	42 (B1)	32 (B1)	28 (B1)	
3/23/2016	40	48 (B1)					
5/18/2016	52	26	24	<3.4	26	20	
7/11/2016				<3.4			
7/12/2016	42	24	24		22	24	
9/12/2016	42	32	4 (J)		32	48	12
9/13/2016				48			
11/17/2016				20			
11/18/2016	82				16	10	14
11/19/2016		76	44				
1/18/2017		48		18	32	30	20
1/19/2017	32		26				
2/10/2017							28
3/21/2017			20	8	16	6	20
3/22/2017	6	30					
4/14/2017							14
5/23/2017			6	<3.4			<3.4
5/24/2017	48	46			22	30	
6/26/2017							34
10/17/2017	34	8	58	58	26	32	42
12/15/2017			20 (RS)				
5/31/2018	32			24	<3.4	30	22
6/1/2018		44	26				
11/7/2018	52	26	8				
11/8/2018				4 (J)	36	22	8
4/22/2019	50			46	24	36	31
4/23/2019		48	34				
9/26/2019		39	32	27	25	30	29
9/27/2019	50						
4/13/2020	63	28	39		27		20
4/14/2020				36		29	
10/21/2020				33			19
10/22/2020	41	25	34		29	22	
3/16/2021	39	41	34	27	37	31	25
10/5/2021	43	29	25	29	34	29	35

FIGURE B.

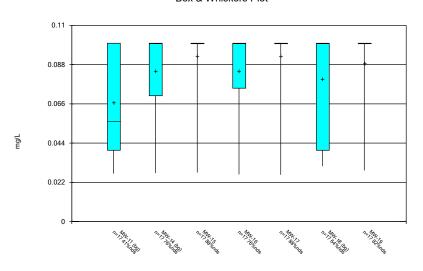

Box & Whiskers Plot

Constituent: Boron Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

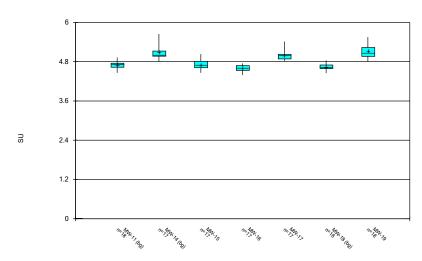
Constituent: Chloride Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Box & Whiskers Plot

Constituent: Calcium Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

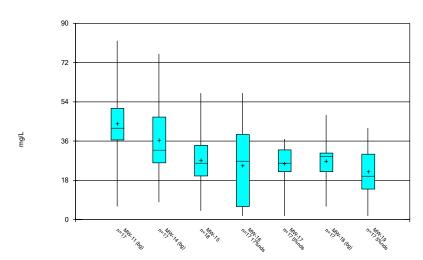
Box & Whiskers Plot



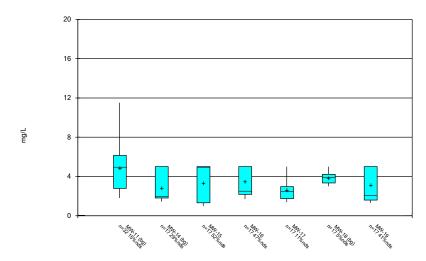
Constituent: Fluoride Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

${\sf Sanitas^{\sf TM}}\, {\sf v.9.6.31}\, {\sf Sanitas}\, {\sf software}\, {\sf utilized}\, \, {\sf by}\, \, {\sf Groundwater}\, {\sf Stats}\, {\sf Consulting.}\, \, {\sf UG}$


Box & Whiskers Plot

Constituent: pH Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Box & Whiskers Plot

Constituent: Total Dissolved Solids Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

Box & Whiskers Plot

Constituent: Sulfate Analysis Run 12/13/2021 4:11 PM
Plant Daniel Client: Southern Company Data: NAMU CCR

FIGURE C.

Outlier Summary

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/13/2021, 4:13 PM

No outliers were flagged.

FIGURE D.

Appendix III Intrawell Prediction Limits - Significant Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/14/2021, 3:24 PM

Constituent	Well	Upper Lim. Lower Lir	n. <u>Date</u>	Observ.	Sig. Bg N %NDs	ND Adj. Transform	<u>Alpha</u>	Method
Calcium (mg/L)	MW-19	0.8608 n/a	10/5/2021	3.67	Yes 12 0	None sqrt(x)	0.00188	Param Intra 1 of 2
pH (SU)	MW-19	5.483 4.668	10/5/2021	5.53	Yes 13 0	None No	0.0009398	Param Intra 1 of 2

Appendix III Intrawell Prediction Limits - All Results

Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/14/2021, 3:36 PM Constituent <u>Well</u> Upper Lim. Lower Lim. Date Observ. Sig. Bg N%NDs ND Adj. <u>Transform</u> <u>Alpha</u> Method NP Intra (NDs) 1 of 2 MW-11 10/5/2021 0.08ND No 12 100 0.01077 Boron (ma/L) 0.08 n/a n/a n/a MW-14 10/5/2021 No 12 100 NP Intra (NDs) 1 of 2 Boron (mg/L) 0.08 0.08ND n/a n/a 0.01077 Boron (mg/L) MW-15 0.08 n/a 10/5/2021 0.08ND No 12 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 10/5/2021 12 NP Intra (NDs) 1 of 2 MW-18 0.08 0.08ND No 75 0.01077 Boron (mg/L) n/a n/a n/a Calcium (mg/L) MW-11 2.17 n/a 10/5/2021 1.87 12 8.333 None 0.00188 Param Intra 1 of 2 n/a Calcium (mg/L) M\/\/_14 6.114 10/5/2021 1.89 Nο 12 8.333 None No 0.00188 Param Intra 1 of 2 MW-15 Calcium (mg/L) 1.535 10/5/2021 0.632 No 12 0 None No 0.00188 Param Intra 1 of 2 n/a Calcium (mg/L) MW-16 1.234 n/a 10/5/2021 0.793 No 13 None 0.00188 Param Intra 1 of 2 Calcium (mg/L) MW-17 1.4 n/a 10/5/2021 0.883 No 12 0 n/a n/a 0.01077 NP Intra (normality) 1 of 2 MW-18 No 12 0 Param Intra 1 of 2 Calcium (mg/L) 1.062 n/a 10/5/2021 0.43JNone Nο 0.00188 Calcium (mg/L) MW-19 0.8608 n/a 10/5/2021 3.67 Yes 12 None sqrt(x) 0.00188 Param Intra 1 of 2 Chloride (mg/L) MW-11 15.58 n/a 10/5/2021 12.5 No 27 0 None No 0.00188 Param Intra 1 of 2 MW-14 10/5/2021 No 12 0 Param Intra 1 of 2 Chloride (ma/L) 12.79 n/a 6.59 None No 0.00188 No 12 0 Chloride (mg/L) MW-15 10.08 10/5/2021 None No 0.00188 Param Intra 1 of 2 n/a Chloride (mg/L) MW-16 10.64 n/a 10/5/2021 6.55 No 13 0 None No 0.00188 Param Intra 1 of 2 10/5/2021 12 MW-17 8.675 No 0 No 0.00188 Param Intra 1 of 2 Chloride (mg/L) n/a 5.91 None Chloride (mg/L) MW-18 11.62 10/5/2021 5.72 12 0.00188 Param Intra 1 of 2 None No n/a Chloride (mg/L) MW-19 5.783 10/5/2021 No 12 8.333 x^5 0.00188 Param Intra 1 of 2 n/a 5.1 None MW-11 12 50 NP Intra (normality) 1 of 2 Fluoride (ma/L) 0.1 n/a 10/5/2021 0.0561.1 Nο n/a n/a 0.01077 Fluoride (mg/L) MW-14 0.1 n/a 10/5/2021 0.03J No 12 91.67 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-15 n/a 10/5/2021 0.1ND No 12 91.67 0.01077 NP Intra (NDs) 1 of 2 0.1 n/a n/a MW-16 12 NP Intra (NDs) 1 of 2 Fluoride (mg/L) 0.1 n/a 10/5/2021 0.0264JNο 91.67 n/a n/a 0.01077 MW-17 0.1 10/5/2021 No 12 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) n/a 0.1ND 100 n/a n/a Fluoride (mg/L) MW-18 0.1 n/a 10/5/2021 0.1ND No 12 75 0.01077 NP Intra (NDs) 1 of 2 Fluoride (mg/L) MW-19 0.1 n/a 10/5/2021 0.1ND No 12 100 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 pH (SU) MW-11 4.992 4.437 10/5/2021 4.67 No 13 No 0.0009398 Param Intra 1 of 2 None pH (SU) MW-14 5.663 4 563 10/5/2021 4.98 No 12 0 None No 0.0009398 Param Intra 1 of 2 12 pH (SU) MW-15 5.04 4.32 10/5/2021 4.85 No 0 None No 0.0009398 Param Intra 1 of 2 MW-16 4.866 4.367 10/5/2021 4.6 12 0.0009398 Param Intra 1 of 2 pH (SU) None No 5.411 MW-17 4.605 10/5/2021 4.88 No 12 0 0.0009398 Param Intra 1 of 2 pH (SU) No MW-18 No 12 0 pH (SU) 4 829 4 401 10/5/2021 4 68 None Nο 0.0009398 Param Intra 1 of 2 (US) Ha MW-19 5.483 4.668 10/5/2021 5.53 Yes 13 0 None No 0.0009398 Param Intra 1 of 2 MW-11 9.808 10/5/2021 No 27 18.52 Param Intra 1 of 2 Sulfate (mg/L) 2.57 Kaplan-Meier 0.00188 No 12 41.67 NP Intra (normality) 1 of 2 Sulfate (mg/L) MW-14 5 n/a 10/5/2021 2.46 n/a n/a 0.01077 MW-15 10/5/2021 12 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) n/a 3.38 No 75 n/a n/a MW-16 10/5/2021 12 0.01077 NP Intra (NDs) 1 of 2 Sulfate (mg/L) 5 2.22 No 66.67 Sulfate (mg/L) MW-17 3.046 n/a 10/5/2021 2.85 No 12 16.67 Kaplan-Meier sqrt(x) 0.00188 Param Intra 1 of 2 MW-18 Sulfate (mg/L) 5.327 10/5/2021 No 12 8.333 0.00188 Param Intra 1 of 2 3.83 None n/a No Sulfate (mg/L) MW-19 n/a 10/5/2021 No 12 58.33 n/a n/a 0.01077 NP Intra (NDs) 1 of 2 82 24 12 Total Dissolved Solids (mg/L) MW-11 n/a 10/5/2021 43 Nο 0 None Nο 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-14 76.82 10/5/2021 29 No 0.00188 Param Intra 1 of 2 n/a None No 58.47 Total Dissolved Solids (mg/L) MW-15 10/5/2021 25 No 13 0 0.00188 Param Intra 1 of 2 n/a No No. 12 25 Total Dissolved Solids (mg/L) MW-16 66 28 n/a 10/5/2021 29 Kaplan-Meier Nο 0.00188 Param Intra 1 of 2 Total Dissolved Solids (mg/L) MW-17 10/5/2021 No 12 8.333 0.00188 Param Intra 1 of 2 44.84 n/a 34 None No Total Dissolved Solids (mg/L) MW-18 10/5/2021 No 12 0 0.00188 Param Intra 1 of 2 51.36 n/a 29 No Total Dissolved Solids (mg/L) MW-19 46.26 n/a 10/5/2021 No. 12 8 333 None No 0.00188 Param Intra 1 of 2

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

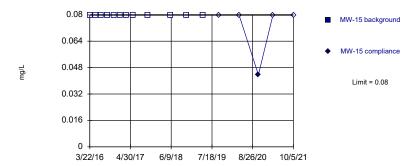
0.11

Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Non-parametric

> MW-11 background MW-11 compliance

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

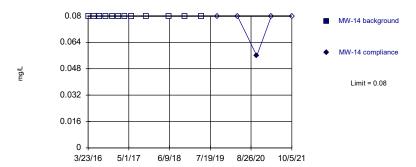

> Constituent: Boron Analysis Run 12/14/2021 2:16 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Prediction Limit Within Limit

Intrawell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

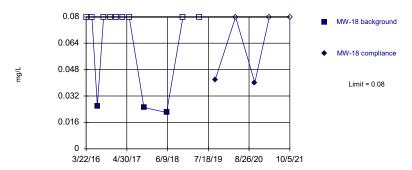
Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Prediction Limit Within Limit

Intrawell Non-parametric

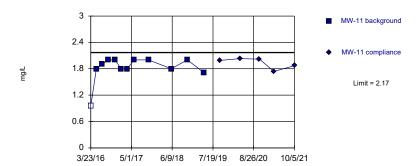
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).


> Constituent: Boron Analysis Run 12/14/2021 2:16 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Prediction Limit Within Limit


Intrawell Non-parametric

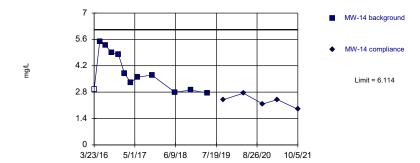
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit Intrawell Parametric

Background Data Summary (based on x⁴ transformation): Mean=12.03, Std. Dev.=4.544, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8072, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

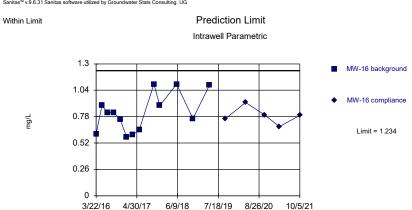
> Constituent: Calcium Analysis Run 12/14/2021 2:16 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Within Limit Intrawell Parametric 1.6 MW-15 background 1.28 MW-15 compliance 0.96 Limit = 1.535 0.64 0.32 3/22/16 4/30/17 6/9/18 7/18/19 8/26/20 10/5/21

Background Data Summary: Mean=1.207, Std. Dev.=0.1472, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9076, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

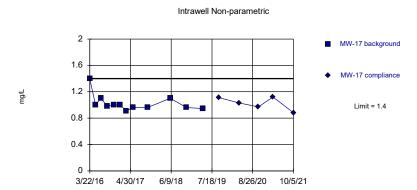
Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Prediction Limit Within Limit Intrawell Parametric

Background Data Summary: Mean=3.859, Std. Dev.=1.01, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8805, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Calcium Analysis Run 12/14/2021 2:16 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

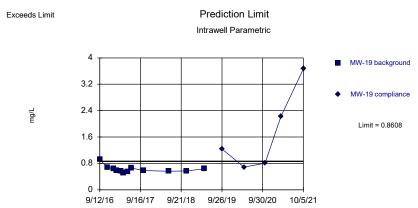


Background Data Summary: Mean=0.82, Std. Dev.=0.1886, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9011, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

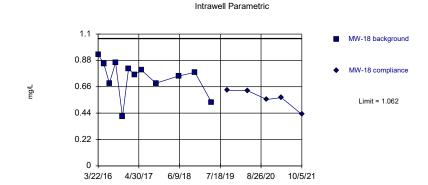
Within Limit

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Within Limit



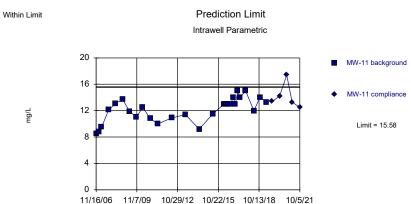
Prediction Limit


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Calcium Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary (based on square root transformation): Mean=0.7847, Std. Dev.=0.06412, n=12. Normality test: Shapiro Wilk (@alpha = 0.01, calculated = 0.8069, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

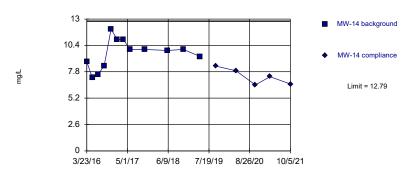


Prediction Limit

Background Data Summary: Mean=0.7384, Std. Dev.=0.1448, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9007, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188

Constituent: Calcium Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

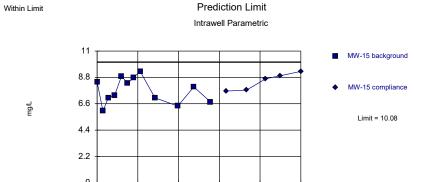
Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG



Background Data Summary: Mean=12.12, Std. Dev.=1.814, n=27. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9502, critical = 0.894. Kappa = 1.906 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

3/22/16 4/30/17

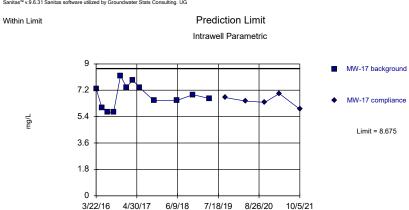

Background Data Summary: Mean=9.592, Std. Dev.=1.433, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9613, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: Chloride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

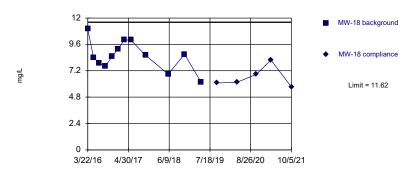
Prediction Limit Within Limit Intrawell Parametric MW-16 background MW-16 compliance 6.6 Limit = 10.64 4.4 2.2 3/22/16 4/30/17 6/9/18 7/18/19 8/26/20 10/5/21

Background Data Summary: Mean=7.623, Std. Dev.=1.377, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9538, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =


Background Data Summary: Mean=7.696, Std. Dev.=1.067, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9552, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

6/9/18 7/18/19 8/26/20

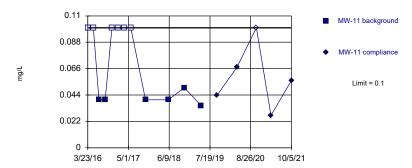
10/5/21


Constituent: Chloride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary: Mean=6.845, Std. Dev.=0.8197, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9524, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

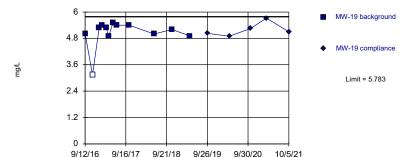
Within Limit Prediction Limit
Intrawell Parametric


Background Data Summary: Mean=8.581, Std. Dev.=1.361, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9827, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0192

Constituent: Chloride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

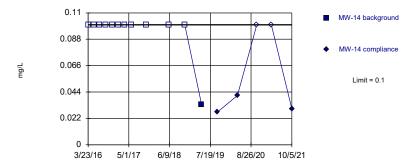
Within Limit Prediction Limit


Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. 50% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

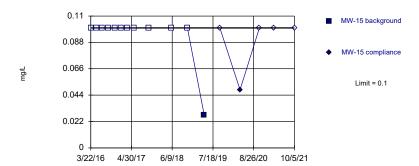
Within Limit Prediction Limit
Intrawell Parametric


Background Data Summary (based on x^5 transformation): Mean=3601, Std. Dev.=1285, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8476, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Chloride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

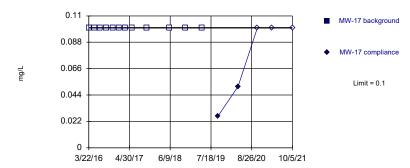
Hollow symbols indicate censored values.


Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric



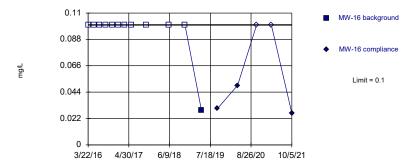
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Fluoride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

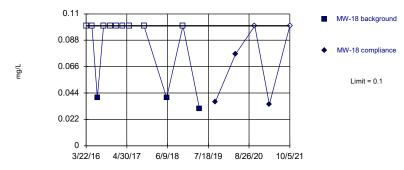

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Within Limit

Prediction Limit

Intrawell Non-parametric

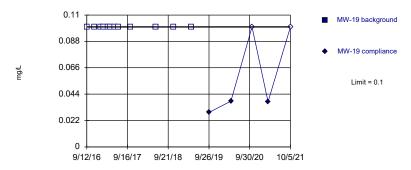

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 91.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Constituent: Fluoride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Hollow symbols indicate censored values.

Prediction Limit Within Limit

Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. All background values (n = 12) were censored; limit is most recent reporting limit. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

> Constituent: Fluoride Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

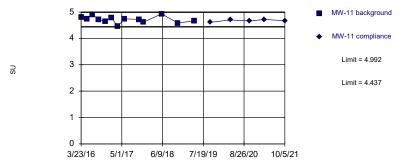
Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

5/1/17

6/9/18

3/23/16

Prediction Limit Within Limits Intrawell Parametric MW-14 background MW-14 compliance Limit = 5.663 3.6 Limit = 4.563 2.4 1.2

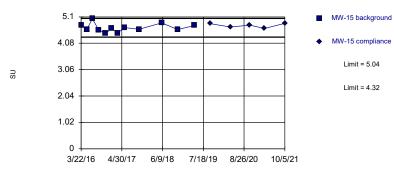

Background Data Summary: Mean=5.113, Std. Dev.=0.2464, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9046, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

7/19/19 8/26/20

10/5/21

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

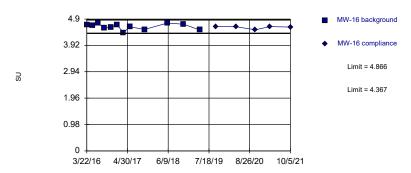
Prediction Limit Within Limits Intrawell Parametric



Background Data Summary: Mean=4.715, Std. Dev.=0.1267, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9755, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: pH Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

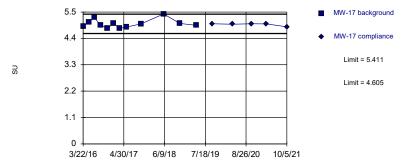

Prediction Limit Within Limits Intrawell Parametric

Background Data Summary: Mean=4.68, Std. Dev.=0.1615, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9345, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Within Limits Intrawell Parametric

Background Data Summary: Mean=4.617, Std. Dev.=0.1118, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9361, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =


> Constituent: pH Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Prediction Limit Within Limits Intrawell Parametric MW-18 background MW-18 compliance 3.92 Limit = 4.829 2.94 Limit = 4.401 1.96 0.98 3/22/16 4/30/17 6/9/18 7/18/19 8/26/20 10/5/21

Background Data Summary: Mean=4.615, Std. Dev.=0.09587, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.925, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

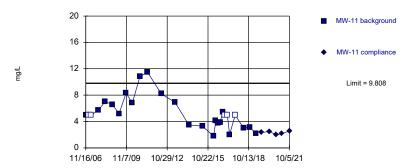
Prediction Limit Within Limits Intrawell Parametric

Background Data Summary: Mean=5.008, Std. Dev.=0.1805, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8737, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

> Constituent: pH Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

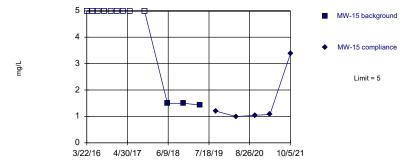
Prediction Limit Exceeds Limits Intrawell Parametric MW-19 background MW-19 compliance Limit = 5.483 3.36 SU Limit = 4.668 2.24 1.12 9/12/16 9/16/17 9/21/18 9/26/19 9/30/20


Background Data Summary: Mean=5.075, Std. Dev.=0.1858, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9001, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

10/5/21

Hollow symbols indicate censored values.

Within Limit

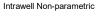

Background Data Summary (after Kaplan-Meier Adjustment): Mean=4.944, Std. Dev.=2.552, n=27, 18.52% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9272, critical = 0.894. Kappa = 1.906 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.051480.

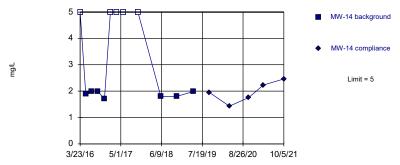
Constituent: Sulfate Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit

Intrawell Non-parametric



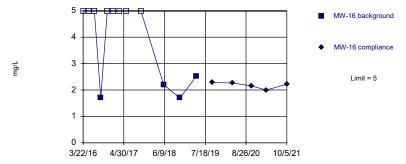

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 75% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

Within Limit Prediction Limit

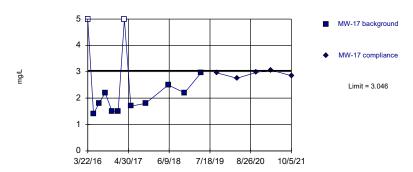
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 12 background values. 41.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).


Constituent: Sulfate Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

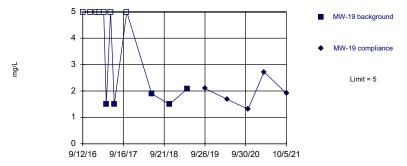
Within Limit Prediction Limit


Intrawell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 66.67% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Within Limit

Prediction Limit Intrawell Parametric

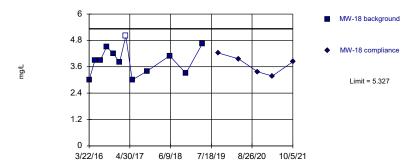

Background Data Summary (based on square root transformation) (after Kaplan-Meier Adjustment): Mean=1.349, Std. Dev.=0.1777, n=12, 16.67% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8093, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Sulfate Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.

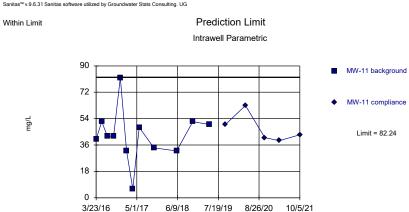
Prediction Limit Within Limit Intrawell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 12 background values. 58.33% NDs. Well-constituent pair annual alpha = 0.02143. Individual comparison alpha = 0.01077 (1 of 2).

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Prediction Limit Within Limit


Intrawell Parametric

Background Data Summary: Mean=3.897, Std. Dev.=0.6408, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9606, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

> Constituent: Sulfate Analysis Run 12/14/2021 2:17 PM View: PLs Time Series Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG

Background Data Summary: Mean=42.67, Std. Dev.=17.73, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9141, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha =

0

3/23/16

Within Limit

3/22/16 4/30/17

Intrawell Parametric

80

64

MW-14 background

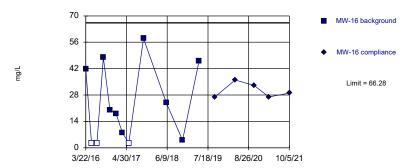
MW-14 compliance

Limit = 76.82

Prediction Limit

Background Data Summary: Mean=38, Std. Dev.=17.39, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9323, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0192

6/9/18 7/19/19 8/26/20


10/5/21

Constituent: Total Dissolved Solids Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Parametric

5/1/17

Background Data Summary (after Kaplan-Meier Adjustment): Mean=23.33, Std. Dev.=19.24, n=12, 25% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8666, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

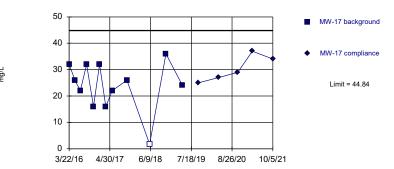
Within Limit Prediction Limit Intrawell Parametric

MW-15 background

MW-15 compliance

Limit = 58.47

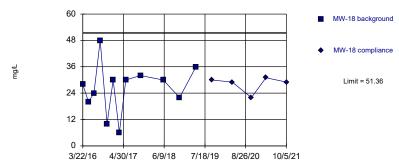
Background Data Summary: Mean=25.23, Std. Dev.=15.16, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9437, critical = 0.814. Kappa = 2.193 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.


6/9/18 7/18/19 8/26/20

10/5/21

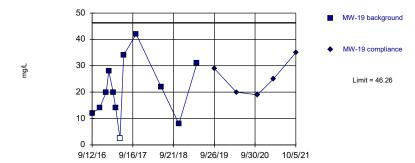
Constituent: Total Dissolved Solids Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=23.81, Std. Dev.=9.424, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9134, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG


Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=26.33, Std. Dev.=11.21, n=12. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9551, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.0188

Sanitas™ v.9.6.31 Sanitas software utilized by Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Within Limit Prediction Limit
Intrawell Parametric

Background Data Summary: Mean=20.63, Std. Dev.=11.48, n=12, 8.333% NDs. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9792, critical = 0.805. Kappa = 2.232 (c=7, w=4, 1 of 2, event alpha = 0.05132). Report alpha = 0.00188.

Constituent: Total Dissolved Solids Analysis Run 12/14/2021 2:17 PM View: PLs Time Series
Plant Daniel Client: Southern Company Data: NAMU CCR

	MW-11	MW-11
3/23/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/18/2016	<0.08	
1/19/2017	<0.08	
3/22/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	<0.08	
5/31/2018	<0.08	
11/7/2018	<0.08	
4/22/2019	<0.08	
9/27/2019		0.0443 (J)
4/13/2020		<0.08
10/22/2020		0.103
3/16/2021		<0.08
10/5/2021		<0.08

	MW-14	MW-14
3/23/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/19/2016	<0.08	
1/18/2017	<0.08	
3/22/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	<0.08	
6/1/2018	<0.08	
11/7/2018	<0.08	
4/23/2019	<0.08	
9/26/2019		<0.08
4/13/2020		<0.08
10/22/2020		0.0559 (J)
3/16/2021		<0.08
10/5/2021		<0.08

	MW-15	MW-15
3/22/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	<0.08	
9/12/2016	<0.08	
11/19/2016	<0.08	
1/19/2017	<0.08	
3/21/2017	<0.08	
5/23/2017	<0.08	
10/17/2017	<0.08	
6/1/2018	<0.08	
11/7/2018	<0.08	
4/23/2019	<0.08	
9/26/2019		<0.08
4/13/2020		<0.08
10/22/2020		0.0437 (J)
3/16/2021		<0.08
10/5/2021		<0.08

	MW-18	MW-18
3/22/2016	<0.08 (B1)	
5/18/2016	<0.08	
7/12/2016	0.026 (J)	
9/12/2016	<0.08	
11/18/2016	<0.08	
1/18/2017	<0.08	
3/21/2017	<0.08	
5/24/2017	<0.08	
10/17/2017	0.025 (J)	
5/31/2018	0.022 (J)	
11/8/2018	<0.08	
4/22/2019	<0.08	
9/26/2019		0.042 (J)
4/14/2020		<0.08
10/22/2020		0.0401 (J)
3/16/2021		<0.08
10/5/2021		<0.08

	MW-11	MW-11
3/23/2016	<1.9 (*)	
5/18/2016	1.8	
7/12/2016	1.9	
9/12/2016	2	
11/18/2016	2	
1/19/2017	1.8	
3/22/2017	1.8	
5/24/2017	2	
10/17/2017	2	
5/31/2018	1.8	
11/7/2018	2	
4/22/2019	1.71	
9/27/2019		1.99
4/13/2020		2.03
10/22/2020		2.02
3/16/2021		1.74
10/5/2021		1.87

	MW-14	MW-14
3/23/2016	<5.9 (*)	
5/18/2016	5.5	
7/12/2016	5.3	
9/12/2016	4.9	
11/19/2016	4.8	
1/18/2017	3.8	
3/22/2017	3.3	
5/24/2017	3.6	
10/17/2017	3.7	
6/1/2018	2.8	
11/7/2018	2.9	
4/23/2019	2.76	
9/26/2019		2.4
4/13/2020		2.74
10/22/2020		2.17
3/16/2021		2.4
10/5/2021		1.89

	MW-15	MW-15
3/22/2016	1.3 (B1)	
5/18/2016	1.2	
7/12/2016	1.1	
9/12/2016	1.4	
11/19/2016	1.3	
1/19/2017	1.3	
3/21/2017	1.3	
5/23/2017	1.4	
10/17/2017	1.1	
6/1/2018	0.97	
11/7/2018	1.1	
4/23/2019	1.01	
9/26/2019		1.08
4/13/2020		1.22
10/22/2020		1.35
3/16/2021		1.41
10/5/2021		0.632

	MW-16	MW-16
3/22/2016	0.61 (B1)	
5/18/2016	0.89	
7/11/2016	0.82	
9/13/2016	0.82	
11/17/2016	0.75	
1/18/2017	0.58	
3/21/2017	0.6	
5/23/2017	0.65	
10/17/2017	1.1	
12/15/2017	0.89 (RS)	
5/31/2018	1.1	
11/8/2018	0.76	
4/22/2019	1.09	
9/26/2019		0.758
4/14/2020		0.92
10/21/2020		0.798
3/16/2021		0.681
10/5/2021		0.793

	MW-17	MW-17
3/22/2016	1.4 (B1)	
5/18/2016	1	
7/12/2016	1.1	
9/12/2016	0.98	
11/18/2016	1	
1/18/2017	1	
3/21/2017	0.91	
5/24/2017	0.96	
10/17/2017	0.96	
5/31/2018	1.1	
11/8/2018	0.96	
4/22/2019	0.946	
9/26/2019		1.11
4/13/2020		1.03
10/22/2020		0.969
3/16/2021		1.12
10/5/2021		0.883

MANA/ 10	MW-18
IVIVV-10	IVIVV-10
0.93 (B1)	
0.85	
0.69	
0.86	
0.41	
0.81	
0.76	
8.0	
0.69	
0.75	
0.78	
0.531	
	0.631
	0.627
	0.553
	0.57
	0.43 (J)
	0.85 0.69 0.86 0.41 0.81 0.76 0.8 0.69 0.75

MW-19	MW-19
0.92	
0.68	
0.64	
0.58	
0.56	
0.51	
0.54	
0.66	
0.58	
0.56	
0.57	
0.634	
	1.24
	0.687
	0.806
	2.23
	3.67
	0.92 0.68 0.64 0.58 0.56 0.51 0.54 0.66 0.58 0.56 0.57

	MW-11	MW-11
11/16/2006	8.5	
2/5/2007	8.8	
4/12/2007	9.5	
10/17/2007	12.1	
4/17/2008	13.1	
10/24/2008	13.7	
4/21/2009	11.9	
10/26/2009	11	
4/12/2010	12.5	
10/30/2010	10.8	
5/25/2011	10	
5/25/2012	10.9	
5/28/2013	11.4	
5/31/2014	9.2	
5/29/2015	11.5	
3/23/2016	13	
5/18/2016	13	
7/12/2016	13	
9/12/2016	13	
11/18/2016	14	
1/19/2017	13	
3/22/2017	15	
5/24/2017	14	
10/17/2017	15	
5/31/2018	12	
11/7/2018	14	
4/22/2019	13.3	
9/27/2019		13.4
4/13/2020		14.2
10/22/2020		17.4
3/16/2021		13.3
10/5/2021		12.5

	MW-14	MW-14
3/23/2016	8.8 (B1)	
5/18/2016	7.2	
7/12/2016	7.5	
9/12/2016	8.4	
11/19/2016	12	
1/18/2017	11	
3/22/2017	11	
5/24/2017	10	
10/17/2017	10	
6/1/2018	9.9	
11/7/2018	10	
4/23/2019	9.3	
9/26/2019		8.35
4/13/2020		7.9
10/22/2020		6.5
3/16/2021		7.32
10/5/2021		6.59

	MW-15	MW-15
3/22/2016	8.4 (B1)	
5/18/2016	6	
7/12/2016	7.1	
9/12/2016	7.3	
11/19/2016	8.9	
1/19/2017	8.3	
3/21/2017	8.8	
5/23/2017	9.3	
10/17/2017	7.1	
6/1/2018	6.4	
11/7/2018	8	
4/23/2019	6.75	
9/26/2019		7.66
4/13/2020		7.74
10/22/2020		8.69
3/16/2021		8.94
10/5/2021		9.3

	MW-16	MW-16
3/22/2016	6.9 (B1)	
5/18/2016	5.4	
7/11/2016	8.1	
9/13/2016	6.2	
11/17/2016	7.3	
1/18/2017	6.3	
3/21/2017	7.3	
5/23/2017	7.4	
10/17/2017	9.9	
12/19/2017	7.8 (RS)	
5/31/2018	8.7	
11/8/2018	7.6	
4/22/2019	10.2	
6/25/2019		9.4
9/26/2019		6.54
4/14/2020		7.03
10/21/2020		7.36
3/16/2021		7.14
10/5/2021		6.55

	MW-17	MW-17
3/22/2016	7.3 (B1)	
5/18/2016	6	
7/12/2016	5.7	
9/12/2016	5.7	
11/18/2016	8.2	
1/18/2017	7.4	
3/21/2017	7.9	
5/24/2017	7.4	
10/17/2017	6.5	
5/31/2018	6.5	
11/8/2018	6.9	
4/22/2019	6.64	
9/26/2019		6.7
4/13/2020		6.46
10/22/2020		6.37
3/16/2021		6.97
10/5/2021		5.91

	MW-18	MW-18
3/22/2016	11 (B1)	
5/18/2016	8.4	
7/12/2016	7.9	
9/12/2016	7.6	
11/18/2016	8.5	
1/18/2017	9.2	
3/21/2017	10	
5/24/2017	10	
10/17/2017	8.6	
5/31/2018	6.9	
11/8/2018	8.7	
4/22/2019	6.17	
9/26/2019		6.09
4/14/2020		6.15
10/22/2020		6.89
3/16/2021		8.18
10/5/2021		5.72

	MW-19	MW-19
9/12/2016	5	
11/18/2016	<6.3 (*)	
1/18/2017	5.3	
2/10/2017	5.4	
3/21/2017	5.3	
4/14/2017	4.9 (B)	
5/23/2017	5.5	
6/26/2017	5.4	
10/17/2017	5.4	
5/31/2018	5	
11/8/2018	5.2	
4/22/2019	4.91	
9/26/2019		5.03
4/13/2020		4.9
10/21/2020		5.25
3/16/2021		5.72
10/5/2021		5.1

		MW-11	MW-11
3	3/23/2016	<0.1	
5	5/18/2016	<0.1	
7	//12/2016	0.04 (J)	
ç)/12/2016	0.04 (J)	
1	1/18/2016	<0.1	
1	/19/2017	<0.1	
3	3/22/2017	<0.1	
5	5/24/2017	<0.1	
1	0/17/2017	0.04 (J)	
5	5/31/2018	0.04 (J)	
1	1/7/2018	0.05 (J)	
4	/22/2019	0.0353 (J)	
ç)/27/2019		0.0438 (J)
4	/13/2020		0.0672 (J)
1	0/22/2020		<0.1
3	3/16/2021		0.0269 (J)
1	0/5/2021		0.0561 (J)

	MW-14	MW-14
3/23/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	<0.1	
9/12/2016	<0.1	
11/19/2016	<0.1	
1/18/2017	<0.1	
3/22/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	<0.1	
6/1/2018	<0.1	
11/7/2018	<0.1	
4/23/2019	0.0335 (J)	
9/26/2019		0.0272 (J)
4/13/2020		0.0411 (J)
10/22/2020		<0.1
3/16/2021		<0.1
10/5/2021		0.03 (J)

	MW-15	MW-15
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	<0.1	
9/12/2016	<0.1	
11/19/2016	<0.1	
1/19/2017	<0.1	
3/21/2017	<0.1	
5/23/2017	<0.1	
10/17/2017	<0.1	
6/1/2018	<0.1	
11/7/2018	<0.1	
4/23/2019	0.0275 (J)	
9/26/2019		<0.1
4/13/2020		0.0484 (J)
10/22/2020		<0.1
3/16/2021		<0.1
10/5/2021		<0.1

	MW-16	MW-16
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/11/2016	<0.1	
9/13/2016	<0.1	
11/17/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/23/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	0.029 (J)	
9/26/2019		0.0302 (J)
4/14/2020		0.0496 (J)
10/21/2020		<0.1
3/16/2021		<0.1
10/5/2021		0.0264 (J)

	MW-17	MW-17
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	<0.1	
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	<0.1	
9/26/2019		0.0263 (J)
4/13/2020		0.0511 (J)
10/22/2020		<0.1
3/16/2021		<0.1
10/5/2021		<0.1

	MW-18	MW-18
3/22/2016	<0.1 (B1)	
5/18/2016	<0.1	
7/12/2016	0.04 (J)	
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
3/21/2017	<0.1	
5/24/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	0.04 (J)	
11/8/2018	<0.1	
4/22/2019	0.0311 (J)	
9/26/2019		0.0366 (J)
4/14/2020		0.0764 (J)
10/22/2020		<0.1
3/16/2021		0.0344 (J)
10/5/2021		<0.1

	MW-19	MW-19
9/12/2016	<0.1	
11/18/2016	<0.1	
1/18/2017	<0.1	
2/10/2017	<0.1	
3/21/2017	<0.1	
4/14/2017	<0.1	
5/23/2017	<0.1	
6/26/2017	<0.1	
10/17/2017	<0.1	
5/31/2018	<0.1	
11/8/2018	<0.1	
4/22/2019	<0.1	
9/26/2019		0.0287 (J)
4/13/2020		0.0382 (J)
10/21/2020		<0.1
3/16/2021		0.0376 (J)
10/5/2021		<0.1

	MW-11	MW-11
3/23/2016	4.8	
5/18/2016	4.74	
7/12/2016	4.9	
9/12/2016	4.72	
11/18/2016	4.65	
1/19/2017	4.77	
3/22/2017	4.46	
5/24/2017	4.74	
10/17/2017	4.72	
11/30/2017	4.61	
5/31/2018	4.93	
11/7/2018	4.58	
4/22/2019	4.67	
9/27/2019		4.61
4/13/2020		4.7
10/22/2020		4.66
3/16/2021		4.72
10/5/2021		4.67

	MW-14	MW-14
3/23/2016	5.4	
5/18/2016	5.38	
7/12/2016	5.65	
9/12/2016	5.14	
11/19/2016	5.05	
1/18/2017	5.11	
3/22/2017	4.86	
5/24/2017	5.02	
10/17/2017	5.01	
6/1/2018	5	
11/7/2018	4.81	
4/23/2019	4.93	
9/26/2019		4.99
4/13/2020		4.96
10/22/2020		5.09
3/16/2021		5.06
10/5/2021		4.98

	MW-15	MW-15
3/22/2016	4.77	
5/18/2016	4.62	
7/12/2016	5.03	
9/12/2016	4.6	
11/19/2016	4.46	
1/19/2017	4.65	
3/21/2017	4.47	
5/23/2017	4.69	
10/17/2017	4.62	
6/1/2018	4.87	
11/7/2018	4.61	
4/23/2019	4.77	
9/26/2019		4.84
4/13/2020		4.71
10/22/2020		4.78
3/16/2021		4.65
10/5/2021		4.85

	MW-16	MW-16
3/22/2016	4.68	
5/18/2016	4.67	
7/11/2016	4.75	
9/13/2016	4.56	
11/17/2016	4.6	
1/18/2017	4.68	
3/21/2017	4.39	
5/23/2017	4.61	
10/17/2017	4.51	
5/31/2018	4.75	
11/8/2018	4.71	
4/22/2019	4.49	
9/26/2019		4.62
4/14/2020		4.61
10/21/2020		4.5
3/16/2021		4.62
10/5/2021		4.6

	MW-17	MW-17
3/22/2016	4.89	
5/18/2016	5.09	
7/12/2016	5.27	
9/12/2016	4.94	
11/18/2016	4.82	
1/18/2017	5.02	
3/21/2017	4.82	
5/24/2017	4.87	
10/17/2017	5	
5/31/2018	5.42	
11/8/2018	5.02	
4/22/2019	4.94	
9/26/2019		5.01
4/13/2020		4.99
10/22/2020		5.01
3/16/2021		5
10/5/2021		4.88

	MW-18	MW-18
3/22/2016	4.63	
5/18/2016	4.58	
7/12/2016	4.7	
9/12/2016	4.6	
11/18/2016	4.52	
1/18/2017	4.63	
3/21/2017	4.45	
5/24/2017	4.55	
10/17/2017	4.61	
5/31/2018	4.84	
11/8/2018	4.63	
4/22/2019	4.64	
9/26/2019		4.71
4/14/2020		4.75
10/22/2020		4.7
10/5/2021		4.68

	MW-19	MW-19
9/12/2016	5.55	
11/18/2016	5.14	
1/18/2017	5.27	
2/10/2017	5.14	
3/21/2017	4.96	
4/14/2017	5.07	
5/23/2017	5.01	
6/26/2017	4.93	
10/17/2017	4.93	
11/30/2017	4.81	
5/31/2018	5.11	
11/8/2018	5.09	
4/22/2019	4.97	
9/26/2019		5.19
4/13/2020		5.06
10/21/2020		5.05
3/16/2021		5.35
10/5/2021		5.53
	11/18/2016 1/18/2017 2/10/2017 3/21/2017 4/14/2017 5/23/2017 6/26/2017 10/17/2017 11/30/2017 5/31/2018 11/8/2018 4/22/2019 9/26/2019 4/13/2020 10/21/2020 3/16/2021	9/12/2016 5.55 11/18/2016 5.14 1/18/2017 5.27 2/10/2017 5.14 3/21/2017 4.96 4/14/2017 5.07 5/23/2017 5.01 6/26/2017 4.93 10/17/2017 4.93 11/30/2017 4.81 5/31/2018 5.11 11/8/2018 5.09 4/22/2019 4.97 9/26/2019 4/13/2020 3/16/2021

	MW-11	MW-11
11/16/2006	5	
2/5/2007	<5	
4/12/2007	<5	
10/17/2007	5.7	
4/17/2008	7	
10/24/2008	6.6	
4/21/2009	5.2	
10/26/2009	8.3	
4/12/2010	6.8	
10/30/2010	10.8	
5/25/2011	11.5	
5/25/2012	8.2	
5/28/2013	6.9	
5/31/2014	3.5	
5/29/2015	3.3	
3/23/2016	1.8 (J)	
5/18/2016	4.1	
7/12/2016	3.8 (J)	
9/12/2016	3.9 (J)	
11/18/2016	5.4	
1/19/2017	<5	
3/22/2017	<5	
5/24/2017	2 (J)	
10/17/2017	<5	
5/31/2018	3 (J)	
11/7/2018	3.1 (J)	
4/22/2019	2.22	
9/27/2019		2.36
4/13/2020		2.47
10/22/2020		2.01
3/16/2021		2.15
10/5/2021		2.57

	MW-14	MW-14
3/23/2016	<5	
5/18/2016	1.9	
7/12/2016	2 (J)	
9/12/2016	2 (J)	
11/19/2016	1.7 (J)	
1/18/2017	<5	
3/22/2017	<5	
5/24/2017	<5	
10/17/2017	<5	
6/1/2018	1.8 (J)	
11/7/2018	1.8 (J)	
4/23/2019	1.99	
9/26/2019		1.95
4/13/2020		1.43
10/22/2020		1.76
3/16/2021		2.23
10/5/2021		2.46

	MW-15	MW-15
3/22/2016	<5	
5/18/2016	<5	
7/12/2016	<5	
9/12/2016	<5	
11/19/2016	<5	
1/19/2017	<5	
3/21/2017	<5	
5/23/2017	<5	
10/17/2017	<5	
6/1/2018	1.5 (J)	
11/7/2018	1.5 (J)	
4/23/2019	1.43	
9/26/2019		1.2
4/13/2020		0.992 (J)
10/22/2020		1.04
3/16/2021		1.07
10/5/2021		3.38

	MW-16	MW-16
3/22/2016	<5	
5/18/2016	<5	
7/11/2016	<5	
9/13/2016	1.7 (J)	
11/17/2016	<5	
1/18/2017	<5	
3/21/2017	<5	
5/23/2017	<5	
10/17/2017	<5	
5/31/2018	2.2 (J)	
11/8/2018	1.7 (J)	
4/22/2019	2.52	
9/26/2019		2.28
4/14/2020		2.27
10/21/2020		2.15
3/16/2021		2
10/5/2021		2.22

	MW-17	MW-17
3/22/2016	<5	
5/18/2016	1.4	
7/12/2016	1.8 (J)	
9/12/2016	2.2 (J)	
11/18/2016	1.5 (J)	
1/18/2017	1.5 (J)	
3/21/2017	<5	
5/24/2017	1.7 (J)	
10/17/2017	1.8 (J)	
5/31/2018	2.5 (J)	
11/8/2018	2.2 (J)	
4/22/2019	2.96	
9/26/2019		2.96
4/13/2020		2.75
10/22/2020		2.98
3/16/2021		3.06
10/5/2021		2.85

	MW-18	MW-18
3/22/2016	3 (J)	
5/18/2016	3.9 (J)	
7/12/2016	3.9 (J)	
9/12/2016	4.5 (J)	
11/18/2016	4.2 (J)	
1/18/2017	3.8 (J)	
3/21/2017	<5 (*)	
5/24/2017	3 (J)	
10/17/2017	3.4 (J)	
5/31/2018	4.1 (J)	
11/8/2018	3.3 (J)	
4/22/2019	4.66	
9/26/2019		4.23
4/14/2020		3.96
10/22/2020		3.37
3/16/2021		3.18
10/5/2021		3.83

	MW-19	MW-19
9/12/2016	<5	
11/18/2016	<5	
1/18/2017	<5	
2/10/2017	<5	
3/21/2017	<5	
4/14/2017	1.5 (J)	
5/23/2017	<5	
6/26/2017	1.5 (J)	
10/17/2017	<5	
5/31/2018	1.9 (J)	
11/8/2018	1.5 (J)	
4/22/2019	2.09	
9/26/2019		2.1
4/13/2020		1.69
10/21/2020		1.31
3/16/2021		2.72
10/5/2021		1.91

	MW-11	MW-11
3/23/2016	40	
	• •	
5/18/2016	52	
7/12/2016	42	
9/12/2016	42	
11/18/2016	82	
1/19/2017	32	
3/22/2017	6	
5/24/2017	48	
10/17/2017	34	
5/31/2018	32	
11/7/2018	52	
4/22/2019	50	
9/27/2019		50
4/13/2020		63
10/22/2020		41
3/16/2021		39
10/5/2021		43

	MW-14	MW-14
3/23/2016	48 (B1)	
5/18/2016	26	
7/12/2016	24	
9/12/2016	32	
11/19/2016	76	
1/18/2017	48	
3/22/2017	30	
5/24/2017	46	
10/17/2017	8	
6/1/2018	44	
11/7/2018	26	
4/23/2019	48	
9/26/2019		39
4/13/2020		28
10/22/2020		25
3/16/2021		41
10/5/2021		29

	MW-15	MW-15
3/22/2016	34 (B1)	
5/18/2016	24	
7/12/2016	24	
9/12/2016	4 (J)	
11/19/2016	44	
1/19/2017	26	
3/21/2017	20	
5/23/2017	6	
10/17/2017	58	
12/15/2017	20 (RS)	
6/1/2018	26	
11/7/2018	8	
4/23/2019	34	
9/26/2019		32
4/13/2020		39
10/22/2020		34
3/16/2021		34
10/5/2021		25

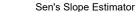
	MW-16	MW-16
3/22/2016	42 (B1)	
5/18/2016	<5	
7/11/2016	<5	
9/13/2016	48	
11/17/2016	20	
1/18/2017	18	
3/21/2017	8	
5/23/2017	<5	
10/17/2017	58	
5/31/2018	24	
11/8/2018	4 (J)	
4/22/2019	46	
9/26/2019		27
4/14/2020		36
10/21/2020		33
3/16/2021		27
10/5/2021		29

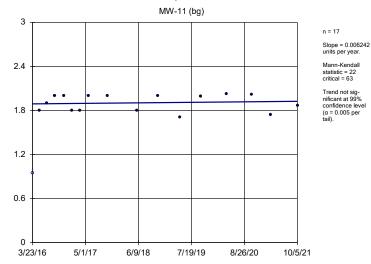
	MW-17	MW-17
3/22/2016	32 (B1)	
5/18/2016	26	
7/12/2016	22	
9/12/2016	32	
11/18/2016	16	
1/18/2017	32	
3/21/2017	16	
5/24/2017	22	
10/17/2017	26	
5/31/2018	<3.4	
11/8/2018	36	
4/22/2019	24	
9/26/2019		25
4/13/2020		27
10/22/2020		29
3/16/2021		37
10/5/2021		34

	MW-18	MW-18
3/22/2016	28 (B1)	
5/18/2016	20	
7/12/2016	24	
9/12/2016	48	
11/18/2016	10	
1/18/2017	30	
3/21/2017	6	
5/24/2017	30	
10/17/2017	32	
5/31/2018	30	
11/8/2018	22	
4/22/2019	36	
9/26/2019		30
4/14/2020		29
10/22/2020		22
3/16/2021		31
10/5/2021		29

	MW-19	MW-19
9/12/2016	12	
11/18/2016	14	
1/18/2017	20	
2/10/2017	28	
3/21/2017	20	
4/14/2017	14	
5/23/2017	<5	
6/26/2017	34	
10/17/2017	42	
5/31/2018	22	
11/8/2018	8	
4/22/2019	31	
9/26/2019		29
4/13/2020		20
10/21/2020		19
3/16/2021		25
10/5/2021		35

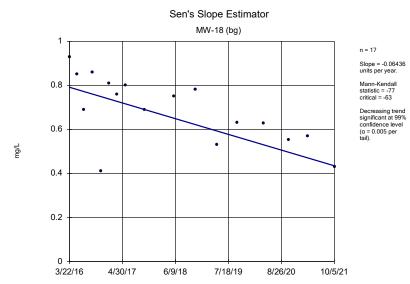
FIGURE E.

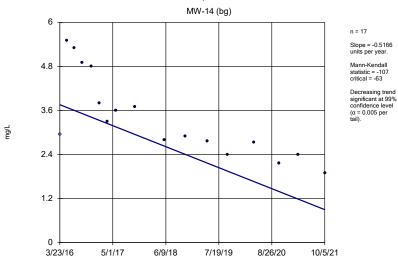

Appendix III Trend Tests - Prediction Limits Exceedances - Significant Results


Plant Daniel Client: Southern Company Data: NAMU CCR Printed 12/15/2021, 5:11 PM Constituent Well Calc. Critical Sig. N %NDs Normality Xform <u>Alpha</u> Method Slope Calcium (mg/L) MW-14 (bg) -0.5166 -107 -63 Yes 17 5.882 n/a n/a 0.01 -0.06436 -77 -63 Yes 17 0 n/a NP Calcium (mg/L) MW-18 (bg) n/a 0.01 pH (SU) MW-14 (bg) -0.05378 -64 -63 Yes 17 0 n/a n/a 0.01 NP

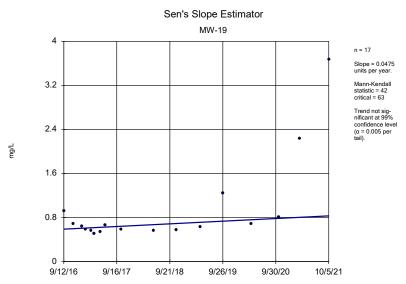
Appendix III Trend Tests - Prediction Limits Exceedances - All Results

	Plant Daniel Client: Southern Comp	any Data: NA	MU CCR	Printed 1	2/15/2	021, 5:1	I1 PM				
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Calcium (mg/L)	MW-11 (bg)	0.006242	22	63	No	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-14 (bg)	-0.5166	-107	-63	Yes	17	5.882	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-18 (bg)	-0.06436	-77	-63	Yes	17	0	n/a	n/a	0.01	NP
Calcium (mg/L)	MW-19	0.0475	42	63	No	17	0	n/a	n/a	0.01	NP
pH (SU)	MW-11 (bg)	-0.01917	-41	-68	No	18	0	n/a	n/a	0.01	NP
pH (SU)	MW-14 (bg)	-0.05378	-64	-63	Yes	17	0	n/a	n/a	0.01	NP
pH (SU)	MW-18 (bg)	0.02083	44	58	No	16	0	n/a	n/a	0.01	NP
pH (SU)	MW-19	-0.003948	-5	-68	No	18	0	n/a	n/a	0.01	NP

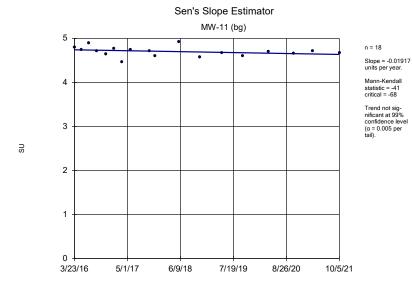

mg/L


Constituent: Calcium Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

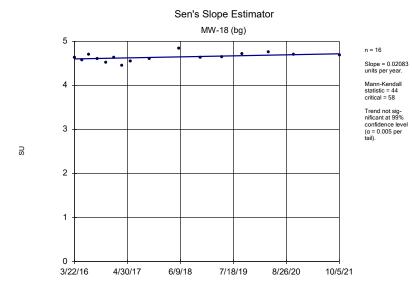

Constituent: Calcium Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

Sen's Slope Estimator



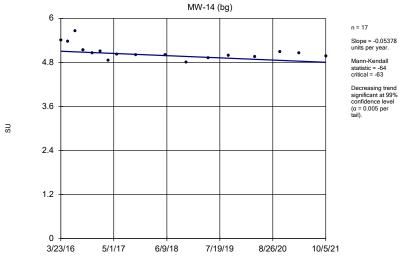
Constituent: Calcium Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

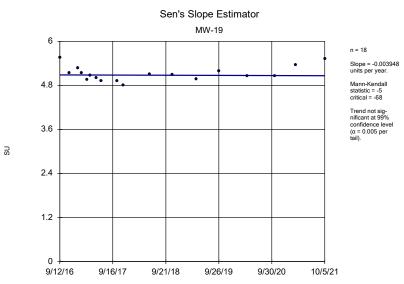


Constituent: Calcium Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

Constituent: pH Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR


Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Constituent: pH Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests


Plant Daniel Client: Southern Company Data: NAMU CCR

Sen's Slope Estimator

Constituent: pH Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests
Plant Daniel Client: Southern Company Data: NAMU CCR

Sanitas™ v.9.6.32 Groundwater Stats Consulting. UG

Constituent: pH Analysis Run 12/15/2021 5:10 PM View: Intrawell - Trend Tests

Plant Daniel Client: Southern Company Data: NAMU CCR